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Preface

This volume contains the papers presented at the Second International Work-
shop on Soft Computing Applications and Knowledge Discovery (SCAKD 2016)
held on July 18, 2016 at the National Research University Higher School of
Economics, Moscow, Russia.

Soft computing is a collection of methodologies, which aim to exploit toler-
ance for imprecision, uncertainty and partial truth to achieve tractability, robust-
ness and low solution cost in real life tasks. The workshop proposes to present
high quality scientific results and promising research in the area of soft com-
puting and data mining, particularly by young researchers, with an objective of
bringing them to the focus while promoting collaborative research activities. By
holding the workshop in conjunction with CLA 2016, we hope to provide the
participants exposure and interaction with eminent scientists, engineers, and
researchers in the related fields.

Each submission has been reviewed by at least two Program Committee
members. Six regular papers have been accepted for publication as well as four
research proposals. The program also includes one invited industry talk by the
representatives of ExactPro company on Using intelligent systems and struc-
tural analysis to ensure orderly operations of the modern trading and exchange
platforms.

We would like to thank all the authors of submitted papers and the Pro-
gram Committee members for their commitment. We are grateful to our invited
speaker and our sponsors: National Research University Higher School of Eco-
nomics (Moscow, Russia), Russian Foundation for Basic Research, and ExactPro.
Finally, we would like to acknowledge the EasyChair system which helped us to
manage the reviewing process.

July 18 2016
Moscow

Manuel Ojeda-Aciego
Dmitry I. Ignatov

Alexander Lepskiy
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Catalonia, Spain

Daniel Borchmann Technische Universität Dresden, Germany
Andrey Bronevich National Research University Higher School of Eco-

nomics, Moscow, Russia
François Brucker Université Paul Verlaine, Metz, France
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Using Intelligent Systems and Structural
Analysis to Assure Orderly Operations of the
Modern Trading and Exchange Platforms

Olga Moskaleva and Anna Gromova

Exactpro company

Abstract. Maintaining orderly operations of its markets is the London
Stock Exchange Group’s (LSEG) utmost priority. As a regulated entity,
LSEG has a legal responsibility to ensure correct and stable behavior of
its platforms and monitor its markets.
This represents two major dimensions of Exactpro work. Technical sta-
bility and search for possible software defects. Fraud detection to prevent
market manipulation, money laundering and other illegal activities.
Market fraud detection can be carried out by monitoring and analyzing
all market events. Market surveillance systems ensure this monitoring.
Defect management is an essential part of improving the technical stabil-
ity of software by using test tools. Identifying and correcting defects saves
software costs. Additionally, the prediction of testing metrics should give
project managers a better picture of risks associated with a particular
software defect.
We demonstrate how intelligent systems and structural analysis could
solve such tasks.

Keywords: fraud detection, surveillance systems, technical stability,
defect management, intelligent systems, Data Mining



ACL-Scale as a Tool for Preprocessing of Many-Valued 
Contexts 

Tatiana Afanasieva, Nadejda Yarushkina, Gleb Guskov 

Ulyanovsk State Technical University, Information System, Ulyanovsk, Russia 
tv.afanasjeva@gmail.com, jng@ulstu.ru,guskovgleb@gmail.com 

Abstract. One of the formal technique in Data mining is Formal Concept Anal-
ysis (FCA). During preprocessing of a many-valued context many applications 
of FCA require the partitioning of numerical data attributes into some smaller 
intervals. Designation of such numerical intervals with linguistic terms without 
domain experts will help researchers to understand attributes and their depend-
encies better. To solve this task we propose the notion of a special ACL-scale, 
which can be considered as a linguistic variable with ordered linguistic terms, 
modeled by fuzzy sets. The notion of ACL-scale, algorithms of its creation and 
application are presented. The example how many-valued context can be trans-
formed into formal context using ACL-scale is shown in the paper. The main 
contribution is a new uniform tool for preprocessing of numerical attributes of 
given tables which simplify their transformation into a formal context with lin-
guistic attributes. 

Keywords: data mining, data preprocessing, ACL-scale, formal context, lin-
guistic values 

1  Introduction 

One of the formal techniques in Data Mining and Knowledge Discovery in Databases 
(DM&KDD) process for extraction and representation of useful information, of ob-
jects (attributes) and of data dependencies is the Formal Concept Analysis (FCA) 
[1,2].  The first steps in applying of FCA is data preprocessing, where a many-valued 
context has to be transformed into a formal context to represent a data table with 
values of suitable granularity. When the input values are numerical, they have to be 
partitioned into numerical intervals. There are three main approaches to do this trans-
formation, based on scaling theory. The conceptual scaling approach is well estab-
lished and it uses conceptual scales [3,4] to derive a formal context. Logical scaling 
was introduced in [5] as a method using some expert knowledge to transform given 
data into the data from which conceptual hierarches can be explored. The fuzzy 
scaling approach beeing considered for example in [6,7,8] applies the notion of a 
linguistic variable [9]. The latter adds information to the structure of a formal context 
and can give linguistic description of numerical values of attributes and their 
dependences. The comparison of conceptual and fuzzy scaling theories for FCA was 
considered in [6]. The different approaches to embed fuzzy logic into FCA and 
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application in KDD are given in [10]. The authors described the most important 
theories connected with fuzzy attributes, fuzzy concepts and fuzzy concept lattice.   

The main problems in applying fuzzy scaling theory to FCA were discussed in [11] 
and  some solutions were presented. One of the problems the author mentioned was 
the problem of using and interpreting the membership functions in FCA, so the short 
alternative conceptual description of fuzziness without using membership functions 
was given in [11].  
In this paper we propose the approach for transforming numerical attributes of a 
many-valued context into linguistic variables. This transformation is considered as 
preprocessing based on the fuzzy scaling theory, where the membership functions are 
used to derive linguistic values of the partitions of numerical attributes only. The 
advantage of this approach is a linguistic granulation of numerical attributes in a 
many-valued context. This linguistic granulation can be useful in segmentation of 
objects with similar features. Mining the dependencies among several objects ex-
pressed in linguistic terms is another application of that linguistic granulation. To 
solve this task we propose the notion of a special Absolute & Comparative scale 
(ACL-scale). Using ACL-scale the partitions of numerical data and their linguistic 
descriptions can be derived. Therefore, the formal context can be presented in a tradi-
tional form, and well-known algorithms for FCA can be applied without computing of 
membership functions.  

2 Problem Definition 

Here we recall the definition of many-valued context [12] in respect to attributes m 
having numerical values w.  
Definition 1. A many-valued context 𝐾 = (𝐺,𝑀,𝑊, 𝐽) is a set of objects 𝐺, a set of 
attributes 𝑀, a set of possible values W, and a ternary relation  𝐽 ⊆  𝐺 × 𝑀 × 𝑊, with 

(𝑔,𝑚,𝑤)  ∈  𝐽, (𝑔,𝑚, 𝑣)  ∈ 𝐽 ⇒  𝑤 =  𝑣, 

where (𝑔,𝑚,𝑤)  ∈  𝐽  indicates that object 𝑔 has the attribute m with value w. In this 
case, we also write 𝑚(𝑔)  =  𝑤, regarding the attribute m as a partial function from 𝐺 
to 𝑊.  

Definition 2. A formal context is a triple 𝐶 =  ⟨𝐺,𝑌, 𝐼⟩ where 𝐺 is a set of objects, 𝑌 
is a set of attributes and 𝐼 ⊆ 𝐺×𝑌 is a binary relation between 𝐺 and 𝑌. For ⟨𝑔, 𝑦⟩ ∈ 𝐼 
it is said “The object 𝑔 has the attribute 𝑦”.  

The task is to transform given many-valued context into a formal context. We denote 
this transformation as  𝐾 ⇒ 𝐶.  

Each value 𝑦 ∈  𝑌 is a linguistic value (some linguistic description of a numerical 
value 𝑤), derived by scaling. This means that for each attribute 𝑚 ∈  𝑀 on the set of 
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its possible numerical values 𝑊 a special scale has to be defined and then applied to 
transform a given numerical value 𝑤 into a linguistic value 𝑦.  Therefore we consider 
a task of a scale construction for each attribute 𝑚 ∈  𝑀 on the set of its possible nu-
merical values 𝑊. The main demands for this scale construction are simple adaptation 
to a set of numerical values 𝑊 and minimizing of an expert participation. To solve 
this task the scale must be formed in automatic way using uniform quantity of param-
eters and of operations. Beside that the scale must be considered as a linguistic varia-
ble to associate its linguistic terms to the scaling values.  

So, the problem is to denote the notion of a special scale, which satisfies the men-
tioned above demands, and algorithms of its construction and its application.  Appli-
cation of this special scale will allow to decrease preprocessing time of a transfor-
mation of a given many-valued context into a formal context using uniform formal 
tool.    

3 Notion of an ACL-scale 

In this section we propose a special scale, named an ACL-scale (Absolute & Compar-
ative scale) to do the transformation of given many-valued context into a formal con-
text.  
 
Let {𝑥! ∈ 𝑊,𝑊 ⊆ ℝ, 𝑖 = 1,2,… , 𝑛 } be the set of possible ordered values of a numer-
ical attribute m in respect to definition 1.  
 
We assume that the binary relation 𝑥 ≤  𝑦 is defined possessing the following proper-
ties: 

• reflexivity: 𝑥 ≤  𝑥,∀𝑥 ∈  𝑊. 
• transitivity: if 𝑥 ≤  𝑦 and 𝑦 ≤  𝑧, then 𝑥 ≤  𝑧,∀ 𝑥, 𝑦, 𝑧 ∈ 𝑊.  
• anti-symmetry: if 𝑥 ≤  𝑦 and 𝑦 ≤  𝑥, then 𝑥 =  𝑦,∀ 𝑥, 𝑦 ∈  𝑊.  

Let suppose several partially ordered intervals of equal length cover a set 𝑊 and they 
are used for building a linguistic variable 𝑋  with fuzzy terms 𝑥! = 𝑥! , 𝜇!! 𝑥! , 
𝑥! ∈ 𝑊 , 𝑥! ∈ 𝑋 , 𝑖 = 1,2,… , 𝑛, 𝑘 = 1,2,… , 𝑟, 𝑟 < 𝑛 . Here 𝜇!! 𝑥! , 𝑖 = 1,2,… , 𝑛  de-
notes the membership function of a fuzzy term with a linguistic value 𝑥!. Therefore it 
can be said that a set of linguistic values covers a set 𝑊. Each linguistic value 𝑥! ∈
𝑋 can be considered as an ordered gradation of a scale and as linguistic estimation of 
every numerical value with some truth value.  

Definition 3. ACL-scale for an attribute m with possible numerical values from the 
set W is an algebraic system 

𝐴𝐶𝐿 = {𝛨,𝛹,Ω }, 
where the set  𝛨 =  𝑊,𝑋   denotes possible numerical values and possible fuzzy 
terms for an attribute m; 𝛹 = {𝑛𝑚𝑖𝑛, 𝑛𝑚𝑎𝑥, 𝑟,𝑀𝐹} is a set of parameters of an ACL-
scale; Ω = {𝐹𝑢𝑧𝑧𝑦,𝐷𝑒𝐹𝑢𝑧𝑧𝑦} is a set of operations, defined on a set 𝛨. 
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Below the components 𝛹 and Ω of an ACL-scale will be considered in details. 
 

3.1 Parameters of an ACL-scale 

 
Parameterization of an ACL-scale is useful as a tool for domain specific adaptation.  
To adopt an ACL-scale to real values of a set W we consider two alternatives. The 
first one corresponds to the case when experts evaluate quantaty, parameters and 
shape of membership functions of linguistic variables 𝑋. Unfortunately this case is 
difficult to realize in practice. In the second alternative the goal is to minimize the 
work of expert and some algorithm is used to adopt an ACL-scale to real values of a 
set W. We apply the second alternative and consider four parameters of an ACL-scale 
adaptation: 

 𝛹 = {𝑛𝑚𝑖𝑛, 𝑛𝑚𝑎𝑥, 𝑟,𝑀𝐹}, (1) 

where 𝑛𝑚𝑖𝑛 =  𝑖𝑛𝑓(𝑊), 𝑛𝑚𝑎𝑥 =  𝑠𝑢𝑝(𝑊); MF is the uniform shape of the mem-
bership functions of fuzzy terms (for example in a triangular form) [13]; 𝑟 is the quan-
tity of fuzzy terms, r+1 is the quantity of numerical  intervals of equal length d, used 
for membership functions construction: 
 

𝑥 − 𝑑, 𝑥 ⊂  𝑊, 𝑑 =
𝑛𝑚𝑎𝑥 − 𝑛𝑚𝑖𝑛

𝑟 + 1
.                                            (2) 

 
Notice, that these intervals are the result of partitioning of the set W and any numeri-
cal value 𝑤 ∈  𝑥 − 𝑑, 𝑥  is considered according to an ACL-scale as identical, with 
the same linguistic value, but having different truth degree. According to (2) the 
length of numerical intervals d depends on quantity of fuzzy terms.  
In this case researcher must define the shape and the quantity of fuzzy terms r . Pa-
rameter r  determines a quantity of numerical intervals and their length d. It means 
that parameter r determines a level of linguistic granulation:  smaller value of parame-
ter r corresponds to larger linguistic granulation and vice versa. Therefore the quantity 
of fuzzy terms r depends on research goals and required level of granulation. Taking 
into account human perception the recommendation for choosing the value of parame-
ter r are: 3 < 𝑟 < 10.  
The example of ACL-scale for a numerical attribute m with possible values defined in 
𝑊 = [−26, 66] is shown on the Figure 1. Here partitioning into six ordered intervals 
was done, on which five triangular fuzzy terms (r=5) were constructed with linguistic 
values 𝑋 = {𝐴!!!,𝐴!,𝐴!,𝐴!,𝐴!!!}. 
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Fig. 1. Example of an ACL-scale 
 
 
We assume that the following is fulfilled for an ACL-scale: 

1. The numerical values w of attributes m corresponding to real or ideal objects are 
estimated. 

2. Numerical and linguistic estimates are various, but they are equally essential as-
pects at the different levels of granularity. 

3. Linguistic values of numerical attributes can be estimated by expert or a modeling 
estimation procedure.  

The usage of parameters of an ACL-scale for linguistic description of numerical at-
tributes allows to determine linguistic values practically in an automatic way, better 
understood by researchers.   

3.2 The operations of an ACL-scale 

The set of operations, defined on a set Η, can be based on fuzzified/defuzzified func-
tions. The operation 𝐹𝑢𝑧𝑧𝑦 for linguistic description of each numerical value is de-
fined as the following function: 

𝑥!  =  𝑥!, 𝑖𝑓 𝑥! 𝑥! ≥  𝑥! 𝑥! , 𝑠 ∈  1, 2, . . . , 𝑟 ,∀𝑗 =  1, 2, . . . , r.                      (3) 

In respect to (3) for every 𝑥! ∈ W there will be only one linguistic value 𝑥! ∈ 𝑋 with 
the maximum value among all of membership functions, s – is a number of that mem-
bership function. 
We denote the operation 𝑑𝑒𝐹𝑢𝑧𝑧𝑦  for numerical estimation of linguistic value as 
function 𝑥!! = 𝐷𝑒𝐹𝑢𝑧𝑧𝑦 𝑥! , 𝑥! ∈ 𝑊, 𝑥! ∈ 𝑋, for example, as centroid of area:  

 𝑥!! =
!∙!(!)!"!"#$

!"#!
!(!)!"!"#$

!"#!
.  

It is obvious, that 𝐷𝑒𝐹𝑢𝑧𝑧𝑦 function calculates approximate value with some error of 
estimation, and the latter can be computed in different ways, for example in a form: 

 𝐸𝑟!! = 𝑥!! − 𝑥! ,  
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where the approximate value is  𝑥!! = 𝐷𝑒𝐹𝑢𝑧𝑧𝑦 𝑥! ; 𝑥! is the actual numerical value 
of some attribute. 
The usage of uniform scaling by an ACL-scale will allow to transform given many-
valued context into a formal context in automatic way and to explore the concepts 
having linguistic values which are better understood by researchers.  

4 Transformation of numerical values into linguistic ones using 
an ACL-scale  

The transformation of a numerical value 𝑥! ∈ 𝑊, 𝑖 = 1,2,… , 𝑛 into a linguistic value 
𝑥! ∈ 𝑋  with an ACL-scale means, that it is possible to define several fuzzy terms 
𝑥! 𝑥! , 𝑗 =  1, 2, . . . , r  with different truth degree for ∀𝑥!. 
Let 𝑊 ⊆ ℝ be a set of possible numerical values of an attribute.  
First of all, it is required to construct an ACL-scale on the set W, containing the or-
dered fuzzy terms with linguistic values 𝑥! ∈ 𝑋, 𝑘 = 1,2,… , 𝑟.  
Below we propose the Algorithm 1 for an ACL-scale creation by the determining its 
parameters on the set of possible numerical values W of a many-valued context. 
Algorithm 1. 
Step 1. Define the parameter r (the number of fuzzy terms) of ACL-scale. 
Step 2. Compute the parameter nmin as the minimum value on a set of W. 
Step 3. Compute the parameter nmax as the maximum value on a set of W. 
Step 4. Order the possible values on 𝑊. Partition the ordered set of possible values 
𝑊 ⊆ ℝ, into r+1 intervals in respect to (2). 
Step 5. Define the shape of the membership functions MF of fuzzy terms. Determine 
the linguistic values of fuzzy terms 𝑥! ∈ 𝑋, 𝑘 = 1,2,… , 𝑟.  
 
To output the linguistic values for the numerical values of the set W, using an ACL-
scale, Algorithm 2 is proposed.  
Algorithm 2. 
For each numerical value 𝑥! ∈ 𝑊, 𝑖 = 1,2,… , 𝑛 do the following: 
Step 1. Using operation 𝐹𝑢𝑧𝑧𝑦 (3) and well-known notion of fuzzy terms of chosen 
shape (for details you can see [13])  compute the values of their membership func-
tions 𝑥! = 𝑥! , 𝜇!! 𝑥! , 𝑥! ∈ 𝑋, 𝑘 = 1,2,… , 𝑟. 
Step 2. Determine the fuzzy term 𝑥! 𝑥!  with the maximum value of membership 
function according to (3).  
Step 3. Assign the output linguistic value as 𝑥! = 𝑥! for input 𝑥!  Here s is the number 
of linguistic value on the set 𝑋 , corresponding to an ACL-scale for the set of 
numerical values W. 

5 Example 

To illustrate how the ACL-scale can be applied to transform a many-valued context  
into a formal context we use the input data, which characterize hardware by two at-



Tatiana Afanasieva, Nadejda Yarushkina, Gleb Guskov 8 

tributes 𝒙𝒄𝒑𝒖 ="Load of the central processor - CPU"  and 𝒙𝒓𝒂𝒎 ="Load of the 
memory - RAM" (see Table 1).  
We created one ACL-scale using the Algorithm 1 for both attributes, as their numeri-
cal values are contained in the same set of possible numerical values [0,100] present-
ed in percentage. For this domain we defined 𝑛𝑚𝑖𝑛 = 0%, 𝑛𝑚𝑎𝑥 = 100%.  Then 
seven fuzzy terms (𝑟 = 7) with linguistic values ”very low”,  “low”, “below an aver-
age”, “average”, ”above an average”, ”high”, ”very high” were defined.  

Table 1. Input many-valued data 

id_obiect 𝒙𝒄𝒑𝒖, % 𝒙𝒓𝒂𝒎, % 

1 84,31 82,94 

2 50,67 58,93 

3 66,89 68,18 

4 97,06 77,56 

5 92,04 33,58 

6 97,33 93,42 

7 97,44 94,78 

8 88,30 80,05 

9 66,64 48,49 

 
The shape of membership function was chosen as triangular with parameters shown in 
Table 2 (a - left, c - right, b - middle of numerical interval on which membership 
function is build). 

Table 2. The parameters of membership functions of fuzzy terms in the form of 
triangular fuzzy number for attributes of hardware 

 
𝒙𝐫𝐚𝐦 
𝒙𝐜𝐩𝐮 

Linguistic values  The parameters of membership functions 
a b c 

very low 0 0 16,5 
low 0 16,5 33 

below an average 16,5 33 50 
average 33 50 66,5 

above an average 50 66,5 83 
high 66,5 83 100 

very high 83 100 100 
 
After an ACL-scale has been created, it was used to output the linguistic value for 
every numerical value of the hardware attributes, applying the Algorithm 2. Table 3 
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illustrates the results of transformation of input data (see Table 1) into linguistic val-
ues. 

Table 3. The results of linguistic estimation of the numerical  values of the hardware 
attributes, using ACL-scale 

id_obiect linguistic values 𝒙𝐜𝐩𝐮 linguistic values 𝒙𝐫𝐚𝐦 
 

1 high high 
2 average above an average 
3 above an average above an average 
4 very high high 
5 high below an average 
6 very high very high 
7 very high very high 

8 high high 
9 above an average average 

 
Table 4 presents the formal context with linguistic values of hardware numerical at-
tributes (here vl =”very low”, lo= “low”, ba = “below an average”, av = “average”, 
aa=”above an average”, hi=”high”, vh =”very high” for short).  

Table 4. The formal context for a many-valued data derived by ACL-scale  

id_obiect 𝒙𝐜𝐩𝐮 𝒙𝐫𝐚𝐦 
vl lo ba av aa hi vh vl lo ba av aa hi vh 

1      x       x  
2    x        x   
3     x       x   
4       x      x  
5      x    x     
6       x       x 
7       x       x 
8      x       x  
9     x      x    
 
The results in Table 4 show the transformation of the numerical attributes of a many-
valued context (see Table 1) into linguistic variables for more understandable descrip-
tion of these attributes, which can be used for mining dependencies or for clustering. 
For further analysis the additional characteristics of a linguistic value of attributes are 
useful:  the truth degree and the membership function.  
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6 Conclusion  

During the past years preprocessing became an important step of data mining. For 
better understanding and analyzing numerical data, it is useful to have their linguistic 
description. To derive the latter description the transformation tecniques based on 
scaling are used usually.   
In this paper the notion of an ACL-scale as the tool for transformation a many-valued 
context with a numerical attributes into a formal context with linguistic attributes is 
proposed. The algorithm of an ACL-scale creation by adaptation of its parameters on 
a set of numerical values is described. Application of an ACL-scale provides the lin-
guistic granulation which can be useful in segmentation and investigation of objects 
with similar features. Mining the dependencies among attributes and among several 
objects expressed in linguistic terms is another application of that linguistic granula-
tion. In these tasks time reduction on preprocessing stage will be obtained due to us-
age of the proposed uniform scaling algorithm for different numerical attributes. 
The given example shows applicability and suitability of an ACL-scale for the 
preprocessing of a many-valued context with numerical attributes and deriving formal 
context with linguistic values.  
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Abstract. This article is devoted to the analysis of coherence of financial rec-
ommendations with respect to securities of the Russian companies. The study is 
based on the analysis of approximately 4000 recommendations and forecasts of 
23 investment banks with respect to around forty securities of Russian stock 
market over the period of 2012-2014 years. The predictive history of each of 
the investment bank was considered as evidence in the framework of evidence 
theory. The coherence of recommendations was evaluated with the help of the 
so-called conflict measure between the evidence, which determined on the sub-
sets of the set of all evidence. Then the study of coherence was reduced to anal-
ysis of values of the conflict measure. This analysis was performed with the 
help of game-theoretic methods (Shapley index, interaction index), network 
analysis methods (centralities), fuzzy relation methods, hierarchical clustering 
methods. 

Keywords: analysts' recommendations, conflict measure, interaction index, 
network analysis, hierarchical clustering.  

1 Introduction 

The forecasts and recommendations of financial analysts' (of investment banks) are 
the important sources of information in decision making by the participants of the 
financial market. The different aspects connected to the recommendations of financial 
analysts' are reflected in the research literature. The influence of forecasts of financial 
analysts' on the investors and the reaction of market on these forecasts is estimated in 
[13]. The relationship between analysts' fame and the reaction of investors on the 
corrected forecast is investigated in [2]. The "asymmetry" of analysts’ forecasts and 
the manipulability of the recommendations is analyzed in [10].  

The analysis of the coherence of forecasts and recommendations is one of the im-
portant directions of research. The coherence of recommendations is determined as a 
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rule as similarity of recommendations that is given by different analysts with respect 
to the same securities. The level of coherence of the recommendations is evaluated 
more often as an average of all recommendations for a particular security. For exam-
ple, the dependence of coherence of the forecasts from a number of the shares charac-
teristics was investigated in [7]. 

In this study, analysis of the coherence of financial analysts' recommendations 
about the value of the shares of Russian companies in 2012-2014 will be performed in 
the framework of evidence theory (Dempster-Shafer theory, [4, 14]). Namely, the 
recommendation of the analyst (the recommendation of the investment bank) is de-
scribed as evidence. The evidence determined by the set of focal elements and the 
mass function. The set of focal elements is a set of intervals of the relative value of 
the shares corresponding to the recommendations (buy/hold/sell). The mass function 
is equal to the relative frequency of recommendations in each interval (focal element). 
In [3] the conflict measure [0,1]K ∈  was introduced on the set of all evidence of this 
type. This measure characterizes the inconsistency between the evidence. Then the 
value 1C K= −  has the sense of the degree of the coherence of recommendations. 
The study, which started in [3], will continue in present article. Namely, the coher-
ence of the recommendations will be evaluated and the set of the investment banks 
will be structured with respect to this coherence. The analysis of coherence will be 
performed with the help of game-theoretic methods (Shapley index, interaction in-
dex), network analysis methods (centralities), fuzzy relation methods, hierarchical 
clustering methods. In addition, the expressions for some of computational character-
istics (Shapley index, interaction index) will be obtained in this study in the terms of 
the evidence of the type under consideration.  

The work is structured as follows. The main notions of the evidence theory, the no-
tion of the conflict measure are given in Section 2. The axiomatic of the conflict 
measure is discussed in this section too. The research database is described in Section 
3. Section 4 is devoted to the description of evidence corresponding to database and 
the used conflict measure in the term of evidence. Section 5 is the main part of the 
work, in which study the coherence by the different methods. Finally, some conclu-
sions from research are presented in Section 6. 

2 The Evidence Functions Theory and Conflict Measures 

Let X  be a finite set and 2X  be a powerset of X . The mass function and the focal 
element are the fundamental notions in evidence theory. The mass function is a set 
function : 2 [0,1]Xm →  that satisfy the following conditions 

 ( ) 0m ∅ = , ( ) 1
A X
m A

⊆
=∑ . (1) 

The value ( )m A  characterizes the degree that true alternative from X  belongs to 
the set 2XA∈ . The subset 2XA∈  is called a focal element if ( ) 0m A > . Let 

{ }A=A=  be a set of all focal elements. Then the pair ( , )F m= A  is called a body of 
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evidence. Let ( )XF  be a set of all bodies of evidence on X . Note that the body of 
evidence can be considered for an arbitrary nonempty set X , if the set function 
: [0,1]m L→  is defined on the some nonempty set L  of subsets from X  that satisfy 

the conditions (1). 
Let we have two bodies of evidence 1 1 1( , )F m= A  and 2 2 2( , )F m= A . For example, 

these evidences can be obtained from two sources of information. Then we have a 
question about the conflict between the two evidences. Historically the function 
0 1 2( , )K F F  connected with Dempster’s combining rule [4, 14] was the first conflict 

measure: 
1 2

0 0 1 2 1 2
, ,

( , ) ( ) ( )
B C B C

K K F F m B m C
∩ =∅ ∈ ∈

= = ∑
A A

.  

The axioms of the conflict measure are considered in [5]. There are few approaches 
to the estimation of the conflict of evidence. The analyses of these approaches can be 
found in [3]. It can be allocated conditionally the metric approach [8], the structural 
approach [11], the algebraic approach [9]. 

The notion of a conflict measure (and corresponding axioms) was generalized in 
[3] for arbitrary finite set of evidence. Suppose that we have some finite set of evi-
dence { }1,..., lM F F== , ( )iF X∈F , 1,...,i l= . Let 2M  be a powerset of M . We 

shall put by definition that ( ) 0K B = , if 1B = , 2MB∈  and ( ) 0K ∅ = . Note that the 
conflict measure 0K  that considered on 2M  in the form  

 
1 1 1

1

0
...

({ ,..., }) ( )... ( )
k k k

i ik

i i i i i i
A A

K F F m A m A
∩ ∩ =∅

= ∑ , ({ }, )
s s si i iF A m= , 1,...,s k= , (2) 

satisfies the monotonicity condition: ( ) ( )K B K Bʹ ʹ́≤ , if B Bʹ ʹ́⊆  and , 2MB Bʹ ʹ́ ∈ . 
This means that the adding of new evidence to the set of evidence does not reduce the 
conflict measure. 

3 The Description of the Database 

The conflictness (and coherence as the dual concept of) of the evidences about ana-
lysts' forecasts (investment banks) is investigated in this article. The conflictness 
characterizes in this case the degree of non coherence of forecasts for some set of 
experts.  

The study is based on the analysis of approximately 4000 recommendations and 
forecasts of 23 investment banks with respect to around forty securities of Russian 
stock market over the period of 2012-2014 years. The databases of the agencies 
Bloomberg and RBC are the sources of information. The forecasts are presented by 
experts of the world's largest investment banks including such renowned companies 
as Goldman Sachs, Credit Suisse, UBS, Deutsche Bank and others. 

Each investment bank makes recommendations of three types to sell/hold/buy with 
forecast of target price of the security. The target prices of forecasts are recalculated 
into the so-called relative values of target prices. The relative value of a target price is 
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a ratio of the predicted price to the quotation of the security on the date of the fore-
cast. 

The boundaries of relative prices between the recommendations of various types 
were determined by maximizing number of recommendations that fall into the "corre-
sponding" intervals: [0, 0.97), [0.97, 1.22), [1.22, +∞). Thus, we have nine sets, each 
of which represents the interval and a label of recommendation type: ( )

1 [0,0.97)tA = , 
( )
2 [0.97,1.2)tA = , ( )

3 [1.2, )tA = +∞ , 1,2,3t = , where 1t =  ‒ to sell, 2t =  – to hold, 
3t =  – to buy. 

4 The Description of Evidence and the Used Conflict Measures 

The belonging of the relative price of the forecast of a certain type (to buy/hold/sell) 
to one of the three intervals can be considered as an evidence of the investment bank. 
Then we can found the body of evidence for given investment bank. Let we fixed the 
i -th investment bank, 1,...,i l=  ( l  is a number of investment banks), ( )t

ikc  is a num-
ber of belonging of relative price to interval ( )t

kA , iN  is a general number of forecasts 
for i -th investment bank. Then ( ) ( )( )t t

i k ik im A c N=  is a frequency of belonging of 
relative price to interval ( )t

kA . The mass function im  satisfies the normalization condi-

tion: ( )( ) 1t
i kt k
m A =∑ ∑  for all 1,...,i l= . Then ( )( ) ( )

,
, ( )t t

i k i k k t
F A m A=  is a body of 

evidence of i -th investment bank, 1,...,i l= . We can consider that all evidences have 
the same set of focal elements (even if ( )( ) 0t

i km A =  for certain indexes) and all differ-
ent focal elements ( )t

kA  are pairwise disjoint. Thus, the vector ( ) 9
1( )s sm ==m , 

( )( 3( 1)) ( )tk t
km m A+ − = , 1,2,3k = , 1,2,3t =  corresponds bijectively to the body of evi-

dence ( )( ) ( )
,

, ( )t t
k k k t

F A m A= . The set of all such evidence forms a simplex 

( ) ( ){ : 0 ,s sS m m s= ≥ ∀  9 ( )
1

1}s
s
m

=
=∑ . 

The formula (2) for calculation of conflict measure 0 1( ,..., )lK F F  can be simplified. 
Proposition 1 [3]. If a bodies of evidence ( ){ }, ( )i k i kF A m A= , 1,...,i l=  satisfy the 

conditions s kA A∩ =∅  for s k≠ , then the conflict measure 0 ( )K B , B M⊆  is 
equal to 0 :

( ) 1 ( )
i

i kk i F B
K B m A

∈
= −∑ ∏ . 

The following measure 

 
:

( ) 1 min ( )
i

i ki F Bk
K B m A

∈
= −∑ , (3) 

satisfies also the monotonicity condition and will be considered as a conflict measure 
below instead of measure 0K  in this paper. 
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Let ( ) ( )k
i i km m A=  k∀ , 1,...,i l=  and we denote iF B M∈ ⊆  for shot i B∈ . We 

denote the measure 
1

( ,..., )
si iK F F  as 

1
( ,..., )

si iK m m , if 
p pi iF↔m , 1,...,p s=  with 

consideration of the vector representation of evidence.  
We will consider a coherence measure 1C K= −  which is defined on 2M  together 

with a conflict measure K . This measure characterized the degree of coherence of 
financial analysts' recommendations. 

Below, we are interested in estimation of increments of the individual analysts' 
contribution in the total conflict: ( ) ( { }) ( )iK B K B i K BΔ = ∪ − , \{ }B M i⊆ , 

( ) ( { , })ijK B K B i jΔ = ∪ − ( { }) ( { }) ( )K B i K B j K B∪ − ∪ + , \{ , }B M i j⊆ . Let 

{ , 0,( ) 0, 0.
t tt t+

≥= <  The following proposition is true for measure (3) and the increments 

( )iK BΔ  and ( )ij K BΔ . 
Proposition 2. The following equalities are true for any ,i j S∈m m  and B S⊆ :  

1) ( ) ( )( , ) max{ , } 1k k
ij i j i jk
K K m m= = − =∑m m 1 ( ) ( )

2
k k
i jk
m m−∑ ; 

2) ( ) 0iKΔ ∅ =  and 

{ } ( )( ) ( ) ( ) ( )( ) max min , 1 mink k k k
i s B s i s B s ik k
K B m m m m∈ ∈ +

Δ = − = −∑ ∑ , if \{ }B M i∅≠ ⊆ ; 

3) ( )ij ijK KΔ ∅ =  and 

 { }( )( ) ( ) ( )( ) min max ,k k k
ij s B s i jk
K B m m m∈

+
Δ = − −∑ , if \{ , }B M i j∅≠ ⊆ . 

Remark 1. The equality 1) in Proposition 2 shows us that the measure of pair con-
flict ( , )K ⋅ ⋅  is a metric on the simplex S . 

Remark 2. All pair increments of the conflict measure with non empty coalitions 
are not positive as follows from 3): ( ) 0ij K BΔ ≤  B∀ ≠ ∅ , \{ , }B M i j⊆ . This 
means that the inclusion of any analyst in the greater coalition increases the conflict 
measure by a smaller amount than the inclusion of the analyst in the smaller coalition. 

5 An Analysis of Evidence Coherence 

5.1 The Finding of the Most Conflict Analysts Using the Shapley Vector 

If the monotone measure K  is defined on the set of all subsets of M  then we can 
determine the contribution of i-th analyst in general conflict ( )K M  of the set of all 
analysts M  as the difference ( ) ( \{ })K M K M i− . More accurately the contribution 
of i-th analyst in general conflict can be determined as a average contribution in the 
conflict of the group (coalition) of analysts B : ( ) ( { }) ( )iK B K B i K BΔ = ∪ − , where 
the average is computed for all groups (coalitions) of analysts B , \{ }B M i⊆ . In this 
case we will get so called Shapley value [15], which is widely used in the coalition 
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(cooperative) game theory: ( )\{ }
,1 ( )i l iB M i

v B K Bα
⊆

= Δ∑ , 1,...,i l= , 

( ) ( )
( )

! !
1 !, l s r s

l l rs rα − −

− +
= , 1,...,s r l+ = . The vector 1( )li iv ==v  is called by Shapley vector 

and it satisfies the condition 
1

( )l
ii
v K M

=
=∑ . We will find an expression for the 

Shapley values of conflict measure (3) in terms of evidence i iF ↔m , 1,...,i l= . 
Proposition 3. The following formula is true for Shapley values of conflict meas-

ure (3): ( ) { }( ) ( ) 1
\{ }

,1 max ,mini s l
i l k k lB M i k s B
v B m mα −

∅≠ ⊆ ∈
= −∑ ∑ , 1,...,i l= . 

The contributions of all investment banks in the general conflictness of recommen-
dations in period 2012-2014 are shown in the Fig. 1. These contributions were esti-
mated with the help of Shapley values. The general conflictness for all 23 investment 
banks is equal 0.625 . 

 
Fig. 1. The Shapley values of investment banks 

Remark 3. The following denotations of investment banks are used on Fig. 1–4, in Tables 1–
2: 1 ‒ Alfa-Bank, 2 ‒ Aton Bank, 3 ‒ BCS, 4 ‒ Veles Capital, 5 ‒ VTB Capital, 6 ‒ Gazprom-
bank, 7 ‒ Metropol Bank, 8 ‒ Discovery Bank, 9 ‒ Renaissance Capital, 10 ‒ Uralsib Capital, 
11 ‒ Finam, 12 ‒ Barclays, 13 ‒ Citi group, 14 ‒ Credit suisse, 15 ‒ Deutsche Bank, 16 ‒ 
Goldman Sachs, 17 ‒ HSBC, 18 ‒ J.P. Morgan, 19 ‒ Morgan Stanley, 20 ‒ Raiffeisen, 21 ‒ 
Rye. Man&GorSecurities, 22 ‒ Sberbank CIB, 23 ‒ UBS. 

The interrelation between the Shapley values of investment banks and the profita-
bility of forecasts was analyzed in [3]. 

5.2 An Analysis of the Mutual Coherence of the Recommendations of 
Analysts with the help of Interaction Index 

In addition to the detection of key analysts (investment banks) with the help of Shap-
ley values that have the greatest influence on the coherence of forecasts, it is im-
portant to analyze the mutual influence of investment banks on the coherence of fore-
casts. This can be done with the help of the so-called interaction index [6], which is 
equal ( ) ( )\

\
( ) , ( 1)T ClB M T C T
I T B T K C Bα

⊆ ⊆
= − ∪∑ ∑  for arbitrary coalition T  

and monotone measure K , defined on the finite set M , M l= . The interaction 
index ( )I T  of the set of analysts T  characterizes in our case the value of added con-
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tribution (synergistic effect) of this set in general conflict as compared with the sum-
mary contribution of separate analysts and improper subsets of T  in the conflict. In 
particular, ({ }) iI i v=  is a Shapley value, 1,...,i l= . The interaction index for coali-
tions from two elements ({ , }) ijI i j I=  has an important value. This index was intro-

duced earlier in [12]: ( )\{ , }
,2 ( )ij l ijB M i j

I B K Bα
⊆

= Δ∑ . The interaction index has 

value in the interval [ 1,1]− . If ijI  is close to 1, then this means that these analysts in 
pair increase the conflict in combination with the other coalitions to a larger value 
than each of them individually. If ijI  is close to 1− , then the union of two analysts in 
the pair will not cause the synergistic effect in calculation of conflict. We will find an 
expression for the pair interaction index of the conflict measure (3) in terms of evi-
dence i iF ↔m , 1,...,i l= . 

Proposition 4. The following formula is true for pair interaction index of the con-
flict measure (3) ( ) { }( )1 ( ) ( ) ( )

1
\{ , }

, 2 min max ,k k k
ij ij l s B s i jl

B M i j k
I K B m m mα ∈− +∅≠ ⊆

= − −∑ ∑ . 

The values of the interaction index ijI  that characterized the contributions of pairs 
of investment banks in the general conflict of forecasts about the value of shares of 
Russian companies in period 2012-2014 are shown in Table 1. The values for which 

0.013ijI ≥  are indicated only in the table. 

Table 1. The values of the interaction index ijI , 0.013ijI ≥  

 
11 14 19 20 21 22 23 

6 -0,017 
  

0,013 
   7 

 
0,013 

  
-0,02 

  11 
    

-0,015 
  12 

 
-0,023 -0,013 -0,015 0,013 

  13 
      

-0,015 
14 

   
-0,014 0,014 0,015 

 16 
     

-0,014 
 Since we are interested in the coherence measure of recommendations 1С K= −  

then and ( ) ( )ij ijI C I K= − , then the pair with negative and large absolute values are 

interesting for us in Table 1. It is the pairs (in decreasing order of ijI ): (12,14), 

(7,21), (6,11), (11,21), (12,20), (13,23). 

5.3 A Network Analysis of the Coherence of Analysts' Recommendations 

We consider the coherence graph of recommendations ( , )G N C=  on the set of all 
investment banks, where { }iN n=  be a set of all nodes (investment banks), { }ijC С=  
be a set of edges with weights 1ij ijС K= −  and ijK  be a value of conflict measure 
between the i -th and j -th investment banks, which calculated by formula (3). We 
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can consider the “roughenned” coherence graph instead of the graph G  for a better 

visualization with weights 1,   ,
0,  ,

ij
ij

ij

K hС K h
<⎧= ⎨ ≥⎩

 where h  is a threshold value. The such 

graph, which constructed by the data of value of shares of Russian companies in peri-
od 2012-2014, is shown in the Fig. 2 for 0.15h = . 

 
Fig. 2. The coherence graph of recommendations of investment banks 

The matrix of pair coherence of recommendations { }ijC С=  is a symmetric and 
non-negative. We investigate the problem of finding such investment banks, which 
have a most influence on coherence of recommendations. We will consider the so-
called eigenvector centrality [1]. This centrality takes into account not only neighbor 
links but also distant links of nodes. The calculation of the measure of centrality for 
each node associated with the solution of the eigenvector problem with respect to the 
adjacency matrix A  of the network graph. The vector of the relative centralities x is 
an eigenvector of the adjacency matrix corresponding to the largest eigenvalue maxλ , 
i.e. maxA λ=x x .  

 
Fig. 3. The values of coordinates of centrality vector for the coherence graph of recommenda-

tions of investment banks 

We have max 17.9λ =  for the data of value of shares of Russian companies in peri-
od 2012-2014. The values of coordinates of corresponding eigenvector (centrality 
vector) are shown in the Fig. 3. As can be seen from this figure, the greatest influence 
on the coherence of the recommendations in accordance with the values coordinates 
of the centrality vector have the banks (in descending order of influence) 
9,1,18,15,23, etc. 
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The centrality vector correlated greatly and negatively with the Shapley vector. 
The corresponding correlation coefficient is equal to 0.86− . 

However, pairwise coherencies of recommendations do not give a complete picture 
of the more complex (not pairwise) interactions. This kind of interaction can be re-
vealed with the help of analysis of the cluster structures of relations on the set of evi-
dence, which is given by a conflict measure. 

5.4 An Analysis of Fuzzy Relations on the Set of Evidence 

Let { }1,..., lM F F==  be a set of evidence. Then the pair conflict measure 

( , )ij i jK K F F=  and the corresponding coherence measure 1ij ijС K= −  can be con-
sidered as binary fuzzy relations, which are given on the Cartesian square 2M . The 
relation ( )ijC C=  is a similarity relation (i.e. reflexive and symmetric fuzzy relation) 
[18]. It is easy to verify that the relation ( )ijC C=  is not a max-min transitive relation 

[18]. But we can construct the relation ˆ ˆ( )ijC C=  with the help of a transitive closure 

operator 
1

ˆ n
n

C C∞

=
=U . This relation will be a max-min transitive relation and, conse-

quently, will be a fuzzy equivalence relation. Then the relation ˆˆ 1K C= −  will be 
dissimilitude relation. The dissimilitude relation K̂  defines the ultrametric on 2M  
(i.e. K̂  satisfies the axioms: 1) ˆ ( , ) 0K F G F G= ⇔ = ; 2) ˆ ˆ( , ) ( , )K F G K G F= ; 

3) ˆ ˆ ˆ( , ) max{ ( , ), ( , )}K F G K F J K J G≤  for all , ,F G J M∈ ).  

Thus, the matrix ˆ( )ijK  can considered as a matrix of distances between the ana-

lysts. The corresponding matrix of coherence ˆ ˆ( )ijC C=  can considered as a similarity 
matrix between the investment banks. 

The structure of coherence of investment bank recommendations can be analyzed 
with the help of the α-cut ˆ ˆ{( , ) : ( , ) }C F G C F Gα α= ≥ , (0,1]α ∈  of the fuzzy similar-

ity relation Ĉ . For every fixed (0,1]α ∈  the set Ĉα  defines the equivalence relation, 
which induces a partition of evidence M  on the equivalence classes. 

The equivalence classes of coherence indicated in Table 2 (only not singletons) for 
some values of (0,1]α ∈  for the data of value of shares of Russian companies in peri-
od 2012-2014. Each of these classes represents set of analysts, whose recommenda-
tions have а large degree of coherence. This degree is defined by threshold α. 

Table 2. The equivalence classes of coherence of investment bank recommendations 

α equivalence classes 
0.95 (3,17), (7,21) 

0.9 (3,5,17), (1,9,16,22), (8,15), (7,21) 
0,85 (1,…,11,13,15,…23) 
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5.5 A Cluster Analysis of the Coherence of Analysts' Recommendations 

We consider the matrix ˆˆ 1K C= − , where Ĉ  is a transitive closure of similarity rela-
tion 1C K= − , ( )ijK K=  and ijK  is a value of conflict measure between the i -th 
and j -th investment banks, which calculated by formula (4). A conflict measure 
considered on the set of evidence { }1,..., lM F F== . 

The cluster analysis of coherence of analysts' recommendations will be performed 
using one of the methods of hierarchical clustering. For example, we will use the 
Unweighted Pair-Group Method Using Arithmetic Averages (UPGMA) [16], which is 
the most simple and popular from the agglomerative methods of clustering. In this 
method a union of closest clusters is performed on each iteration step beginning with 
the singletons (clusters with the unit cardinality). The binary tree of decision (or den-
drogram) is constructed as a result of the algorithm. The ultrametricity of data guaran-
tees the uniqueness of construction of such tree [17]. The dendrogram of coherence of 
investment bank recommendations for the data of value of shares of Russian compa-
nies in period 2012-2014 is shown in the Fig. 41. The dendrogram presents the full 
picture of the cluster structures. In particular, we can indicate the following basic 
cluster structures of investment banks with respect to the coherence of recommenda-
tions (these clusters highlighted in various shades of gray in the Fig. 2): (((7,21), 11), 
((3,17), 5)), (((1,9), (16,22)), (13,23)), ((8,15), 10). We can see that the result of hier-
archical clustering agrees well with the partition of similarity relation Ĉ  on the 
equivalence classes. 

 
Fig. 4. The dendrogram of cluster structure of coherence of investment bank recommendations 

                                                             
1 The dendrogram was obtained with the help of the utility http://genomes.urv.cat/UPGMA/ 
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6 Conclusion 

In this paper, the coherence of investment bank recommendations was studied for the 
data of value of shares of Russian companies in period 2012-2014. The specific of the 
study consists in using the conflict measure defined in the framework of the belief 
function theory for determination of the coherence of recommendations. The analysis 
of coherence was reduced to analysis of values of the conflict measure. This analysis 
was performed with the help of game-theoretic methods (Shapley index, interaction 
index), network analysis methods (centralities), fuzzy relation methods, hierarchical 
clustering methods. 

The following results were obtained: 

─ the ranking of investment banks with respect to their contribution to the overall 
coherence of the recommendations using the Shapley value was obtained; 

─ the contributions of the separate pairs of investment banks in the total conflict of 
recommendations of the Russian companies with the help of the interaction index 
were evaluated; 

─ the investment banks rendering the greatest influence on the coherence of the rec-
ommendations were detected with the help of the analysis of the centrality; 

─ the sets of analysts whose recommendations have a greater degree of coherence 
were identified with the help of analysis of fuzzy similarity relations generated by 
the coherence measure; 

─ the main cluster structures of investment banks with respect to coherence of the 
recommendations were identified by the method of hierarchical clustering; 

─ the expressions for some of the calculated parameters (Shapley values, interaction 
index) were obtained in the terms of evidence. 

In addition, we have shown that the set of the key investment banks, have made the 
greatest contribution to the overall coherence of the recommendations obtained with 
the help of Shapley values and the methods of analysis of the centrality, are close 
together. Similarly, the cluster structures of analysts, whose recommendations have a 
greater degree of coherence, obtained by the methods of analysis of the fuzzy simi-
larity relations and methods of the hierarchical clustering, are close to each other. 
Indirectly, this confirms the importance of the results. 
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Abstract. The uncertainty in the environment typically generates noisy
concept alternatives and leads to an overpopulated concept lattice. From
a computational point of view, a straightforward filtering of the noisy
concept lattice will suffer from an exponential-size computational overkill,
and from a semantical one – will face numerous ambiguities due to an
overfitting. We managed to bypass the filtering problem by applying a
sort of probabilistic approach. We developed a probabilistic generaliza-
tion of formal concepts which seems to avoid a monstrous combinatorial
complexity of a complete context lattice construction. The theoretical
base for this method is described, as well as a ready-to-work noise resis-
tant algorithm. The algorithm has been tested and showed a moderate
precision and recall rate on various datasets, including a toy one pre-
sented with the presence of a 2, 3 or 5% random noise.

Keywords: formal concept analysis, concept lattice, inductive learning,
data mining, association rules, classification task

1 Introduction

Formal concepts may be successfully used as classification units [1, 2]. However,
reviewing the concept lattice as a plain graph with the Formal Concept Anal-
ysis (FCA) works well until data become uncertain, when lattices can become
prohibitively huge even on small-sized datasets.

There are some attempts to get rid of noise in data by concepts selection or
filtering. E.g. measures of the concept stability has been shown to pick out the
most reliable formal concepts [4, 5]. It was demonstrated that the stability index
is relevant to data mining tasks and possesses several attractive properties [9].

Nevertheless, this is still not enough for uncertain environments [4]. Noisy
clones overloading makes the calculation intractable even on small datasets. For-
mally speaking, a zero-populated concept context superimposed with a random
Bernoulli noise is expected to produce exponential-size lattices [8].

? The work is financially supported by the Russian Foundation for Basic Research
Grant 15-07-03410-a
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Approaches based on the hypothesis-making has been analyzed: performance
of a model still suffers in the practical tasks environment [7]. The closest research
domains are probably connected with the fuzzy concepts analysis, like [18].

In the paper we reconsider the problem of handling a possible noise in data
by means of probability and logic. The origin of the probabilistic pattern for
formal concepts lies in cognitive science, where they are closely related to the
”natural classes” [16]. We will focus on developing a context recovery method
keeping eye on the next key capabilities:

1. The stability of a reproduced context concept lattice with respect to a pos-
sible minor noise;

2. Computational tractability, avoiding filtering the whole concept lattice;
3. Handling the prediction ambiguity problem;
4. Relationship with the theory of category formation [17, 16].

The first step has been made in [12] – a probabilistic generalization of formal
concepts goes here. The next step is to equip concepts with possible attribute
negations and develop a logical language of a context probabilistic reasoning. We
will also prove some technical facts about a consistency of probabilistic reasoning.

2 Formal concept analysis foundations

This section suggests a brief overview for a formal concept analysis framework
[1, 2, 13] exploited in the paper.

A dataset is represented by an attribute-value cross-table. Formally speaking,

Definition 1. A formal context is a triple (G,M, I) where G and M are the
sets of an arbitrary nature and I ⊆ G×M is a binary relation.

On the formal context (or simply context) a derivation operator ′ is defined:

Definition 2. A ⊆ G, B ⊆M . Then

1. A′ = {m ∈M | ∀g ∈ A, (g,m) ∈ I}
2. B′ = {g ∈ G | ∀m ∈ B, (g,m) ∈ I}
3. The pair (A,B) is called a formal concept if A′ = B and B′ = A.

Generally speaking, formal concepts analysis concentrates on a concept lat-
tice arising on concept extents from the natural subset order. However, we aim
to avoid considering a concept lattice and exploit the intrinsic properties of the
data. The implication is a core notion.

Definition 3. The implication is a pair (B,C), B,C ⊆ M , which we write as
B → C. The implication B → C is true on K = (G,M, I), if ∀g ∈ G(B * g′

or C ⊆ g′). We denote the set of all true implications as Imp(K).

Implications are not only the forms a conceptual bridge from FCA to logic
structures, but are an essential way of reasoning within a machine logic and
prediction task particularly.
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Definition 4. For any set of implications L we construct an operator of a direct
inference fL that adds all conclusions of applicable implications:

fL(X) = X ∪ {C | B ⊆ X, B → C ∈ L}

The following theorem characterizes concepts by means of fixed points.

Theorem 1 (see [2]). For any set B ⊆M , fImp(K)(B) = B ⇔ B′′ = B.

The theorem application may be illustrated on a simple formal context.

m1 m2 m3

1 1 0
1 1 1
0 1 1
0 0 0

Table 1: A very simple formal context K0

We can reformulate concept lattice construction task by means of implica-
tions and an inference operator. It can be easily found out from Table 1 that
attributes m1 and m3 determine the class of an object. In fact, m1 implies m2

and so does m3. This is written as m1 → m2 and m3 → m2. The sets {m1,m2},
{m2,m3} and {m1,m2,m3} are the formal concepts, so do fixed points of the
direct inference operator. For example,

{m1}
fImp(K)−−−−−→ {m1,m2}

fImp(K)−−−−−→ {m1,m2}

Thus indeed, {m1,m2} is a fixed point and a formal concept simultaneously.

3 Probabilistic logic on a formal context

Let us add some noise on K0. We also extend K0, by adding redundant objects
duplicates. It will help to keep the noise level rather low in order to make a
concept recovery practically possible.

Every single altering will change a concept lattice a lot. The first context is
equivalent toK0 above and has the same concept lattice. However, the second one
generates a lot of side concepts, provoked by noise: the sets {m2} and {m1,m3}
also become formal concepts. The amount of side concepts is increasing as more
noise is incoming – the dependency tends to be asymptotically exponential [8].

The stability may be obtained in various ways. The most obvious way is
computing some stability index in order to evaluate, does the concept from
noisy context is good enough, either does it is produced by noise [4, 5].

The other one may be based on a different subject: instead of measuring a
stability of concepts, a stability of implications is measured. An essential way
to do this is to exploit a likelihood of attribute implications, but we will also
generalize them up to logical formulas.
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m1 m2 m3

1 1 0
1 1 1
0 1 1

1 1 0
1 1 1
0 1 1

1 1 0
1 1 1
0 1 1
0 0 0

Table 2: K0 populated with duplicates

m1 m2 m3

0 1 0
1 1 1
0 1 1

1 1 0
1 0 1
0 1 1

1 1 0
1 1 1
0 1 1
0 0 0

Table 3: Knoise, with a little bit noise

Definition 5. For a formal context K = (G,M, I) we introduce classical logical
definitions:

– LK is a letters set and includes any m ∈M as well as their negations ¬m;

– ΦK is a formulas set and is defined inductively: a letter is a formula and for
any φ, ψ ∈ ΦK products of φ ∧ ψ, φ ∨ ψ, φ→ ψ,¬φ are formulas, too;

Remark 1. For brevity, we assume
∧
L = ∧

P∈L
P (or

∧
L = 1 if L = ∅). Similarly,

¬L = {¬P | P ∈ L}.

For every object {g}, a logic model of the object Kg is defined. We say that
the object g respects the formula φ ∈ ΦK , if the formula is true for the model
Kg. We will write this fact as g � φ⇔ Kg � φ. The set Gφ = {g ∈ G | g � φ} is
called the support of φ.

Definition 6. Let us consider an arbitrary probability measure µ, i.e. µ is a
finite countably additive measure on the set G. Then the contextual probability
measure is defined by the following:

ν : ΦK → [0, 1], ν(φ) = µ({g | g � φ}).

.

The most common understanding of formula probability may be linked with a

well-known confidence index for context implications: conf(X → Y ) = |supp(X∪Y )|
|supp(X)| .

The formula probability will express exactly the same, if we keep things simple
and assume µ to be a counting measure: µ({g}) = 1

|G| .

For practical applications, here and further we will suppose that G is finite
and does not contain any objects of a zero measure, i.e. ∀g ∈ G, µ({g}) 6= 0.

Definition 7. The set of attributes M is compatible, if M ′ 6= ∅.
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The same may be expressed as ν(
∧
M) > 0.

Now let us consider the set L = {mi,m}i=1...k ⊆ LK . The formula m1 ∧
m2... ∧ mk → m will look like the classical context implication ({mi}, {m}),
except when it is possible to include negations of attributes, like in this one:
m1 ∧ ¬m2... ∧mk → ¬m. The concept of the implication as a formula is reified
in definition of the rule:

Definition 8. Let C,Hi ∈ LK , C /∈ {H1, H2, ...Hk}, k ≥ 0. Then:

1. The rule R = (H1, H2..., Hk → C) is an implication (H1∧H2...∧Hk → C);
2. The premise R← of a rule R is a set of letters {H1, H2..., Hk};
3. The conclusion is R→ = C;
4. If R←1 = R←2 and R→1 = R→2 , then R1 = R2.

Definition 9. The probability of the rule R is a conditional probability

η(R) = ν(R→ | R←) =
ν(R← ∧R→)

ν(R←)

If ν(R←) is zero, the probability of the rule remains undefined.

Keeping eye on K0, let us try to watch what is happening on Knoise with
the implications m1 → m3 and m1 → m3. They stopped to be contextual
tautologies, but we still can stick to the corresponding rules with reasonable
likelihoods: η(m1 → m2) = 4

5 and η(m3 → m2) = 5
6 .

The core idea of the approach is to exploit Theorem 1. An operator of a direct
inference could be easily adapted to employing probabilistic rules in contrast to
formal context implications.

Definition 10. The prediction operator Π on the set of the rules R works as
follows:

ΠR(L) = L ∪ {C | ∃R ∈ R : R← ⊆ L,R→ = C}.

Definition 11. A closure L of the set of the letters L is the smallest fixed point
of the prediction operator: L = Π∞(L).

4 Rule classes

Note, that the definition 10 accepts any set of rules. To produce a relevant
and consistent set of generalized concepts, additional restrictions for this set are
needed. Following the [6], we will prove the compatibility theorem and ensure
the correctness property for the prediction closure operator.

Definition 12 (subrule). R1 @ R2, if R←1 ⊂ R←2 and R→1 = R→2 .

Definition 13 (refinement). R1 > R2, if R2 @ R1 and η(R1) > η(R2).
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For example, the rule m1 → m2 from Knoise has the only unconditional
subrule: (∅→ m2) @ (m1 → m2). This could not be considered as a refinement
relation: η(∅ → m2) = 8

10 = 4
5 = η(m1 → m2). However, (m3 → m2) > (∅ →

m2) because η(∅→ m2) = 8
10 <

5
6 = η(m3 → m2).

The class M1 requires that the rules have a greater conditional probability
than an unconditional probability of C, i.e. the rule is guaranteed to be useful
in reasoning:

Definition 14. R ∈M1(C)⇔ η(R) > ν(R→), R→ = C.

The class M2 requires a rule to be specific – we cannot improve probability
by refining the rule:

Definition 15. R ∈M2(C)⇔ R ∈M1(C) and [R @ R̃⇒ η(R̃) ≤ η(R)]

The rule (m3 → m2) could be refined up to the (¬m1 ∧m3 → m2) due to
the inequality: η(m3 → m2) = 5

6 < 1 = 3
3 = η(¬m1 ∧m3 → m2). The last rule

satisfies all M2 conditions, and thus (¬m1 ∧m3 → m2) ∈M2(m2).
The class Imp contains all exact implications. So does any contextual tau-

tology:

Definition 16. R ∈ Imp(C)⇔ R→(R) = C and η(R) = 1

We also consider compound classes for entire set of letters:

Definition 17. M1 =
⋃

C∈LK

M1(C)

Remark 2. M2 and Imp are defined similarly.

All exact implications are indeed necessary to ensure a completeness property
for the prediction operator. In turn, a set of rules must consist only from the M2

rules in order to obtain a consistency property. The set of the letters L is called
consistent, if it does not contain an atom C and its negation ¬C.

Definition 18. If Imp ⊂ R, then the set of rules R is called complete.

Definition 19. By a system of the rules, we will call any R ⊆M2.

5 Prediction consistency

Definition 20. The set of attributes M is consistent, if L ∈M ⇒ ¬L /∈M .

ΠR must avoid inconsistent inferences [3]. The following theorem is the main
theoretical result of the paper. It proves predictions to be consistent and com-
patible (see def. 7). For the proof and technical details, see [6].

Theorem 2 (Compatibility). If L is compatible, then ΠR(L) is also compat-
ible and consistent for any system of the rules R.

Somewhat more difficult, but still solvable, is the question of the inconsistency
of prediction closures. Let us assume R to be a complete set of rules and ΠR to
be the corresponding prediction operator. It is important to note that the rule
systems containing M2 are always complete.

Theorem 3. If L is incompatible, then ΠR(L) is inconsistent and incompatible.
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6 Probabilistic formal concepts

The fixed points of a prediction operator are clear to be the candidates for
concept intents. What about concept extents? The principles proposed in [5,
9] give us a cue. The idea is to take all possible closure preimages attribute
sets, i.e. all M : Π(M) = B, and compose their derivative sets together into a
derived concept extent A. This will allow restoring the actual concept reference
by applying the prediction operator and include all the objects of the same class
into a conjoined extent.

For example, let Ksquares be a context depicted as two disjoint squares (which
are two independent formal concepts). To bring extra complexity, we also alter
some entries:

G m1 m2 m3 m4 m5 m6 m7 m8

g1 1 1 1 1 1 0 0 0
g2 1 1 1 1 0 0 0 0
g3 1 1 1 1 0 0 0 0
g4 1 1 1 1 0 0 0 0
g5 0 0 0 0 1 1 1 1
g6 0 0 0 0 1 1 0 1
g7 0 0 0 0 1 1 1 1
g8 0 0 0 0 1 1 1 1

Table 4: A two-concept context Ksquares with a minor noise

Note that the most specific rules referring to M2 are (mi=1...4 → ¬mj=5...8),
however rule m5 → ¬mi=1...4 is not. There is a more specific rule for the last one:
η(m5 ∧m6 → ¬m1) = 1 > 4

5 = η(m5∧ → ¬m1). This is how noise is handled
being encapsulated in probability and refinement.

To pick up the first object from Ksquares, firstly, the prediction operator com-
putes a closure: Π(g′1) = {m1,m2,m3,m4,¬m5,¬m6,¬m7,¬m8}. And secondly,
all objects with the same closure are composed into a concept with the extent
{g1, g2, g3, g4}.

Definition 21. By a probabilistic formal concept on K = (G,M, I) we mean
any pair (A,B) which satisfies

Π(B) = B, A =
⋃

C⊂B, Π(C)=B

GC

Our selection is also justified by the following statement, relating probabilistic
and ordinary formal concepts on the same context.

Theorem 4 (Ordinary concepts inclusion [12]). Let K be a formal context.

1. If (A,B) is an ordinary concept on K, then there is a probabilistic concept
(N,M) such that A ⊆ N , and B ⊆M .
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2. If (N,M) is a probabilistic concept on K, then there is a set of ordinary
concepts C, such that

∀(A,B) ∈ C (Π(B) = M),

N =
⋃

(A,B)∈C
A.

7 Probabilistic concepts discovery

For practical applications, a computational problem should be solved. It is still
exponentially hard if we require a full M2 set enumeration.

A semantic probabilistic inference as an enumeration procedure has been
described in details in [15]. The idea is to perform a kind of a greedy search
combined with a branches and boundaries search on the inference tree. The last
aims to obtain an M2 subset, which will be enough for the most practical tasks.

Definition 22. R is a probabilistic law, if for any R̃, (R̃ @ R)⇒ (R̃ < R).

Definition 23. The rule R̃ is semantically probabilistic inferred from the rule
R. We write R . R̃, if R, R̃ are the probabilistic laws, and R̃ > R.

Definition 24. The probabilistic law R is the strongest, or R ∈ SPL, if there is
no other probabilistic law R̃ such that (R̃ > R).

Proposition 1. All strongest probabilistic laws are in M2.

The rules extraction routine is based on exploiting a Semantic Probabilistic
Inference (SPI) approach. It requires each path in the inference graph to be a
sequence of semantic inferences:

Definition 25. SPI is a sequence of the rules R0 . R1 . R2... . Rm, such that
R←0 = ∅ and Rm is the strongest probabilistic law.

Now let us assume that some system of the rules R on a context K has
already been discovered by semantic probabilistic inference. The probabilistic
concept definition implies the following closure-search procedure.

1. Set the step counter k = 1 and generate the set C(0) = {ΠR(R←) | R ∈ R}.
In fact, this may be an arbitrary family of letter sets to be extended up to
their probabilistic concepts closures. The set C(0) is almost always redun-
dant, but it should be enough to cover all statistically significant attribute
sets;

2. On the step k > 1 in case C(k) = ∅ the algorithm finishes the execution and
outputs a list of detected probability concepts;

3. On the step k > 1 the set A = {g ∈ G | ΠR(g′ ∩ B) = B} is computed
for each B ∈ C(k). If A 6= ∅, the pair (A,B) is added to the list of the
found concepts. It corresponds to a join operation on the concept lattice and
subsequently climbs to superordinate levels of the lattice;
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4. The set C(k+1) = {ΠR(B ∪ C) | B,C ∈ C(k)} \ C(k) is generated. In fact,
actual prediction closures are computed on this step;

5. Let k := k + 1 and go to the step 2.

The algorithm could be applied to a context recovery task as well as to a
wide variety of data mining problems, such as classification and clusterisation
tasks. In the final section we will focus on handling noise in a toy, a rather hard
context recovery task.

8 An example

Fig. 1: Initial context

Earlier we considered the Ksquares context very simple but illustrative. A
more sophisticated example should contain more interactions between concepts,
both in extent and intent components. Also more noise should be produced.
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To measure some performance issues, we will set up several modifications of a
single context. Modifications differ at levels of a noise and there may be a number
of data duplicates, when producing more data is necessary. An initial context has
been composed from rectangle blocks, easy to be recognized as formal concepts
(let them be denoted as ”solid” concepts).

A set of experiments was based on:

1. Kexp – the initial context, depicted on Fig. 1.
2. Kx3 – similar to Kexp, except it contains 3 duplicates of each Kexp object;
3. Kx3.n05 = Kx3 + randomly inflicted binary noise, Bernoulli distributed with
p = 0.05

4. Kx3.n04 = Kx3 + noise, p = 0.04
5. Kx3.n03 = Kx3 + noise, p = 0.03

The primary characteristics of the datasets are presented in Table 5.

Context |G| |M | # Concepts # Solid # Logical Noise

Kexp 61 8 5 + 4 + 2 5 6 + 4 0

Kx3 183 8 5 + 4 + 2 5 6 + 4 0

Kx3.n05 183 8 5 + 4 + 2 5 6 + 4 0.05

Kx3.n04 183 8 5 + 4 + 2 5 6 + 4 0.04

Kx3.n03 183 8 5 + 4 + 2 5 6 + 4 0.03

Table 5: Experimental data summary: |G| and |M | stay for the amount of objects and
attributes in a context. The number of concepts is a sum of three different types of
concepts: solid concepts, which are indicated on Fig. 1 as solid sequences of ones; join-
concepts, which are made of two sequences; and meet-concepts, which are produced by
an intersection of two solid concepts. Note that a logical approach is a little bit spe-
cific: the model excludes meet-concepts from the consideration and accepts attributes
negations, while respecting the empty concept. Thus, the column logical sums solid
and join-concepts add an empty one to solid.

The first stage in executing a closure-search procedure is a rules ex-
traction routine. According to the method discussed in Section 7, a computer
program was implemented to perform a semantical probabilistic inference. For
each context a set of rules has been obtained and has eventually been used in a
closure-search procedure.

Context # Rules # Rules (p > 0.5) # Rules (p > 0.9)

Kx3.n05 1712 1358 682

Kx3.n04 1193 967 497

Kx3.n03 1103 916 532

Table 6: Rules extraction routine summary: # Rules are a total number of discovered
rules via semantic probabilistic inference. The next two values are the numbers of the
rules with conditional probability thresholds of 0.5 and 0.9.

While increasing a noise level, a context becomes less and less clear and
requires more and more rules for describing attribute associations. A minor noise
produces an insignificant effect and affords to solve the problem almost exactly.
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Following [10], we will compare an original concept lattice O with a predicted
one E and measure the method performance by calculating two ratios:

Precision =
|O ∩ E|
|E| , Recall =

|O ∩ E|
|O|

The experiment results are presented in Table 7. In addition to the perfor-
mance indexes, the data are presented separately for the solid concepts and the
join-concepts.

Context |O| |O ∩ E| |O \ E| |E \O| Precision Recall

Kx3 6 + 4 6 + 4 0 + 0 0 + 0 1.0 + 1.0 1.0 + 1.0

Kx3.n03 6 + 4 6 + 4 0 + 0 0 + 0 1.0 + 1.0 1.0 + 1.0

Kx3.n04 6 + 4 6 + 1 0 + 3 0 + 0 1.0 + 1.0 1.0 + 0.25

Kx3.n05 6 + 4 6 + 3 0 + 1 0 + 1 1.0 + 0.75 1.0 + 0.75

Table 7: Concepts recovery summary on the same contexts: |O| is the total number of
expected concepts; |O∩E| is the number of correctly predicted concepts; |O \E| is the
number of lost concepts; and |E \O| is the number of incorrectly predicted concepts.

It was rather easy for a closure-search procedure to determine all formal
concepts without noise.

However, even on noisy contexts the algorithm has been able to restore the
original set of concepts with a moderate accuracy. All probabilistic concepts en-
countered by the algorithm may be essentially associated with the original images
in ordinary concepts, while some non-primal concepts have been leaked. Never-
theless, it seems that probabilistic formal concepts perform more accurately, in
comparison with a stability approach [4].

Indeed, the main advantage may not even be the method accuracy: proba-
bilistic formal concepts are able to discover concepts on big data frames. The
estimated computational complexity for SPI is |M |d+2∗|G|, and one for a closure-
search seems to be |Π| ∗ |M |c ∗ |G|, where 3 < c < 4 (the estimation is empirical
and still needs to be checked). Noise induces extra complexity but using a Pen-
tium 4 2-core 2.4GHz computer is enough to solve a 321x26 context with 10%
noise in about 10 minutes, while it takes 5 minutes to complete a 3% noise task.

9 Conclusion

The introduced method has been experimentally and theoretically proven to
be correct and accurate. Some extra experiments have been proposed in earlier
works [12, 20]. Probabilistic formal concepts are also very profitable as they may
serve to construct exact concept lattices from real, noisy raw data immediately
instead of performing a filtering on a overpopulated concept lattices, possibly
exponentially sized. The further work includes theoretical evaluation for compu-
tational complexity as well as more sophisticated experiments on a big dataset.
We are also planning to compare our results with some famous classification
methods in terms of prediction accuracy and speed.
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Logics for Representation of Propositions with
Fuzzy Modalities

Andrew M. Mironov1

Moscow State University, Russia

Abstract. In the paper we introduce logical calculi for representation of
propositions with modal operators indexed by fuzzy values. There calculi
are called Heyting-valued modal logics. We introduce the concept of a
Heyting-valued Kripke model and consider a semantics of Heyting-valued
modal logics at the class of Heyting-valued Kripke models.

1 Introduction

The formalism of propositional modal logic and its proof technique is one of
the most powerful approaches for knowledge representation and reasoning about
dynamic systems, databases, etc.

In the present paper we introduce more general modal propositional formal-
ism, which allows to express propositions with modalities indexed by elements
of a complete Heyting algebra. In this formalism any proposition A can be aug-
mented with a modal operator of the form �a, which can be interpreted, for
example, as a value of necessity of A (or a value of confidence of A, or a value of
plausibility of A, or a probability of A, or something else). This formalism can
be considered as a logical foundation for

– reasoning about objects that are incomplete and inconsistent, such as data-
bases with incomplete and unclear information,

– model checking for discrete models which are rough approximations of ana-
lyzed systems.

Mathematical approaches to representation of knowledges with taking into
account an uncertainty and incompleteness of knowledges were considered in
several papers, in particular, in [3]–[13]. The most of them are related to quan-
titative evaluation of uncertainty.

Uncertainty of information can appear by several causes.

1. An information under processing can be unclear, approximate, and not ver-
ified, and for correct processing of such information it is necessary to have a
formalism for taking into account a value of reliability of information under
processing.

2. If we investigate a complex system, such that its detail and exact representa-
tion is impossible, then we construct a rough model of this system, which has
small complexity, and instead of this system we investigate its rough model.
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But because the original system and its model are essentially not identical,
then their properties can differ. Thus, for correct investigation of the system
on the base of such model it is necessary to have an approach to evaluation
the difference between properties of a rough model and properties of origi-
nal system. Values of the difference can be not only quantitative, but also
qualitative. For example, the set of such values can be a boolean algebra of
subsets of some set of situations (i.e. states of an environment), in which the
analyzed system does work. A value of equivalence between the system and
its model (with respect to the properties under checking) can be defined for
example as a set of situations in which these properties are equivalent for the
original system and for its model. A value of truth of the properties under
checking can be defined as a subset of this set, which consists of situations, in
which the analysed properties does hold. These situations can be augmented
by quantitative parameters (their weights, probabilities, etc.), and the set of
such values can be more complex (if the sets of the parameters are totally
ordered sets, then the set of values of truth is a Heyting algebra).

The main goal of the present paper is to construct a logical framework,
which can serve as a logical foundation for representation of such uncertain
information. The proposed formalism can be used also for design of specification
languages of a behavior of dynamic systems with uncertain information about
their structure and behavior, by analogy with the specification languages based
on temporal logic for description of properties of program systems and electronic
circuits ([2]). Some recent approaches to logic representation of propositions with
fuzziness can be found in [16], [17].

The paper is organized as follows. In section 2 we introduce the syntax
of Heyting-valued modal logics and define a minimal Heyting-valued modal
logic HVK. In section 3 we introduce the concept of a Heyting-valued Kripke
model and define the semantics of Heyting-valued modal formulas at the class
of Heyting-valued Kripke models. We also consider an example of a Heyting-
valued Kripke model related to description logics. In section 4 we introduce a
concept of a canonical model of a Heyting-valued modal logic, and in section 5
we use the concept of a canonical model for the proof of completeness for min-
imal Heyting-valued modal logic HVK at the class of Heyting-valued Kripke
models. In the conclusion we summarize the results of the paper and describe
problems for future research.

2 Heyting-valued modal logics

2.1 Complete Heyting algebras

We shall assume that a set of fuzzy values which can occur in formulas of Heyting-
valued modal logics has some algebraic properties, namely, it is a complete Heyt-
ing algebra. In this section we remind a definition of this concept.
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A complete lattice is a partially ordered set H, such that for every subset
Q ⊆ H there are elements inf(Q) and sup(Q) of H such that for every b ∈ H

(∀q ∈ Q b ≤ q) ⇔ b ≤ inf(Q),

(∀q ∈ Q q ≤ b) ⇔ sup(Q) ≤ b.

The elements inf(H) and sup(H) will be denoted by the symbols 0 and 1
respectively.

For every finite subset

Q = {a1, . . . , an} ⊆ H

the elements inf(Q) and sup(Q) will be denoted by the symbols

a1 ∧ . . . ∧ an and a1 ∨ . . . ∨ an

respectively.

These elements will be denoted also by the symbols




a1
. . .
an



 and



a1
. . .
an




respectively.

A complete Heyting algebra can be defined as a complete lattice H, with
a binary operation

→: H×H → H,

such that for every a, b, c ∈ H

a ∧ b ≤ c ⇔ a ≤ b→ c (1)

Below the symbol H denotes some fixed complete Heyting algebra.

For every a, b ∈ H the symbol a↔ b denotes the element

{
a→ b
b→ a

}
.

One of the most important examples of a complete Heyting algebra is a set
of n–tuples

{(a1, . . . , an) | a1 ∈M1, . . . , an ∈Mn}

where M1, . . . ,Mn are complete totally ordered sets (for example, every Mi is a
segment [0, 1]), and (a1, . . . , an) ≤ (b1, . . . , bn) iff for every i = 1, . . . , n ai ≤ bi.
For every pair a = (a1, . . . , an), b = (b1, . . . , bn)

a→ b = (c1, . . . , cn), where ci =

{
1, if ai ≤ bi
bi, otherwise
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2.2 Heyting-valued modal formulas

Let PV be a countable set, elements of which will be called propositional
variables.

The set Fm of Heyting-valued modal formulas (HVMFs) is defined
inductively as follows.

– Every p ∈ PV is a HVMF.
– Every a ∈ H is a HVMF.
– If A and B are HVMFs, then the strings A ∧ B, A ∨ B, and A → B are

HVMFs.
– If A is a HVMF, and a ∈ H, then �aA if a HVMF.

The symbols �a are called Heyting-valued modal operators.
A HVMF �aA can be interpreted as the proposition

“the plausibility value of A is equal to a”.

For every list A1, . . . , An of HVMFs the strings

A1 ∧A2 ∧ . . . ∧An and A1 ∨A2 ∨ . . . ∨An

are the restricted notations of the HVMFs

A1 ∧ (A2 ∧ (. . . ∧An) . . .) and A1 ∨ (A2 ∨ (. . . ∨An) . . .)

respectively.
These HVMFs will be denoted also by the symbols




A1

. . .
An



 and



A1

. . .
An




respectively.
For every pair A,B of HVMFs the string A ↔ B is a restricted notation of

the HVMF

{
A→ B
B → A

}
.

2.3 Substitutions

A substitution is a pair

θ = ((p1, . . . , pn), (A1, . . . , An)) (2)

where p1, . . . , pn are distinct variables, and A1, . . . , An are HVMFs.
For every substitution (2) and every HVMF A the symbol θ(A) denotes a re-

sult of substitution for every i = 1, . . . , n the HVMF Ai instead of all occurrences
of pi in A.
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2.4 Tautologies

Let A and B be HVMFs. We shall say that B is obtained from A by an equivalent
transformation, if

– there is a subformula of A of the form a ∧ b, a ∨ b, or a→ b, where a, b ∈ H,
– B is a result of a substitution in A the corresponded element of H instead

of this subformula.

We shall consider HVMFs A and B as equal (and write A = B) iff the pair
(A,B) belongs to the least equivalency relation generated by pairs of the form
(C,D), where D can be obtained from C by an equivalent transformation.

Let A be a HVMF without modal operators, and the list of variables of A
has the form (p1, . . . , pn). A is said to be a tautology, if θ(A) = 1 for every
substitution (2), such that ∀i ∈ {1, . . . , n} Ai = ai ∈ H.

2.5 Heyting-valued modal logics

A Heyting-valued modal logic (HVML) is a set L of HVMFs such that

– every tautology belongs to L,
– for every A,B of HVMFs and every a ∈ H

�a
{
A
B

}
↔

{
�aA
�aB

}
∈ L, (3)

– for every a ∈ H
a→ �a1 ∈ L, (4)

– for every HVMF A and every a ∈ H

�aA→ a ∈ L, (5)

– for every HVMFs A,B

if A ∈ L and A→ B ∈ L
then B ∈ L

(6)

– for every HVMF A and every substitution θ

if A ∈ L
then θ(A) ∈ L

(7)

– for every HVMFs A,B and every a, b ∈ H

if a→ (A→ B) ∈ L
then a→ (�bA→ �bB) ∈ L

(8)
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– for every HVMF A and every subset {ai | i ∈ =} ⊆ H
if ∀i ∈ = ai → A ∈ L
then (sup

i∈=
ai)→ A ∈ L. (9)

This definition implies that there is a minimal (with respect to the inclusion)
HVML, which we shall denote by the symbol HVK.

It is not so difficult that the inference rule

if a1 → A1 ∈ L,
. . .
an → An ∈ L
(

where a1, . . . , an ∈ H, and
A1, . . . , An are HVMFs

)

then




a1
. . .
an



→




A1

. . .
An



 ∈ L

(10)

is admissible for every HVML.
For every HVMF A and every HVML L the symbol

[[A]]L

denotes a supremum of the set

{a ∈ H | a→ A ∈ L}. (11)

This definition and (9) imply

∀a ∈ H a→ A ∈ L ⇔ a ≤ [[A]]L.

3 Heyting-valued Kripke models

3.1 Heyting–valued sets

Remind ([1]) that a Heyting–valued set (HS) (over a complete Heyting alge-
bra H) is a pair

W = (X,µ) (12)

where

– X is a set (which is called a support of W ), and
– µ is a mapping of the form

µ : X ×X → H
such that

∀x, y ∈ X µ(x, y) = µ(y, x) (13)

∀x, y, z ∈ X
{
µ(x, y)
µ(y, z)

}
≤ µ(x, z) (14)
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For every pair x, y ∈ X the element µ(x, y) is called a similarity value between
x and y.

For example, let

– X be a set of humans,
– {a1, . . . , an} be a list of some their characteristics (age, sex, salary, reputa-

tion, health, etc.),
– M1, . . . ,Mn are complete totally ordered sets of similarity values related to

the characteristics a1, . . . , an respectively,
– a Heyting algebra H has the form

M1 × . . .×Mn (15)

We can consider X as a Heyting–valued set over (15), where for every pair
x, y ∈ X their similarity µ(x, y) is a n–tuple c1, . . . , cn, such that for every
i ∈ {1, . . . n} if x and y are similar with respect to the characteristics ai, then ci
is in proximity to the maximal element of Mi.

For every x ∈ X the element µ(x, x) is called a membership value of x at
the HS (12).

Let W = (X,µ) be a HS. A Heyting–valued binary relation (HR) on
W is a mapping R of the form R : X ×X → H, such that

∀x, y, x′, y′ ∈ X




R(x, y)
µ(x, x′)
µ(y, y′)



 ≤ R(x′, y′), (16)

∀x, y ∈ X R(x, y) ≤
{
µ(x, x)
µ(y, y)

}
. (17)

For every pair (x, y) ∈ X × X the element R(x, y) can be interpreted as a
belonging value of this pair to the HR R.

A Heyting–valued subset (HSS) of a HS (12) is a mapping s of the form

s : X → H (18)

such that

∀x, x′ ∈ X
{
s(x)
µ(x, x′)

}
≤ s(x′), (19)

∀x ∈ X s(x) ≤ µ(x, x). (20)

For every x ∈ X the element s(x) can be interpreted as a membership value
of x at the HSS (18).

The set of all HSSs of a HS (12) will be denoted by the symbol Sub(W ).
Below

– for every HS W its support will be denoted by the same symbol W ,
– for every pair of elements of the support the similarity value between x and
y will be denoted by the symbol W (x, y), and

– for every x ∈W the membership value of x at the HS W will be denoted by
the symbol W (x).
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3.2 Definition of a Heyting-valued Kripke model

A Heyting-valued Kripke model (HVKM) is a triple M of the form

M = (W, {Ra | a ∈ H}, ξ) (21)

where

– W is a HS, elements of which are called objects (or worlds),
– {Ra | a ∈ H} is a H–tuple of HRs on W , which are called transition

relations,
– ξ is a mapping of the form

ξ : PV → Sub(W ) (22)

which is called an evaluation of variables.

3.3 Evaluation of HVMFs at HVKMs

For every HVMF A and every HVKM (21) an evaluation of A at M is the
mapping

[[A]]M : W → H,
which maps every x ∈W to the element [[A]]x ∈ H, which is defined as follows:

– if A = p ∈ PV , then [[A]]x
def
= ξ(p)(x),

– if A = a ∈ H, then [[A]]x
def
=

{
a
W (x)

}
,

– if A = B ∧ C, then [[A]]x
def
= [[B]]x ∧ [[C]]x,

– if A = B ∨ C, then [[A]]x
def
= [[B]]x ∨ [[C]]x,

– if A = B → C, then [[A]]x
def
=

{
[[B]]x → [[C]]x
W (x)

}
,

– if A = �aB, then [[A]]x
def
=





a
inf
y∈W

(Ra(x, y)→ [[B]]y)

W (x)




.

It is not so difficult to prove that [[A]]M is a HSS of the HS W .

3.4 An example of a HVKM

In this section we give an example of a HVKM related to description logic ([14]).
Description Logic is a language for formal description of complex concepts

on the base of atomic concepts and binary relations, called atomic roles. Assume
that there are given

– a set I of individuals,
– a set C of atomic concepts, and every atomic concept c ∈ C represents a

subset [[c]] ⊂ I
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– a set R of atomic roles, and every atomic role r ∈ R represents a binary
relation [[r]] ⊆ I × I.

Description Logic allows to represent complex notions by concept terms, i.e.
expressions that are built from atomic concepts and atomic roles with use of the
concept constructors:

– boolean operations (conjunction (u), etc.), and
– quantifier operations of the form ∀r, where r ∈ R.

Every concept term represents a subset [[t]] ⊆ I, which is defined by induction
as follows:

– [[t1 u t2]]
def
= [[t1]] ∩ [[t2]],

– [[∀r.t]] def
= {a ∈ I | for every b ∈ I (a, b) ∈ [[r]]⇒ b ∈ [[t]]}.

For example (the example is borrowed from [15]), if

– I consists of all humans,
– the atomic concept Woman is interpreted as the set of all women, and
– the atomic role child is interpreted as the set of all pairs (a, b) of humans,

such that b is a child of a

then the concept of all women having only daughters can be represented by the
concept term

Woman u ∀child.Woman
Let R∗ be the set of all finite sequences of elements of R.
Every sequence r = (r1, . . . , rn) ∈ R∗ represents a binary relation

[[r]]
def
= [[r1]] ◦ . . . ◦ [[rn]] ⊆ I × I

Elements of R∗ can be interpreted as derivative roles, and will be referred briefly
as roles.

Let H be the set P(R∗) of all subsets of the set R∗. H is a complete Heyting
algebra, because it is a complete boolean algebra.

We can consider the set I of humans as a Heyting-valued set (over H =
P(R∗)), where for every pair (x, y) ∈ I × I the similarity value I(x, y) consists
of all roles r ∈ R∗ such that x and y are equal with respect to r (we do not
clarify the concepts of equality of humans with respect to a role, because it seems
to be intuitively clear, but the precise definition of this notion requires a strong
linguistic foundation).

A HVKM related to this example has the following components.

– Objects of this HVKM are humans, and similarity value between them was
described above.

– For every ρ ∈ H and every pair x, y of humans the set Rρ(x, y) consists of
all roles r ∈ ρ such that (x, y) ∈ [[r]].



Logics for Representation of Propositions with Fuzzy Modalities 45

– The set PV is equal to the set C of atomic concepts, and for every c ∈ C the
evaluation

ξ(c) : I → P(R∗)
is defined as follows: for every human x ∈ I

ξ(c)(x)
def
=

{
I(x), if x ∈ [[c]]
∅, otherwise.

3.5 Truth of HVMFs at HVKMs

A HVMF A is said to be true at an object x of a HVKM (21), if

[[A]]x = W (x). (23)

A HVMF A is said to be true at a HVKM (21), if A is true at every object
of (21).

It is not so difficult to prove that every HVMF A ∈ HVK is true at every
HVKM, because

– every tautology is true at every HVKM,
– HVMFs from (3), (4) and (5) are true at every HVKM, and
– inference rules (6), (7), (8) and (9) preserve the truth property at every

HVKM.

Below we prove the inverse statement: if a HVMF A is true at every HVKM,
then A ∈ HVK.

4 Canonical models of HVMLs

4.1 Consistent HVMLs

A HVML L is consistent, if for every a ∈ H a ∈ L ⇒ a = 1.
It is not so difficult to prove that HVK is consistent.
Below every HVML under consideration is assumed to be consistent.

4.2 L–consistent sets of HVMFs

Let

– L be a consistent HVML, and
– u be a set of HVMFs.

The set u is said to be L–consistent, if for

– every finite subset of the set u, which has the form

{a1 → A1, . . . , an → An} (24)

(where a1, . . . , an ∈ H, A1, . . . , An are HVMFs, and
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– every b ∈ H

the statement 


A1

. . .
An



→ b ∈ L (25)

implies the inequality 


a1
. . .
an



 ≤ b. (26)

4.3 Properties of L–consistent sets

For every pair u1, u2 of sets of HVMFs the inequality

u1 ≤ u2 (27)

means that
for every HVMF of the form a→ A ∈ u1
a = 0 or ∃ b ≥ a : b→ A ∈ u2.

Theorem 1. For every pair u1, u2 of sets of HVMFs the inequality (27)
implies that

u2 is L–consistent ⇒ u1 is L–consistent.

Theorem 2. Every consistent HVML is a L–consistent set.

Below the symbol L denotes some fixed consistent HVML.

Theorem 3. Let

– u be a L–consistent set,
– A be a HVMF, and
– Q be the set of all elements a ∈ H such that

u ∪ {a→ A} is L–consistent. (28)

Then for every a ∈ H

a ≤ sup(Q) ⇔ a ∈ Q.

The element sup(Q), which corresponds to A and u, will be denoted by the
symbol

[[A]]u (29)
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The definition of the element [[A]]u implies that for every set u of HVMFs
the following implication holds:

u is L–consistent ⇒ ∀ A ∈ Fm
u ∪ {[[A]]u → A} is L–consistent

(30)

Theorem 4. Let u1 and u2 be L–consistent sets, such that

u1 ≤ u2.
Then for every HVMF A

[[A]]u2
≤ [[A]]u1

. (31)

Theorem 5. Let

– u be a L–consistent set of HVMFs, and
– A,B be a pair of HVMFs, such that

A→ B ∈ L (32)

Then
[[A]]u ≤ [[B]]u. (33)

Theorem 6. For

– every L–consistent set u, and
– every HVMF A

the following inequality holds:

[[A]]L ≤ [[A]]u. (34)

4.4 L–complete sets of HVMFs

Let x be a set of HVMFs.
The set x is said to be L–complete, if

– x is L–consistent, and
– for every HVMF A

[[A]]x → A ∈ x. (35)

4.5 Completion of L–consistent sets

Let

– u be a L–consistent set, and
– x be a L–complete set.

x is said to be a completion of u, if

u ≤ x (36)

Theorem 7. For every L–consistent set u there is its completion x.
Below we shall assume that H satisfies the additional condition:

∀ a ∈ H (a→ 0)→ 0 = a. (37)

This condition is equivalent to the condition that H is a boolean algebra with

respect to the operations ∧,∨,¬, where ∀a ∈ H ¬a def
= a→ 0.
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4.6 Canonical models of HVMLs

A canonical model of a HVML L is a HVKM

ML
def
= (WL, {RL,a | a ∈ H}, ξL)

the components of which are defined as follows.

– WL consists of all L–complete sets.
For every pair x, y ∈WL

WL(x, y)
def
= inf

A∈Fm
([[A]]x ↔ [[A]]y) (38)

Note that this definition implies that

∀x ∈WL WL(x) = 1. (39)

– For every a ∈ H RL,a is a HR on WL, RL,a : WL ×WL → H, where

∀x, y ∈WL

RL,a(x, y)
def
= inf

A∈Fm
([[�aA]]x → [[A]]y)

(40)

– ξL is a mapping of the form ξL : PV → Sub(WL), where for every p ∈ PV
the HSS ξL(p) : WL → H is defined as follows:

∀x ∈WL ξL(p)(x)
def
= [[p]]x. (41)

It is not so difficult to prove that

– WL satisfies (13) and (14),
– RL,a satisfies (16) and (17), and
– ξL(p) satisfies (19) and (20).

4.7 Main property of canonical models

Theorem 8. For every HVMF A and every x ∈WL

[[A]](x) = [[A]]x. (42)

5 Completeness of HV K

Theorem 9. If a HVMF A is true at every HVKM, then A ∈ HVK.
Proof.
Assume that A 6∈ HVK. Prove that A is not true at a certain object of the

canonical model of HVK.
Note that the set

{([[A]]HVK → 0)→ (A→ 0)} (43)
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is HVK–consistent, because for every b ∈ H the statement

(A→ 0)→ b ∈ HVK (44)

implies the inequality
[[A]]HVK → 0 ≤ b (45)

Indeed, (44) implies that

(b→ 0)→ A ∈ HVK ⇒
b→ 0 ≤ [[A]]HVK ⇒ (45)

Theorem 7 implies that HVK–consistency of the set (43) implies that

∃x ∈WHVK : [[A]]HVK → 0 ≤ [[A→ 0]]x (46)

Since the set x is HVK–complete, then (46) implies that

[[A→ 0]]x = [[A]]x → [[0]]x = [[A]]x → 0 (47)

(42), (46) and (47) imply the inequality

[[A]]HVK → 0 ≤ [[A]](x)→ 0 (48)

which is equivalent to the inequality

[[A]](x) ≤ [[A]]HVK (49)

Prove that A is not true at the object x.
If A is true at x, then (23) and (39) imply that

[[A]](x) = 1 (50)

(49) and (50) imply the equality [[A]]HVK = 1, which implies A ∈ HVK.
This contradicts to the assumption that A 6∈ HVK.

6 Conclusion

In the paper we have introduced a new framework for representation of propo-
sitions which can contain fuzzy modalities. We have defined the concept of a
Heyting-valued modal logic and have proved the completeness theorem for the
minimal Heyting-valued modal logic. The directions of further research related
to the introduces concepts and results can be the following.

1. Prove the completeness theorem without the condition (a→ 0)→ 0 = a for
every a ∈ H.

2. Investigate the problems of finite model property and decidability of minimal
HVML.

3. Define the concept of a Heyting-valued proof for first-order logics, and intro-
duce a Heyting-valued provability logics related to the concept of a Heyting-
valued proof, investigate properties of Heyting-valued provability logics.

4. Design a specification language and model checking algorithms for Heyting-
valued dynamic systems based on the proposed framework.
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10. P. Hájek, D. Harmancová: A comparative fuzzy modal logic. Fuzzy Logic in Arti-

ficial Intelligence, Springer–Verlag (1993) 27–34
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Abstract. An approach to incremental learning of Good Maximally Re-
dundant Diagnostic Tests (GMRTs) is considered. GMRT is a special
formal concept in Formal Concept Analysis. Mining GMRTs from data
is based on Galois lattice construction. Four situations of learning GM-
RTs are considered: inserting an object (value) and deleting an object
(value). An application to modeling intellectual development of cadets is
proposed. We explore two datasets of female medical cadets. First dataset
is formed at the moment of admission to academy, and another is formed
at the end of second year of learning. Classification attribute (dynamics
of cadets’ intellectual development) is based on analysis of psychological
questionnaire invented by M.M. Reshetnikov and B.V. Kulagin. Struc-
tural model attributes are based on MMPI questionnaire adopted by
L.N. Sobchik.

Keywords: good classification test, formal concept, concept lattice, in-
cremental learning, dynamic formal context, educational data mining,
intellectual development, medical cadets

1 Introduction

Good Maximally Redundant Diagnostic Tests (GMRTs) [11] can be considered
as formal concepts with minimal by the inclusion relation intents, see, please also
minimal hypotheses in [5]. Mining of GMRTs from data is based on constructing
the Galois Lattice. The main motivation of incremental learning GMRTs is to
provide an expert a way of step-by-step changing of the prediction model. This
can be useful, for example, to evaluate an impact of attribute (object) to a
prediction model, as well as to improve efficiency of inferring GMRTs (only a
part of GMRTs should be recalculated instead of whole set in a batch inferring
case).

Incremental learning to construct formal concepts (FCs) require incremental
algorithms for Galois lattice generation. In this process, it is generally assumed
that the data (objects, itemsets, or transactions) are added gradually but not
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deleted. Much attention has been paid in recent years to the problem of con-
cept lattice incremental construction [6],[9],[16],[20]. An algorithm of incremental
generating GMRTs has been considered in [14].

On the other hand, there is a practical demand to modify the concept lattice
already constructed under dynamic data changes. In this case, it is necessary
to consider the possibility of both adding and deleting the data (objects, at-
tributes). This problem is not yet investigated sufficiently. Deleting objects (and
only objects) is considered in [2] and [21]. Algorithms RemoveObject and Dele-
teObject are proposed in first and second papers, respectively. These algorithms
have been essentially improved with respect to their computational complexity
in [22]: in newly proposed algorithm FastDeletion, it is necessary to compare
a modified concept only with one of its lower neighbours by the order relation
in the concept lattice, whereas, in previous two algorithms, this comparison is
performed with all of its lower neighbours.

However modifying the data or the formal classification contexts with the
use of which a concept lattice has been constructed can be realized not only
by adding or deleting objects but also by adding or deleting attributes. Such
a modification of the concept lattice is even less explored than the problem of
deleting objects. Of interest in this regard, the paper [8], in which the authors
solve the problem of removing an incidence from a formal context.

All the four variants of changing formal contexts, i.e. adding (deleting) an
object and adding (deleting) an attribute are considered in [2]. Recent publica-
tion on this topic [16] provides an efficient algorithm of modifying the formal
contexts by adding objects, which may include, in their descriptions, some new
attributes. Modification of the order relation in the concept lattice is also de-
termined. A peculiarity of the proposed algorithm is that it defines new and
modified concepts without using previously built lattice but the only available
data. New formal concept is a concept in new data with some of added objects
to its object set (extent) and attribute set (intent) not equal to intent of any
concept in the data before updating. Modified formal concept is a concept in new
data with the same intent as some existing concept in the data before updating;
and its extent is enlarged by some introduced objects. The algorithm proposed
is based on algorithm Close-by-One (CbO) of generating formal concepts [10]
and its next refinements FCbO [16], PFCbO [17].

As for removing objects, this process is reduced to adding objects. If de-
scription of an object is changed, then this object is removed from the formal
context and after that it is treated as an introduced object with new descrip-
tion. Adding and removing attributes is seen as similar to adding and removing
objects, but objects and attributes in the algorithm and formal context simply
swap places. Updating GMRTs proposed in the present paper covers, likewise in
[16], four cases adding/removing objects and adding/removing attributes (val-
ues of attributes). New and modified GMRTs (formal concepts) are determined.
Modification algorithms are based on decomposition of formal classification con-
text into attributive and objects sub-contexts and using a previously developed
incremental algorithm for inferring GMRTs given in [14].
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The paper is organized as follows: Sec. 2 gives the main definitions of GMRTs.
A decomposition of the formal classification contexts in two kinds of subcontexts
is considered. Two kinds of corresponding sub-tasks are required for updating
GMRTs in subcontexts. A dataset is described in Sec. 3. An application of four
updating GMRTs cases is considered in Sec. 4. The application is supplied by
illustrative examples using cadet dataset.

2 Basics of Good Test Analysis

Let G be the set of objects (object indices for short). Assume that objects
are described by a set U of symbolic (numeric) attributes, and dom(attri) ∩
dom(attrj) = ∅,∀attri, attrj ∈ U, i 6= j, where dom(attri) is the set of values of
attri.

Let M = {∪dom(attr), attr ∈ U}; then one can construct δ : G→ D, where
D = 2M is a set of all possible object descriptions. We denote a description
of g ∈ G by δ(g), and the sets of positive and negative object descriptions by
D+ = {δ(g)| g ∈ G+} and D− = {δ(g)| g ∈ G−}, respectively. The Galois
connection [15] between the ordered sets (2G,⊆) and (2M ,⊆), i.e. 2G → 2M

and 2M → 2G, is defined by the following mappings called derivation operators:
for A ⊆ G and B ⊆ M , A′ = val(A) = {intersection of all δ(g)| g ∈ A} and
B′ = obj(B) = {g| g ∈ G,B ⊆ δ(g)}. The notation (·)′ is from [3], see also
similar notation (·)� in [4].

There are two closure operators: generalization of(B) = val(obj(B)) and
generalization of(A) = obj(val(A)). A set A is closed if A = obj(val(A)) and
a set B is closed if B = val(obj(B)). If (A′ = B) & (B′ = A), then a pair (A,B)
is called a formal concept [3], subsets A and B are called concept extent and
intent, respectively. All formal concepts form a Galois (concept) lattice. A triplet
(G,M, I), where I is a binary relation between G and M , is a formal context K.

According to the goal attribute Cl we get some possible forms of the formal
contexts: Kε := (Gε,M, Iε) and Iε := I∩(Gε×M), where ε ∈ {+,−} (if necessary
the value τ can be added to provide the undefined objects) [5]. These contexts
form a classification context K± = K+ ∪K−.

Definition 1. A Diagnostic Test (DT) for G+ is a pair (A,B) such that B ⊆
M , A = obj(B) 6= ∅, A ⊆ G+, and obj(B) ∩G− = ∅ [12].

Definition 2. A diagnostic test (A,B) for G+ is maximally redundant if obj(B∪
m) ⊂ A for all m ∈M \B [12].

Definition 3. A diagnostic test (A,B) for G+ is good iff any extension A∗ =
A ∪ i, i ∈ G+ \A, implies that (A∗, val(A∗)) is not a test for G+ [12].

In the paper, we deal with Diagnostic Tests, which are good and maximally
redundant simultaneously (GMRTs). If a good test (A,B) for G+ is maximally
redundant, then any extension B∗ = B ∪ m, m /∈ B, m ∈ M implies that
(obj(B∗), B∗) is not a good test for G+. In general case, a set B is not closed for
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DT (A,B), consequently, DT is not obligatory a formal concept. GMRT can be
regarded as a special type of a concept [12].

To transform inferring GMRTs into an incremental process, we introduced
two kinds of subtasks [13]:

1. For a set G+, given a set of values B, where B ⊆ M, obj(B) 6= ∅, B is not
included in any description of negative object, find all GMRTs (obj(B∗), B∗)
such that B∗ ⊂ B;

2. For a set G+, given a non-empty set of values X ⊆M such that (obj(X), X)
is not a test for positive objects, find all GMRTs (obj(Y ), Y ) such that
X ⊂ Y .

For solving these subtasks we need to form subcontexts of a given classifica-
tion context. The following notions of object and value projections are developed
to form subcontexts.

Definition 4. The projection proj(d), d ∈ D+ is denoted by Z = {z| z = δ(g)∩
δ(g∗) 6= ∅, g∗ ∈ G+ and (obj(z), z) is a test for G+}, δ(g) ∈ proj(d).

Definition 5. The value projection proj(B) on a given set D+ is proj(B) =
{δ(g) |B ⊆ δ(g), g ∈ G+}.

Let us consider four cases of incremental supervised learning GMRTs:

1. A new object becomes available over time.
2. Deleting an object from a classification context.
3. Adding a value (attribute) to a classification context.
4. Deleting a value (attribute) from a classification context.

In each case (stage of experiment in Sec.4) we obtain all the GMRTs in
current K±.

2.1 Adding an object to K±

Suppose that each new object comes with the indication of its class membership.
The following actions are necessary:

1. Checking whether it is possible to extend the extents of some existing GM-
RTs for the class to which a new object belongs (a class of positive objects,
for certainty).

2. Inferring all GMRTs, such that their intents included into the new object
description.

3. Checking the validity of GMRTs for negative objects, and, if it is necessary,
modifying invalid GMRTs (test for negative objects is invalid if its intent is
included in a new (positive) object description).

Thus the following cognitive acts are performed:

– Pattern recognition and generalization of knowledge (increasing the power
of already existing inductive knowledge);
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– Increasing knowledge (inferring new knowledge);

– Correcting knowledge (diagnostic reasoning).

The first act modifies already existing tests. The second act is reduced to
subtask of the first kind. The third act can be reduced to subtasks both the first
and second kinds. Both of them are solved by any algorithm of GMRTs inferring.

Let STGOOD+ and STGOOD− be the sets of all GMRT intents for positive
and negative classes, respectively. Let s ∈ STGOOD− and Y = val(s). If Y ⊆
tnew(+), where tnew(+) is the description of a new positive object, then s should
be deleted from STGOOD−.

For correcting the set of GMRTs for G−, we have to find all X ⊆M,Y ⊂ X
i.e. obj(X) ⊂ obj(Y ), and (obj(X), X) is a GMRT for G−. Thus obj(Y ) is a
context for finding new tests for G−.

We show that all new tests for G− in this case are associated only with
context obj(Y ): obj(X) ⊂ obj(Y )↔ Y ⊂ X. Assume that there exists a GMRT
(with an intent Z) for G− such that obj(Z) 6⊆ obj(Y ). Then obj(Z) contains
some objects not belonging to obj(Y ) and Z will be included in some descriptions
of objects not belonging to obj(Y ) and, consequently, Z has been obtained at
the previous steps of incremental learning algorithm.

2.2 Deleting an object from K±

Suppose that an object is deleted from K±. The following actions are necessary:

1. Selecting the set GMRTsub of all GMRTs containing this object in the ex-
tents.

2. Modifying tests of GMRTsub by removing object from their extents; in this
connection, we observe that this modifying does not lead to loss of property
’to be test for corresponding elements of GMRTsub’.

3. After modifying a test in GMRTsub, we have the following possibilities. Let
Y∗ be the intent of a test in GMRTsub and Y∗ = val(obj(Y ) \ i), where i
is deleted object and Y = val(obj(Y∗) ∪ i). If ((obj(Y ) \ i) is included in
the extent of an existing GMRTs, then this test ((obj(Y ) \ i), Y∗) has to
be deleted; if Y∗ = Y and ((obj(Y ) \ i) is not included in the extent of
any existing GMRT, then ((obj(Y ) \ i), Y∗) is a GMRT; if Y∗ 6= Y , then
((obj(Y ) \ i), Y∗) is a new GMRT.

2.3 Adding a value (attribute) to K±

Suppose that a new value m∗ is added to the set M of attributes. The task of
finding all GMRTs, intents of which contain m∗ is reduced to the problem of
the second kind. The subcontext for this problem is the set of all objects whose
descriptions contain m∗.
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2.4 Deleting a value (attribute) from K±

Suppose that some value m is deleted from consideration. Let a GMRT (obj(X),
X) be transformed into (obj(X \m), X \m). Then we have ((X \m) ⊆ X) ↔
(obj(X) ⊆ obj(X \ m)). Consider two possibilities: obj(X \ m) = obj(X) and
obj(X) ⊂ obj(X \m). In the first case, (obj(X \m), X \m) is GMRT. In the
second case, (obj(X \m), X \m) is not a test. However, obj(X \m) can contain
extents of new GMRTs and these tests can be obtained by using subtasks of the
first or second kind.

3 Dataset Description

33 female medical cadets were involved in our experiment. First dataset was
formed at the moment of admission to academy (2009 year), and another was
formed at the end of second year of learning (2011 year). The datasets are
without missing values. The cadets are the same in both datasets. Classification
attribute (dynamics of cadets’ intellectual development) is based on analysis of
measuring methods called Analogy, Cubes, Syllogisms, and Verbal memory, see,
please, [18].

For each person, the difference of the estimates of each intellectual method
has been calculated in two moments, taking into account the sign of the dif-
ference. Then these differences are summarized for all intellectual methods. If
the sign of sum is positive (plus), the dynamics is considered to be positive, if
the sign of sum is negative (minus) and its number is greater than 2, then the
dynamics is considered to be negative. If the sum is equal to 0 or not greater
2, then the dynamics was considered to be neutral (zero). See, please, transfor-
mation of Dyn-column into Cl-column in Tab. 2. Within 33 medical cadets we
obtained 5, 10, and 18 persons with neutral, negative, and positive dynamics,
respectively.

Structural model attributes are based on MMPI questionnaire adopted by
L.N. Sobchik [19]. Each attribute value from MMPI questionnaire is transformed
to T-scale value using special questionnaire keys and K correction scale, see,
please, [19] for the further information. After that T-scaled values are trans-
formed to the scale with five values by means of rules given in Tab. 1. They
respect L.N. Sobchik’s representations of “normal” intervals. In Tab. 2 three
abbreviations L, F, and K stands for Lie, Infrequency, and Defensiveness, re-
spectively. They are validity scales. Ten other following scales are clinical: Hs
(Hypochandriasis), D (Depression), Hy (Hysteria), Pd (Psychopathic Deviate),
Mf (Masculinity/Feminity), Pa (Paranoia), Pt (Psychasthenia), Sc (Schizophre-
nia), Ma (Hypomania), and Si (Social Introversion).

For the further considerations, we include in training set only the persons
with positive and negative dynamics of intellectual development.
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Table 1. Interval scale for MMPI method

No The meaning of intervals Intervals’ borders

1 Significantly below normal ≤ 30T
2 Below normal [31 − 44]T
3 Normal [45 − 55]T
4 Above normal [56 − 69]T
5 Significantly above normal ≥ 70T

Table 2. Classification context

No L F K Hs D Hy Pd Mf Pa Pt Sc Ma Si Cl Dyn
1 4 3 5 3 4 3 3 4 3 4 4 4 2 2 -7
2 4 4 5 3 4 3 3 3 2 4 4 4 2 2 -3
3 4 3 4 3 3 3 3 3 3 3 3 4 3 2 -3
4 5 4 5 3 4 3 4 2 4 3 4 3 3 2 -5
5 4 3 4 3 3 3 3 4 3 3 3 3 3 2 -4
6 3 3 4 3 3 3 3 3 3 3 3 4 2 2 -2
7 5 3 5 4 4 4 4 3 4 4 4 4 2 2 -7
8 4 3 4 3 3 3 3 4 3 3 3 3 2 2 -2
9 5 3 5 3 3 3 4 2 2 3 4 4 2 2 -2
10 4 3 4 3 2 2 3 2 2 3 3 4 3 2 -2
1 3 3 5 3 4 4 4 4 3 4 4 4 2 1 3
2 2 3 4 3 2 3 3 3 3 3 3 3 2 1 2
3 3 3 5 3 3 3 3 2 4 4 4 3 3 1 3
4 3 3 4 3 3 3 4 4 2 3 3 5 3 1 4
5 3 3 5 3 3 4 4 4 3 4 4 3 3 1 6
6 4 2 4 3 4 4 4 4 2 3 3 3 2 1 4
7 3 3 3 2 4 2 3 4 3 2 3 5 2 1 2
8 3 3 4 2 3 3 4 4 3 3 4 3 2 1 2
9 2 4 5 3 4 4 3 4 4 4 4 4 2 1 1
10 3 3 5 3 2 3 3 2 4 3 3 4 2 1 1
11 3 4 4 3 3 3 3 4 2 3 3 4 2 1 4
12 3 3 4 3 3 4 2 4 3 3 3 4 2 1 10
13 5 3 5 4 3 4 4 4 4 4 4 4 2 1 4
14 3 3 4 3 4 3 4 4 2 4 4 4 2 1 5
15 3 3 4 3 3 3 3 2 2 3 3 4 3 1 2
16 5 3 4 3 4 2 3 3 4 3 3 3 3 1 3
17 3 3 5 3 4 4 3 5 4 4 4 3 2 1 5
18 5 4 5 3 4 3 4 1 3 4 4 4 3 1 1
1 4 4 5 3 3 3 3 1 3 3 4 4 3 3 -1
2 3 4 4 4 3 4 4 3 4 3 4 5 3 3 -1
3 4 3 4 3 2 2 4 2 2 3 3 4 2 3 0
4 3 4 4 3 2 3 4 1 2 3 4 4 3 3 0
5 4 5 3 2 2 2 3 2 3 2 3 5 2 3 0
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4 Experiments and discussion of results

The aim of modeling is to obtain GMRTs allowing to distinguish Class 1 and
Class 2 of persons characterised by positive and negative dynamics of intellectual
development, respectively. Intents of GMRTs have been regarded as logical rules
determining the membership of persons to one or another class.

Recognizing the class membership for new persons not belonging to training
set is performed as follows: If (and only if) description of a person contains a
logical rule of only one class, then the person can be assigned to this class; if
description of a person contains logical rules of both Class 1 and Class 2, then
we have the case of contradiction; if description of a person does not contains
any logical rules, then we have the case of uncertainty. In two last cases, it is
necessary to continue learning by adding new persons’ descriptions or to change
the classification context.

Incremental learning of GMRTs is partitioned into several stages (see, please,
Tab. 3) in accordance with expert reasoning. First seven stages were conducted
without attributes Hs, D, Sc, and Si. Stage 1: training set contains 6 first persons
of Class 1 and 6 first persons of Class 2. The result of Stage 1 is in Tab.4.

Table 3. Stages of Incremental Learning

Stage Training sets Tab. No

Class 1 Class 2

1 Persons 1-6 Persons 1-6 4
2 Pattern recognition
3 Persons 1-6 Persons 1- 8
4 Persons 1-6 and 8, 9, 13, 14,17 Persons 1-8
5 Persons 1-6, and 8-11, 13-15, and 17 Persons 1-8
6 Persons 1-17 Persons 1-8 5
7 Persons 1-17 Persons 1-8 5

8 Delete attribute Pt
9 Add attribute Hs
10 Delete 4th person from Class 2

Stage 2 is a pattern recognition one; the control set contains persons 7 and
8 of Class 2 and persons 7 – 17 of Class 1. All persons of Class 2 and 5 persons
(8, 9, 13, 14, 17) of Class 1 have been recognized correctly. Persons 10, 11, 15
of Class 1 have been recognized as persons of Class 2, and persons 7, 12, 16
of Class 1 have been assigned to neither of these classes. During Stage 4, rule
(L=5,K=5,Pd=4,Pa=4) for Class 2 ⊂ val(13) for person 13 of Class 1. This rule
is deleted. During Stage 5, rule (Hy=3,Pd=3,Ma=4) for Class 2 is deleted (this
rule ⊂ val(11) for person 11 of Class 1). During Stage 6, two rules were absorbed
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Table 4. Rules for Class 1 and Class 2 (Stage 1)

Rule No L F K Hy Pd Mf Pa Pt Ma Class Persons

1 4 4 1 1,4,5,6
2 3 3 5 4 1 1,3,5
3 2 3 4 3 3 3 3 3 3 1 2
1 4 3 3 2 1,2,3,5
2 3 3 4 2 1,2,3,6
3 4 5 3 2 2,4

by Rule (Pd=3,Pa=4) and some new rules for Class 1 were obtained. Stage 7:
correcting the rules for Class 2. The result is in Tab. 5.

Let us suppose that an expert decides to change one attribute in the model
obtained in the previous stage. The problem is how to choose a candidate for
deleting and then a candidate for adding. The most simple way is to do what an
expert wish to see, however we can propose to an expert some more criteria to
take into account. Let us imagine that we get some sets of GMRTs after deleting
or adding an attribute. According to a definition of GTA we would recommend
to maximize a total number of objects for a GMRT set (sum of rules’ coverings)
and minimize a total number of attributes for a GMRT set (sum of rules’ lenghts
). Minimizing a number of GMRTs can be one more criterion. An expert can
choose only one criterion or combine some of them to be satisfied with the result
obtained.

Step 8: deleting attribute Pt. This attribute is chosen after a short analysis
of the GMRT sets (obtained without F, L, K e.t.c.) discussed above. The total
attribute lengths of all GMRTs, and the total object coverings in the case of Pt
deleting is 53, and 72, respectively. The comparison of such numbers is not very
useful. We formed and compared the average attribute lengths (per one rule)
and the average object coverings (per one rule), e.g. 2.94, and, 4 for this case,
respectively. As a result, Rule (L=3,F=3,Pt=4) is deleted, and attribute Pt is
deleted from Rule 14 in Tab.5.

Step 9: adding attribute Hs. This choice is explained by one main criterion – a
number of rules. In this case one gets 17 rules, i.e. this number is even decreased
in comparison with previous stage. In other cases the number of rules is the same
(adding Sc), and bigger (25 and 19 when we add D and Si, respectively). As a
result of stage 9, we add Hs in Rules 1,3,4 for Class 1, and Rules 2,7,8,11,12 for
Class 2. One new Rule (Hs=3,Hy=4) for Class 1 is obtained, and two Rules 3,15
are deleted.

The results obtained allow to characterized the persons of Class 1 and Class
2 psychologically: Class 2 (negative dynamics) is characterized by the MMPI
profiles similar to “indepth” profiles and Class 1 (positive dynamics) is char-
acterized by the MMPI profiles similar to “harmonious” profiles and profiles
similar to “convex” profiles (by Sobchik definition, [19]). However our expert
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Table 5. Rules for Class 1 (Stage 6) and Class 2 (Stage 7)

Rule No L F K Hy Pd Mf Pa Pt Ma Class Persons

1 4 4 1 1,4,5,6,8,13,14
2 2 3 1 2,9
3 4 3 1 5,6,17
4 4 4 1 1,5,6,9,12,13
5 3 3 3 1 3,5,8,17
6 3 3 4 1 1,3,5,14,17
7 4 2 1 4,6,11
8 3 3 3 3 2 1 3,10,15
9 4 3 4 4 1 9,11
10 3 4 1 1,4,5,7,8,11,12,14
11 3 3 5 1 1,3,5,10,17
12 3 4 1 3,9,10,17
13 3 2 3 1 7,16
14 3 4 3 3 3 3 1 2,16
15 3 3 4 1 1,5,12,17
1 4 3 3 2 1,2,3,5,8
2 3 4 2 2,3,6,7
3 4 5 3 2 2,4
4 3 3 3 3 4 2 1,3,6

recommended us to check rule’s structure without 4th object in Class 2, which
seems to be suspicious. The object has good description (psychological portrait)
but bad results only in 4 questionnaires for evaluating intellectual development
at second year of learning. Class labelling seems to be a mistake.

Step 10: deleting object 4 from Class 2. This classification context modifica-
tion deeply changes the GMRTs set, but the rules number decrease to 16. For
example deleting object 7, which also seems to be labelled by a mistake, leads
to increasing the rules number to 18.

In the paper, we take into account only four user’s criteria for adding (delet-
ing) an attribute as follows: expert’s preferences, total object coverings in ex-
tents, number of rules, and total lengths of attributes in intents. However one
can try also to use such criteria as concepts stability, number of rules per one
object, and many others. Another interesting problem is a choice of intervals to
scale a data given in T-values into more expert-oriented ones. Sobchik’s scales
from Tab. 1 can be useful for cross-investigation comparisons but not so useful
for pattern recognition and data mining purposes.

If K is given for one time period, we can use also another approach of K dy-
namics exploration. It is associated with concept stability, please, see definition,
for example in [1]. An application of this approach to investigation of students
difficulties during learning in high school is given in [7]. Stability shows how
much the group depends on some of particular students. Intents of formal con-
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cepts are described by marks’ on courses. Potential object removing should not
change seriously well-studied (worse-studied) learning courses. An extensional
stability index is proposed in this paper in a dual manner.

This static approach of K dynamics exploration for measuring potential ob-
ject (attribute) removing is also completed in [7] by a dynamic mappings ap-
proach in two different time periods (G is not changing). However the problem
setting (adding or removing attributes in K) in this paper is different from our
problem setting (four cases of K± modification).

5 Conclusion

Four situations of GMRTs modeling (adding/deleting and an object or an at-
tibute) in dynamic context are given in the paper. An application to modeling
dynamics of cadets intellectual development using GMRTs is developed. This
approach allows us to work with cadet dataset in a dynamically changing way.
Step-by-step expert decisions about modification of classification rules can be
implemented on-the-fly. This approach can be useful to academy psychologists,
lecturers, and administrators for analysing dynamics of cadets intellectual de-
velopment.
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Abstract. The article is concerned with the method for structuring the
electronic archive of technical documentation on the basis of the domain-
specific ontology. The ontology formal model, the technical document
model, and the algorithm for clustering electronic archive content that
has its origins in the modified fcm-method are presented. The authors
are pioneered in offering the formalization of the measure of distance
between ontological representations of the archive technical documents
on the basis of hierarchy transformation complexities comparison. Dif-
ferent types of semantic relations between ontology concepts should be
taken into account. Thus, the article considers the experimental results
of the subset of the electronic archive technical documentation of the
large project organization.

Keywords: ontology, clustering, technical document, fuzzy model, graph

Introduction

A modern large project organization possesses a sizable electronic archive of de-
sign and engineering documentation and engineering documentation. Its greater
part is represented in unstructured text files. In actual truth, such an electronic
archive contains the totally experience and knowledges of a great number of
highly trained specialists that have been developing and designing complex sys-
tems over many years. In case of expanding the electronic archive, difficulties re-
lated to document analysis on the basis of predetermined properties ensure. Also
skills of semantic processing of a great number of technical documentation and
intimate knowledges of the subject area are required for persons who involved
in complex technical systems designing. As a result, the important experience of
previous developments fixed in electronic archives often becomes non-demanded.
Thus, R&D cycle runtime increases.

The solution of the specified problem can be based on the use of intelligent
methods and algorithms of text documents analysis in order to create the nav-
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igation structure of the technical documentation electronic archive. The paper
[1] suggests using ontologies in intelligent document analysis.

Evaluating the specific character of project knowledges leads to the necessity
of forming the project organization ontology with the special structure includ-
ing features of a project process in the form of a subject area concept system,
relations between these concepts, and interpretation functions. In such a man-
ner the electronic archive should possesses properties of an intelligent system.
At the moment mathematical methods and algorithms providing the means for
structuring an electronic archive of technical documentation with consideration
for its content and the specific character of a project organization subject area
are not available.

Consequently, currently central problems include development of models,
methods and algorithms for construction of the navigation structure of the tech-
nical documentation electronic archive on the basis of domain-specific clustering
of partially formalized information resources.

In Section 1, the authors decribe the formal model of electronic archive ontol-
ogy structure. Section 2 considers a technical document as an electronic archive
resource and presents the ontological model. In its turn, Section 3 proposes the
algorithm for ontology-oriented indexing of technical documents. The measure
of distance in the context of ontology relating to the level of designing standards
is formalized in Section 4. Section 5 offers some experimental results.

1 The structural model of an electronic archive ontology

A subject area of complex system designing places some constraints on the struc-
ture of an applied ontology. The rigid binding to standards and systems life cycle
models applied at different stages of designing implies the necessity of forming
the ontology that consists of a lot of levels, as indicated by 1.

Formally, the electronic archive ontology consists of two applied ontologies
and may be written as the equation 1:

O = 〈OD, OLC , RA〉, (1)

where OD is a subject area ontology component, OLC is an ontology of designing
systems life cycles, RA is a unidirectional association relation between the on-
tology components. Let us consider the electronic archive ontology components
in more detail (1).

In this way, let us write the domain-specific ontology as the following se-
quence:

OD = 〈C,W,RD, FD〉,

where C is the set of electronic archive concepts that makes up a bulk of a
conceptual apparatus of an automated system designing, W = WS ∪ WP is
a set of subject area concepts, here WS is a set of concepts on the level of
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standards, WP is a set of concepts on the project level, RD is a set of relations.
Symbolically,

RD = {RDG , RDC , RDA},

where RDG is anti-symmetric, transitive, irreflexive binary generalization relation-
ship (’subclass of’), RDC is a binary transitive composition relation (’part of’),
RDA is a binary relationship of unidirectional association.

The set of concepts C is defined by the following equation:

C =
(
CS1 ∪ CS2 ∪ . . . CSk

)
∪ CP ,

where CSi , i = 1, k is the set of subject area concepts for the standards of the
ith group, CP is the set of subject area concepts extracting from the technical
documentation of projects realized.

The set of interpreting functions is denoted as follows:

FD = {FDWCP , F
D
CPCS},

here FDWCP : {W} → {CP } is a function correlating a set of terms and a set of
subject area concepts, FDCPCS : {CP } → {CS} is an interpretation function of
the set of concepts allowing to go to the level of concepts defined in standards.

The ontology on a life cycle as a sequence component (eq. 1) consists of three
sets and is denoted by the following equation:

OLC = 〈MLC , StLC , RLC〉,

here MLC is a set of models of designing systems life cycles, StLC is a set of life
cycle stages.

Definition 1. Terminological environment of concepts is the set of terms (lay-
ers) from the electronic archive technical documentation of projects realized.

According to the paper [1], a semantic distance between the concept and
terms in the technical document should be defined on the basis of the semantic
relation idea. The idea encloses the use of ’distance’ between words.

The semantic coefficient of the relation between the concept and the term
(the semantic distance) is defined by the following equation:

S
(
c
P (S)
i , wj

)
=

∑
occur

(
c
P (S)
i ,wj

) 1
exp(sentence·(paragraph+1))

num
(
occur

(
c
P (S)
i , wj

)) ·

·
num

(
paragraph− cooccur

(
c
P (S)
i , wj

))

num (totalparagraph)
,

here c
P (S)
i , wj is the ith concept on the level of projects (standards) of the on-

tology and the jth term, sentence is the distance expressed in the form of the
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Fig. 1. The structure of the electronic archive applied ontology.

number of sentences between the concept and the term, paragraph is a distance
expressed in the form of the number of paragraphs between the concept and

the term, num
(
paragraph− cooccur

(
c
P (S)
i , wj

))
is the number of paragraphs

where coocurrence c
P (S)
i and wj exist, num

(
occur

(
c
P (S)
i , wj

))
is the number

of rencontres between c
P (S)
i and wj , num (totalparagraph) is the number of

paragraphs in the document.

After defining semantic distances between the concept and the document
terms, its necessary to define the subset of terms that are appreciably seman-
tically close to the concept. In case of defining the terminological environment,
according to the paper [2], the hypothesis of λ-compactness that leans up the
λ-distance, taking into account a normalized distance d between terms and the
characteristics of a local density of terms τ about these elements.

If the semantic distances between all the pairs of terms with the terminologi-
cal environment are defined, the graph connecting all terms can be plotted. After
that, the most long edge (the graph diameter D) should be defined. Consider
two terms wi and wj and denote the length of the edge connecting them (the
semantic distance) as α (wi, wj). We obtain the normalized distance between
terms d = α

D .
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Further, let us find the shortest edge between the ones adjusted to the edge
(wi, wj). Its length is denoted by βmin. The ration between the lengths of ad-
justed intervals is denoted by τ∗ = α

βmin
. In order to normalize this value, let

us find the largest value τmax in the entire graph. The value τ = τ∗

τmax
is a nor-

malized characteristic of a set local density nonhomogeneity about the ontology
terms wi and wj . λ = f (τ, d) is a λ-distance between the terms wi and wj .
According to the paper [2], the use of λ = τ2 · d as such a distance measure is
suggested.

In order to define the terminological environment of the ontology concept on
the level of realized projects, it is necessary to mark such an edge (wi, wj) that
can be a boundary between terms related to the ontology concept and terms
that are not included in the terminological environment of the concept. With
the use of λ-KRAB algorithm, the final criteria characterizing the quality of such
a disjunction of terms is denoted by the following equation:

F = h4τ2d→ max,

where h = 2 · m+

m · m
−

m , is the equinumerosity criteria of the specified classes of
terms. Here m+ is the number of terms included on the terminological environ-
ment of the concept, m− is the number of other ones.

Thus, with the use of the λ-compactness hypophysis, the subset of terms
that is included in the terminological environment of the concerned concept is
defined.

Every terminological environment Wk of the concept C
P (S)
k can be denoted

by the following equation

{(w1k, f1k) , (w2k, f2k) , . . . , (wik, fik) , . . . , (wlk, flk)},

here wik is ith term kth ontology concept, lk is the total amount of term asso-
ciated with the the kth concept, fik is a normalized semantic weight of the ith

term in the terminological environment of the kth concept (normalized semantic
distance between the term and the concept in the context of the one ontology
environment).

2 The ontology model of the technical document as an
electronic archive resource

A technical document in the context of an electronic archive is considered is an
information resource. Any one of technical documents can be considered as a
container of partially structured information. On the one hand, we deal with a
natural language text, but on the other hand, a technical document is proper
structured. The structure is defined in different standards.

We compare a frequency of occurrence of terms in one technical document
with a frequency of occurrence of the same terms in the whole set of documents.
It is originally conceived that the terms are not valuable if the frequency of terms
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in the document analyzed is far in excess of the frequency in the whole set of
documents. Symbolically, such a dependence can be denoted as follows:

fi = tfidfi = tfi · log
(

N

df (wi)

)
,

here tfidfi is a relative importance of the term wi in a document, tfi is a nor-
malized frequency of term wi occurrence, N is a number of documents, df (wi)
is a number of documents containing a term wi.

An ontological model of a technical document is such a document represen-
tation that corresponds to the applied ontology state of an electronic archive.
By [3], it follows that the notion of electronic document passport including a
semantic index can be an analog of such a model.

A section of a technical document can be shown as follows:

sdi = 〈chsdi , C
P
sdi
, CSsdi

〉,

where sdi is the ith section of a technical document d, chsdi is a unique name of

the ith section of a technical document d, CP
sdi
, CS

sdi
is a subset of subject area

concepts, defined in the context of the ith section of a technical document d.
Let us denote the jth term of the ith section of a technical document d by

w
sdi
j , than a set of terms of the ith section of a technical document d can be

defined as:

Wsdi
= {ws

d
i

1 , w
sdi
2 , . . . , w

sdi
l
sd
i

},

where lsdi is a number of terms of the ith section of a technical document d.

With the use of an interpretation function of the ontology FDWCP : {W} →
{CP } on the stage of technical document indexing, we obtain the ontological
representation of the document section:

oV dsdi
= 〈chsdi , C

P
sdi
, CSsdi

〉, CPsdi ⊆ C
P , CSsdi

⊆ CS |StLC
k

.

CS
sdi
⊆ CS |StLC

k
means that the ontological representation of the document

includes only ontology concepts of a subset CS (on the level of standards using
in automated systems designing) that correspond to the kth stage of designing
StLCk .

With the use of function FDCPCS : {CP } → {CS}, we can get the final
representation of a technical document section that considers the state on an
electronic archive applied ontology:

oV d
sdi

= 〈chsdi , {C
P
sdi
∪ CSsdi }〉, C

P
sdi
⊆ CP , CSsdi ⊆ C

S |StLC
k

.

A formal ontology model of a technical document can be defined as follows:

oV d = 〈Sd, {CPd ∪ CSd }〉,
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The two main parts can be marked in the above equation: a structural one (Sd)
and a conceptual one ({CPd ∪ CSd }) in the context of realized projects of the
archive and standards applied in the process of automated system designing
with regard to the stage of a life cycle.

3 Ontology-oriented indexing of technical documents

The ontology indexing of a technical document has in its basis the following
function:

FoV d : sdi → oV dsdi
,

here sdi is the ith section of a technical document d, oV d
sdi

is an ontological rep-

resentation of the ith section of a technical document d.
Notice that the method of computing a normalized weight of a term w

sdi
j in

the ith section of a technical document d has in its basis the following equation:

f
sdi
j = 1 + log

(
tf
w

sd
i

j

)
· log

(
N

dt

)
· 1√

tf2
w

sd
i

1

+ tf2
w

sd
i

2

+ . . .+ tf2
w

sd
i

n

, 1 ≤ j ≤ n,

here f
sdi
j is a normalized weight of a term w

sdi
j in the ith section of a technical

document d, tf
w

sd
i

j

is a term w
sdi
j frequency of occurrence, N is the total amount

of documents, dt is a number of documents including a term w
sdi
j , n is a number

of terms in the jth section of a technical document d.

Definition 2. A degree of manifestation of an electronic archive ontology con-
cept is a degree of conjunction between a terminological environment and a set of
concepts of a technical document fragment subject to the condition that a termi-
nological environment includes terms that are semantically close to the concept.

Computing the degrees of manifestation of ontology concepts for every section
of a technical document is performed with the use of the apparatus of fuzzy
irrelevance [4]. Fuzzy irrelevance between a set W (a set of ontology terms on
the level of projects (standards) included in the terminological environment of
concept) and a set CP (S) (a set of concepts of an applied ontology on the level

of projects (standards)) denoted by Γ̃ =
(
W,CP (S), Õ

)
where W and CP (S) are

crisp sets, Õ is a fuzzy set in W × CP (S). A set W is a domain of a function, a
set CP (S) is a range of a function, and Õ is a fuzzy graph of a fuzzy relevance.

The crisp relevance Γ =
(
W,CP (S), O

)
with a chart O as a carrier of a fuzzy

chart Õ is called the carrier of fuzzy relevance Γ̃ =
(
W,CP (S), Õ

)
. In the context

of an ontology, a chart O defines parts of unidirectional associations RDA between
a project concepts and terms in an ontology.
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In order to find the meaning of concept domination, the method comparing
the terminological environment of every concept in the ontology of a subject
area ontology on the project level with the text analyzed. Let us remark that
the minimal fragment of a text analyzed is a sentence and a maximal one is the
whole document, as in different fragments of the text different concepts of the
subject area are layed an emphasis on [5].

The algorithm of computing a degree of dominance of a concept in the text
fragment consists of the following steps:

Step 1. Defining the maximal degree of manifestation of ontology concepts
in the text fragment of a technical document d:

ˆµfrdp

(
cP (S)

)
= maxc

(
µfrdp

(
cP (S)

))
.

Step 2. Defining the mean of a degree of manifestation of ontology concepts
without the concept with the maximum degree of manifestation (defined at the
previous step):

˜µfrdp

(
cP (S)

)
=

1

n− 1

n−1∑

i=1

µfrdp

(
ĉ
P (S)
i

)
,

where ĉ
P (S)
i ∈ cP (S)− cP (S)

max , c
P (S)
max = argmaxcP (S)

(
µfrdp

(
cP (S)

))
, n is a number

of concepts with a non-zero degree of manifestation for a text fragment frdp.
Step 3. Defining a degree of manifestation of a concept in a text fragment

frdp:

∆frdp

(
cP (S)

)
= ˆµfrdp

(
cP (S)

)
− ˜µfrdp

(
cP (S)

)
. (2)

The equation 2 defines a quality of selection of a text fragment in a technical
document in order to constrain the subject area concept that is fixed in an
electronic archive ontology.

Having applied the ontology interpretation function FDWCP : {W} → {CP },
we obtain an initial ontological representation of each segment. The representa-
tion consists of initial sets of concepts on the levels of projects and standards
that require correction.

The results of the experiments with extracting text fragments on the basis
of the genetic optimization show that averages 30% of concepts add up to 70%
of the total degree of manifestation of all the concept of the text fragment.

The final step of forming the ontological representation of a technical doc-
ument is the use of interpreting function FDCPCS : {CP } → {CS} that allows
to specify a set of concepts on the level of standards resting on the subset of
ontology concepts found in a technical document. The concepts correspond to
the realized projects.

In case of realizing the above procedures, we get the final ontological repre-
sentation for every ith section of a technical document.
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4 The ontological measure of distance between
documents

Let us consider the formal measure of distance between documents in the con-
text of ontology concepts relating to the level of designing standards. Every
ontological representation can be illustrated in a form of a tree (a hierarchy) of
subject area concepts. Such an hierarchy can be defined by finding a minimal
tree including all concepts from the ontological representation [2].

The Levenshtein distance between hierarchies can be defined on the basis
of computing an edit operation cost that should be found for each type of a
semantic relation. Thus, an edit operation for a generalization relation is denoted
by φSi

(
RDG
)

and a ’part of’ one is denoted by φSi

(
RDC
)
. Si shows belonging the

value of an edit operation to the the ith group of standards. Actually, in case
of clustering, an edit operation is defined as a weight of a certain relation. The
weight value lies in the range between 0 and 1 and have different values within
the framework of every group of standards.

The total edit distance between the hierarchies is defined as the following
equation:

τ∗oV = maxi

(
m∑

s=1

φSi

(
RDG
)
s

+

n∑

l=1

φSi

(
RDC
)
l

)
,

where i is a group of standards number, s is an adding generalization relation
number, l is an adding ’part of’ relation number. The total edit distance can be
computed as a maximum one from all edit distance defined for every group of
standards.

A normalization coefficient ToV is defined on the basis of all semantic rela-
tion of a generalized hierarchy. Thus, a measure of distance between ontological
representations of technical documents can be defined as follows:

‖ oV d1 − oV d2 ‖= τ∗oV
ToV

.

In order to create the navigation structure in the form of a nested set of
clusters of technical documents, it is necessary to solve the problem of setting the
weights of semantic relations between ontology concepts on the level of standards.
As noted above, weight coefficients are defined as φSi

(
RDG
)

and φSi

(
RDC
)

for a
generalization relation and ’part of’ relations respectively.

In view of the fact that the specified relations are used in the ontology con-
cepts for different groups of standards, let us suppose that their optimal values
for each group (in the context of their concept hierarchies) are generally differ-
ent. Let us formulate the principle of the best value for weight coefficients of
ontology semantic relations.

Let {oV d}∗ be a set of ontological relations of documents included in the
model sampling (the expert division of documents between classes). The follow-
ing equation is true:

{oV d}∗ ⊂ {oV d},
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where {oV d} is a full set of ontological representation of electronic archive tech-
nical documents. The ontology is defined by the equation (1). On the level of
standards, the generalization and ’part of’ relations are defined on the basis of
concepts with corresponding weight coefficients φSi

(
RDG
)

and φSi

(
RDC
)
, where

Si is the ith group of designing standards used in ontology creation.
A set {oV d}∗ consists of two subsets {oV d}∗+ ∪ {oV d}∗− that correspond to

the expert division of documents between two predetermined classes. The opti-
mization problem of weight coefficients of semantic relations consists of finding
such a set of coefficients as follows:

{〈φ∗S1

(
RDG
)
, φ∗S1

(
RDC
)
〉, 〈φ∗S2

(
RDG
)
, φ∗S2

(
RDC
)
〉, . . . , 〈φ∗Sn

(
RDG
)
, φ∗Sn

(
RDC
)
〉}.

The clustering coefficient defined by the equation 3 should be as low as possible.

F ∗ =
max

(
K̄+ + K̄−, K̂+ + K̂−

)

N
→ min (3)

where K̄− and K̂− are sets of absent documents respectively in the first and the
second clusters, K̄+ K̂+ are sets of redundant documents respectively in the
first and the second clusters, N is the number of documents.

5 The analysis of computational experiments result on
the basis of FRPC JSC ’RPA ’Mars’ electronic archive
documentation

In case of analysis of computational experiments result on the basis of the doc-
umentation of FRPC JSC ’RPA ’Mars’ electronic archive, the domain-specific
ontology was used. The ontology consists of two series of standards used at the
enterprise:

1. GOST 34. Information technologies. Open systems interconnections. (It con-
sists of 108 ontology concepts at the level of standards).

2. GOST 19. Unified system for design documentation. (It consists of 111 on-
tology concepts at the level of standards).

The ontology level appropriate to the realized projects is based on the selec-
tion of FRPC JSC ’RPA ’Mars’ electronic archive documentation that includes
5017 technical documents. The level consists of 81 concepts and 10078 unique
terms comprising the terminological environment of concepts.

Thus, the domain-specific ontology consists of 300 concepts. They include
219 concepts at the level of standards used at the enterprise and 81 concepts
and 10078 unique terms at the level of realized projects.

The expert of FRPC JSC ’RPA ’Mars’ prepared the selection involving 5017
technical documents and grouped into two main sections:

– the section based on the documentation type that consists of 52 groups
(GOST 2.601, 2.602, 2.102, 2.701 3.1201);
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– the section based on work sectors that consists of 28 groups (products dis-
cussed in documents).

In order to perform the experiment of quality evaluation of structuring FRPC
JSC ’RPA ’Mars’ electronic archive documentation, the index containing both
ontological and traditional representations of technical documents (set of ’termin-
frequency’ pairs) was used. Further, the indices were structured with the use of
different variants and subsequent quality evaluation according to the following
list:

– structuring the traditional representations of technical documents with the
use of Oracle Text tools;

– structuring the traditional representations of technical documents with the
use of the modified FCM-algorithm of clustering;

– structuring the ontological representations of technical documents with the
use of the modified FCM-algorithm of clustering;

– structuring the ontological representations of technical documents with the
use of the modified FCM-algorithm of clustering with regard to the life cycle
models of the designing system.

Fig. 2. Quality evaluation of FRPC JSC ’RPA ’Mars’ electronic archive documentation
structuring.

As indicated by Fig. 2, the most appropriate values of the evaluation function
for ontological results with regard to the life cycle models of the designing system
were obtained in case of structuring the technical documentation selection in
work sectors as it performs structuring in individual documents content. In case
of structuring according to the document type, Oracle Text outperforms the
others.

The function of documentation structuring with the use of Oracle Text is
based on the clustering algorithm considering a frequency of term occurrence
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in documents. The algorithm works well in case of structuring in accordance
with the document type when Oracle Text gives the best results. The modified
FCM-algorithm of clustering ontological representations of technical documents
with regard to the life cycle models of the designing system provides structuring
of highest quality in accordance with work sectors with regard to the content.

Conclusion

The computational experiments show that the results of structuring the ontolog-
ical representations of technical documents with regard to the life cycle models
of the designing system is 40% better than results structuring with the use of
Oracle Text. The time spending on indexing and structuring processes of tech-
nical documentation ontological representations is, on the average, 7% less than
the total time spending on indexing and structuring processes of technical docu-
mentation traditional representations. The ontological approach to indexing and
structuring technical documentation makes possible structuring the electronic
archive for less time. As this takes place, the most time spending is related to
the process of documentation indexing.
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Abstract. This paper is devoted to the task of the maximum flow finding with 

nonzero lower flow bounds taking into account given vitality degree. 

Transportation network with the flow is considered in fuzzy conditions due to 

the fuzzy character of the network’s parameters. Arcs of the network are 

assigned by the fuzzy arc capacities and nonzero lower flow bounds, vitality 

parameters and crisp transit times. All network’s parameters can vary over time, 

therefore, it allows to consider network as dynamic one. The vitality parameter 

assigned to the arcs means ability of its objects to be resistant to weather 

conditions, traffic accidents and save and restore objects themselves, arc 

capacities of the network’s sections in case of damage. The nonzero lower flow 

bounds are used to assess economic reliability of the transportation. Such 

methods can be applied in the real railways, roads and air roads solving the task 

of the optimal cargo transportation. 

Keywords: Fuzzy dynamic graph, fuzzy nonzero lower flow bound, fuzzy 

vitality degree. 

1   Introduction 

The flow tasks [1] considered during the study of transportation networks are 

relevant due to their wide practical application, in particular, when finding the 

maximum amount of traffic between selected nodes on the road map, determining the 

routes of the optimal cost.  

Important sphere of researches is dynamic networks [2-4], that take into account 

transit times along the arcs and don’t assume instant flow distribution along the arcs. 

Another significant tool is considering dependence of arc capacities and lower flow 

bounds on flow departure time [5] and operating with fully dynamic networks instead 

of stationary-dynamic ones [6], using the notions of the time-expanded graphs [7-8]. 

Flow problems are connected with uncertainty of some kind, as changes in 

environment, measurement errors influence such network parameters, as arc flow 

bounds and vitality parameters. Therefore, we propose to consider these tasks in fuzzy 

conditions and we turn to the fuzzy graphs for solving such problems. 

Vitality parameter [9-10] peculiar to arcs of the network usually isn’t taken into 

account while studying networks. Its conventional definition was introduced by the 

authors H. Frank and I. Frisch in [11] as sensitivity of the network to damages. 



However, vitality applied to the networks is ability of its objects and links among them 

to be resistant to weather conditions, traffic accidents and its combinations, and save 

and restore (fully or partially) objects themselves and their connections, arc capacities 

of the network’s sections in case of damage. Nowadays, vitality of the network isn’t 

taken into account, while railways and roads include the complex objects, such as 

stations, distillation ways, culverts, wagon, passenger and cargo managements. 

Sometimes network’s parameters can be set qualitatively. Thus, one can set the notion 

“vitality degree” considering the roads and railways. In this case “vitality degree” is 

considered as probability of trouble-free operation of the road section and some 

subjective value, such as importance and reliability, etc.  

Other words this paper presents method of the maximum flow finding with nonzero 

lower flow bounds in fuzzy dynamic network with given vitality degree. 

The paper is structured as follows. In the Section 2 we give basic definitions and 

rules. Section 3 presents the proposed method. Section 4 provides numerical example 

illustrating the main steps of the proposed method. Section 5 is conclusion and future 

work. 

2   Definitions and Rules  

The proposed approach is based on the following notion of vitality. 

Fuzzy directed path ( , )i mP x x  of the graph ( , )G X A  is a sequence of fuzzy 

directed arcs from the node ix  to the node mx : 

( , ) , / , ,

, / , ,..., , / , .

i m i j i jA

j k j k l m l mA A

P x x x x x x

x x x x x x x x



 

    

       
 

Conjunctive durability of the path ( ( , ))i mP x x  is defined as 

α β i m

i m Ax ,x P(x ,x )
(P(x ,x )) & μ x ,x 

 
   . 

Fuzzy directed path ( , )i mP x x  is called a simple path between vertices 
ix  and mx  

if its part is not a path between the same vertices.  

Vertex y is called a fuzzy accessible from the vertex x  in the graph ( , )G X A  if 

the fuzzy directed path from the node x to the node y exists. 

The accessible degree of the node y from the node x, (xy) is defined by the 

following expression: 

max 1 2α
α

γ(x, y) ( (P (x, y)), = , ,..., p,   

where p is the number of various simple directed paths from vertex x to vertex y.  

We consider the degree of fuzzy graph vitality as a degree of strong connection 

[10, 11], so it will be defined by the following expression:  

).x,(x&&)
~

( ji
XxXx ji

GV


  

It means that there is a route between each pair of the graph vertices with a 

conjunctive strength not less than value V. 

Let us introduce basic rules and definitions underlying this method.  
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Rule 1 of turning from the time-expanded fuzzy graph to the fuzzy graph without 

lower flow bounds [12] 

Turn to the fuzzy graph * * *( , )p p pG X A  from ( , )p p pG X A . Introduce the 

artificial source *s  and sink *t   and arcs connecting the node-time pair ( , T)t    

and ( , T)s    with *( , , , ) ,u t s T T       

*( , , , ) 0,l t s T T      *( , , , ) 1.t s T T        in the graph pG . For 

arcs with ( , , , ) 0i jl x x    : 1) reduce ( , , , )i ju x x    to 

*( , , , ) ( , , , ) ( , , , )i j i j i ju x x u x x l x x       , ( , , , )i jl x x    to 0 , 

*( , , , ) ( , , , ).i j i jx x x x       2) Introduce the arcs connecting *s  with ( , )jx  , and 

the arcs connecting *t  with ( , )ix   with * * *( , , , ) ( , , , ) ( , , , )j i i ju s x u x t l x x        

zero lower fuzzy flow bounds * * *( , , , ) ( , , , ) 0j il s x l x t     , 

*( , , , ) ( , , , ).i j i jx x x x       

Definition 1 of the fuzzy residual network of the time-expanded graph. 

Fuzzy residual network * * *( , )p p pG X A    is the network without lower flow 

bounds * * *( , )p p pG X A , which is constructed according to the following rules: if 

* *

*

( , , , ) ( , , , ),

( , , , ) ,

i j i j

i j req

x x u x x

v x x v

    

 

 




 

,then include the corresponding arc from *( , )ix    to *( , )jx    in *

pG   with 

* * *( , , , ) ( , , , ) ( , , , )i j i j i ju x x u x x x x          and 
* *( , , , ) ( , , , )i j i jx x x x      .  

If  
*( , , , ) 0,

( , , , ) .

i j

i j req

x x

v x x v

  

 

 




 

Then include the corresponding arc from *( , )jx    to *( , )ix    in *

pG   with 

* *( , , , ) ( , , , )j i i ju x x x x       and 
* *( , , , ) ( , , , )j i i jx x x x       .  

Rule 2 of transition from the time-expanded fuzzy graph without lower flow 

bounds with the found maximum flow to the graph with the feasible flow  

Turn to the graph pG  from the graph *

pG  as following: reject artificial nodes and 

arcs, connecting them with other nodes. The feasible flow vector ( ( , , , ))i jx x     

of the value   is defined as: 
*( , , , ) ( , , , ) ( , , , )i j i j i jx x x x l x x         , where 

*( , , , )i jx x    – the flows, going along the arcs of the graph 
*

pG  after deleting all 

artificial nodes and connecting arcs.  
Rule 3 of the fuzzy residual network constructing with the feasible flow 

vector for all arcs, if ( , , , ) ( , , , ),i j i jx x u x x      then include the corresponding arc 
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( , )ix   from the node-time pair to the node-time pair ( , )jx   in ( )pG   with arc 

capacity ( , , , ) ( , , , ) ( , , , )i j i j i ju x x u x x x x          and transit time 

( , , , ) ( , , , )i j i jx x x x      . For all arcs, if ( , , , ) ( , , , )i j i jx x l x x     , then 

include the corresponding arc, going from the node-time pair ( , )jx   to the node-time 

pair ( , )ix   in ( )pG   with arc capacity 

( , , , ) ( , , , ) ( , , , )j i i j i ju x x x x l x x          and transit time 

( , , , ) ( , , , )j i i jx x x x       .  

Therefore, the proposed method of the maximum flow finding with nonzero 

lower flow bounds in fuzzy dynamic network consists in the maximum flow finding 

in the network without lower flow bounds. We turn to the time-expanded fuzzy graph 

and consequently to the graph without lower flow bounds for it and try to find the 

maximum flow in the graph. Based on the formulated rules and definitions, turn to the 

maximum flow finding with nonzero lower flow bounds in dynamic network in terms 

of partial uncertainty. 

3   Presented Method of the Maximum Flow Finding Task with 

Nonzero Lower Flow Bounds in the Fuzzy Dynamic Network 

Let us introduce the task of the maximum flow finding with nonzero lower flow 

bounds in dynamic network in terms of partial uncertainty and given vitality degree, 

represented by the model (1)-(6). 

( )Maximize p  (1) 

10 ( ) ( )

( ) ( ( )) ( ), ,
j i j i

p

ij ji ji i

x Г x x Г x

p x s


      
  

 
    
 
 

    (2) 

10 ( ) ( )

( ) ( ( )) 0, , ; ,
j i j i

p

ij ji ji i

x Г x x Г x

x s t T


      
  

 
     
 
 

    (3) 

10 ( ) ( )

( ) ( ( )) ( ), ,
j i j i

p

ij ji ji i

x Г x x Г x

p x t


      
  

 
     
 
 

    (4) 

( ) ( ) ( ), ( ) , ,ij ij ij ijl u p T             (5) 

( ) , ( ) ( ) , .ij req stv v s p T         (6) 

 

Step 1. Go to the time-expanded fuzzy static graph pG  from the given fuzzy 

dynamic graph G .  

Step 2. Turn to the graph * * *( , )p p pG X A  according to the rule 1. 
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Step 3. Build a fuzzy residual network *

pG   due to the definition 1. 

Step 4. Search the augmenting shortest path (in terms of the number of arcs) *

pP   

from the artificial source *s  to the artificial sink *t  in the constructed fuzzy residual 

network according to the breadth-first-search.  

4.1 Go to the step 5 if the augmenting path *

pP   is found. 

4.2 The flow value *

( , , , ) 0

( , , , )
j i

i j

l x x

l x x
 

  


   is obtained, which is the 

maximum flow in *

pG , if the path is failed to find. Exit. 

Step 5. Pass the minimum from the arc capacities 
* *min[ ( )]p pu P   , * *( ) min[ ( , , , )p i ju P u x x    , *( , ),( , )i j px x P     along this path 

*

pP   . 

Step 6. Update the fuzzy flow values in the graph *

pG : replace the fuzzy flow 

*( , , , )j ix x    along the corresponding arcs going from *( , )jx   to *( , )ix   from *

pG  

by * *( , , , )j i px x      for arcs connecting node-time pair *( , )ix    with *( , )jx    in 

*

pG  , such as * * *(( , ), ( , ))i j px x A    , * * *(( , ), ( , ))i j px x A      and replace the fuzzy 

flow *( , , , )i jx x    along the arcs going from *( , )ix   to *( , )jx   from *

pG  by 

* *( , , , )i j px x      for arcs connecting node-time pair *( , )ix    with *( , )jx    in 

*

pG  , such as * * *(( , ), ( , ))i j px x A    , * * *(( , ), ( , ))i j px x A     . Replace 

*( , , , )i jx x    by * * *( , , , )i j p px x P     . 

Step 7. Compare flow value * * *( , , , )i j p px x P      and 
( , , , ) 0

( , , , )
j i

i j

l x x

l x x
 

 


 : 

7.1. If the flow value * * *( , , , )i j p px x P      is less than 
( , , , ) 0

( , , , )
j i

i j

l x x

l x x
 

 


 , 

go to the step 3. 

7.2. If the flow value * * *( , , , )i j p px x P      is equal to 
( , , , ) 0

( , , , )
j i

i j

l x x

l x x
 

 


 , 

turn to the graph pG  from the graph *

pG  according to the rule 2. Go to the step 8.  

Step 8. Construct the residual network ( )pG   according to the rule 3. 

Step 9. Define the shortest path pP
 ( )pG  . 

 (I) Go to the step 10 if the augmenting path pP
 is found. 

(II) The maximum flow ( , , , ) ( )i j p px x P p        in ( )pG   is found if the 

path is failed to find, then the maximum flow in “time-expanded” static fuzzy graph 

can be found at the step 12. 
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Step 10. Pass the flow value min[ ( )]p pu P   , ( ) min[ ( , , , )p i ju P u x x    , 

( , ), ( , )i j px x P    along the found path. 

Step 11. Update the flow values in the graph ( )pG  . 

Step 12. Turn to the initial dynamic graph G  as follows: reject the artificial nodes 
's , 't and arcs, connecting them with other nods. 

4 Numerical Example 

Let us describe the proposed algorithm. For example, assume that the original 

fuzzy dynamic network is shown in Fig. 1. It is necessary to find the maximum flow in 

the initial dynamic graph with the given vitality degree no less than 0,7  and represent 

the result in the form of the triangular number. 

Fuzzy upper flow bounds 
iju , depending on the flow departure time   are shown 

in the Table I. Fuzzy lower flow bounds 
ijl , depending on the flow departure time   

are shown in the Table II. Time parameters 
ij  depending on the flow departure time 

  are shown in the Table III. Fuzzy vitality parameters 
ijv , depending on the flow 

departure time   are shown in the Table IV. 

2x 4x

5x

3x

1x

 

Fig. 1.  Initial dynamic graph G  

Construct time-expanded graph, as shown in Fig. 2. 

Turn to the graph without lower flow bounds and find the augmenting paths for 

the graph in Fig. 3: * * *

1 5 1, ( ,2),( ,0),P s x x t    with 7  flow units, 

* * *

2 2 3 5 1, ( ,1),( ,2),( ,3),( ,0),P s x x x x t   with 3  flow units, 

* * *

3 2 3 5 1 4, ( ,1),( ,2),( ,3),( ,0),( ,1),P s x x x x x t   with 7  flow units. 

We obtain graph with the maximum flow in Fig. 4. Therefore, the task has a 

solution and we turn to the initial time-expanded graph with the feasible flow in Fig. 
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5. Finding the augmenting paths and pushing the flows among them, we obtain graph 

with the maximum flow in Fig. 6. 

TABLE I. FUZZY UPPER FLOW BOUNDS 
iju , DEPENDING ON THE FLOW DEPARTURE TIME    

Arcs of the 

graph 

Fuzzy upper flow bounds 
iju  at the time periods  , 

time units. 

0 1 2 3 

1 2( , )x x  25  20  25  40  

1 4( , )x x  10  20  25  25  

1 5( , )x x  18  18  30  35  

2 3( , )x x  35  30  35  18  

3 4( , )x x  15  27  33  25  

3 5( , )x x  55  45  40  55  

4 5( , )x x  20  20  18  28  

TABLE II. FUZZY LOWER FLOW BOUNDS 
ijl , DEPENDING ON THE FLOW DEPARTURE TIME  . 

Arcs of the 

graph 

Fuzzy lower flow bounds 
ijl  at the time periods  , 

time units. 

0 1 2 3 

1 2( , )x x  10  0  0  0  

1 4( , )x x  0  0  0  0  

1 5( , )x x  0  0  0  20  

2 3( , )x x  6  0  15  0  

3 4( , )x x  0  8  0  0  

3 5( , )x x  25  15  0  0  

4 5( , )x x  0  5  0  10  

TABLE III. TIME PARAMETERS 
ij  DEPENDING ON THE FLOW DEPARTURE TIME   

Arcs of the 

graph 

Time parameters 
ij  at time periods , time units. 

0 1 2 3 

1 2( , )x x  1 1 1 2 

1 4( , )x x  1 3 2 2 

1 5( , )x x  4 4 1 1 

2 3( , )x x  4 1 1 1 

3 4( , )x x  1 1 2 2 

3 5( , )x x  2 2 1 1 

4 5( , )x x  5 4 1 3 
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TABLE IV. FUZZY VITALITY PARAMETERS 
ijv , DEPENDING ON THE FLOW DEPARTURE TIME   

 

Arcs of the 

graph 

Fuzzy vitality parameters 
ijv at time periods  , 

vitality units 

0 1 2 3 

1 2( , )x x  0,8  0,4  0,6  0,5  

1 4( , )x x  0,7  0,2  0,8  0,9  

1 5( , )x x  0,4  0,8  0,6  0,3  

2 3( , )x x  0,7  0,8  0,7  0,4  

3 4( , )x x  0,7  0,9  0,7  0,6  

3 5( , )x x  0,3  0,4  0,7  0,4  

4 5( , )x x  0,8  0,3  0,3  0,4  

 

The maximum flow in the initial graph with the vitality degree no less than 0,7  is 

25 10 35   flow units. 

Let us define deviation borders of the obtained fuzzy number “near 35 ”.  

Since the calculations with fuzzy numbers are cumbersome and result in strong 

blurring of the resulting number’s borders, we suggest to operate fuzzy numbers 

according to the method, described in [8]. In this case we will operate the central 

values of fuzzy numbers, blurring the result at the final step and presenting it as a 

triangular the number.  

Therefore, deviation borders of the obtained fuzzy number “near 35 ” corresponded 

to the maximum flow in the graph G  are calculated according to the basic values of 

arc capacities in Fig. 7. 

The detected result is between two adjacent basic values of the arc capacities: 31  

with the left deviation 
1 8Ll  , right deviation – 

1 7Rl   and 44  with the left deviation 

2 9Ll  , right deviation –
2 10Rl  . We obtain deviations : 

1 8Ll  , 
1 7Rl  . 

Therefore, the maximum flow in the fuzzy dynamic graph with the given vitality 

degree no less than 0,7  can be represented by fuzzy triangular number (27, 35,42) 

units. 
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Fig. 2.  Time-expanded graph 
pG   
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Fig. 3.  *

pG  – Time-expanded graph without lower flow bounds G  
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 Fig. 4. Graph *

pG  with the maximum flow 
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Fig. 5. Graph 
pG  with the feasible flow 
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Fig. 6. Graph 
pG  with the maximum flow 
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Fig. 7. Membership functions of the basic values of arc capacities of the network G  

5   Conclusion and Future Work 

Paper presents proposed algorithm of the maximum flow finding with nonzero 

lower flow bounds and vitality degrees in the fuzzy dynamic network with the required 

vitality degree based on the formulated definitions and rules. The considered network 

is represented as fuzzy graph with parameters, depending on the flow departure time 

and varying over time. Given lower flow bounds are used for assessing economic 

reliability of transportation. Given vitality degree reflects ability of its objects to be 

resistant to weather conditions, traffic accidents and save and restore objects 

themselves, arc capacities of the network’s sections in case of damage. The proposed 

method has important practical value in transportation implementing on the real types 

of roads. In the future works we will propose methods of increasing the vitality degree 

in fuzzy dynamic networks. 
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Clustering Techniques Versus Binary
Thresholding for Detection of Signal Tracks in

Ionograms

Artem M. Grachev and Andrey Shiriy
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Abstract. An ionogram is a display of the data produced by an ionosonde.
It is a graph of the virtual height of the ionosphere plotted against fre-
quency. In addition to “useful signal”, an ionogram almost always contains
noise of different nature, a so called background noise. That is why the
signal filtering task becomes so important. There are two groups of meth-
ods to this end. The first group features methods of computer vision for
image processing, namely, different filters and image binarization. The
second group includes adapted clustering methods. In this paper, we
show how several methods work for filtering “useful signal” from noise
and emissions.

Keywords: ionograms, image filtering, image processing, similarity mea-
sures

1 Introduction

The data of radio sounding is necessary for enhancement of over-the-horizon
radar systems, systems of shortwave communication, as well as for solution or
many problems in radiophysics and geophysics [1].

Usually, the results obtained by an ionosonde are represented by means of
ionograms[2]. An ionogram of oblique radio sounding of the ionosphere shows
a dependence of the amplitude of the received signal from the frequency f of
soudning and the group delay time τ [3].

Due to multipath shortwave propagation in the ionosphere, an ionogram
contains tracks of different signal modes. In addition to the useful signal, there
is a noise of different nature in ionogram images. In Fig. 1, one can see the mode
of the signal’s track (a sloped body in the bottom left part of the ionogram),
background noise, and concentrated noise, i.e. vertical stripes1.

When we work with ionograms one of the most important problem is to filter
the useful signal from the noise. There are several types of useful signals. In fact,

1 The data of ionograms shown in the paper are available at https://drive.google.
com/open?id=0Bxdto9RRxaqMY2pCYUI4eWR0T1U. More comprehensive datasets are
available from the second co-author by request.
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Fig. 1. Ionogram example

we have a problem similar to automatic classification or clusterization depending
on the availability of training (labeled) data.

The rest of the paper is organised as follows. In Section 2, we consider signal
segmentation using image processing methods. In Section 3, we use machine
learning methods for the same purposes. We treat an input image as a dataset
with each pixel as a separate element and then cluster it. In Section 4, we try to
exploit the best of these methods to create our final algorithm. In the conclusion,
we discuss shortly relevant techniques and problems for future work.

We should note that when we tested our methods, we tried several configura-
tions for our models (sometimes enumerating parameters’ values by grid search).
Of course, there may be better configurations of parameters in a particular case.
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2 Detection of signal tracks by image processing methods

In this approach, we consider an ionogram as an image. We need to filter out
the noise and isolate the signal track of an input ionogram. We have tested two
filters for image filtering: the median filter and the filter given by the matrix
below.

Ker =




1 1 1 0 1 1 1
1 1 1 0 1 1 1
1 1 1 0 1 1 1
1 1 1 0 1 1 1
1 1 1 0 1 1 1
1 1 1 0 1 1 1




In the next example, we show the original image and the results of application
of two filters to the image and its binarization by thresholding.

Image binarization is the way to define the class of each pixel as signal/background
by thresholding. That is we set the threshold value of brightness and apply it to
all the pixels; the pixels with brightness higher than this threshold belong to the
first class, and the remaining ones belong to the second. In Fig. 2, the images
of the original ionogram are shown in three color model. And, in the remaining
figures, for illustration we use only one color model.

It is clear that filtering with Ker matrix is able to better keep signal’s shape
and eliminate the noise in comparison with the median filter.

3 Detection of signal tracks by machine learning methods

Another approach is based on the ionogram representation in form of triples
〈x, y, V 〉 for each original pixel, where x and y are pixel’s coordinates and V
is the value of the pixel brightness. After such transformaiton we try to do
clusterization. We hypothesise that signal’s pixels should belong to a separate
cluster. This approach is similar to the well-known image segmentation methods
that one can find, for example, in this book [4].

After clustering we again represent the results as an image. We replace the
value of brightness of each input pixel by its cluster label. These three methods
from scikit-learn machine learning environment [5] have been applied:

1. K-Means
2. DBscan [6]
3. Mean shift [7]

The last two methods have been chosen since they do not need to know the
number of clusters in advance; moreover, according to locality hypotheis they
can capture both similarity in signal/noise values and spatial closeness in axes
x-y (in fact, f -τ).

Dbscan have worked rather good visually. Main disadvantage of this method
is a necessity to configure its parameters separately for each image. In Fig. 4,
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a) b)

c) d)

Fig. 2. Ionograms: a) the original image, b) preprocessing by the median filter, c)
filtering with matrix Kers, d) binarization

you can find the results of processing of the original ionogram given in Fig. 3 by
DBscan with ε = 4 (the neighbourhood size), N = 100 (the number of points
within the neighbourhood).

Coordinates are scaled in the way below:

xnew =
xold

max(xold)
, ynew =

yold
max(yold)

(1)

Next example launched with ε = 1, N = 50 and with following coordinate
transformation:

xnew =
xold

max(xold)
· 10, ynew =

yold
max(yold)

· 10 (2)

In the figures above, machine learning methods have been applied to the
original image. However, we should note that we get better results if we first
applied filtering and then clustering.
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Fig. 3. Original image Fig. 4. DBscan results

Fig. 5. Original image Fig. 6. Filtered image Fig. 7. Mean shift results

It turns out that the most appropriate method for this task is Mean shift,
applied after image filtering. The Python implementation of Mean shift allows
us to choose the Parzen’s window size automatically for each image. It depends
on distance between objects; we have used 70th percentile of all pairwise dis-
tances. This property of Mean shift is much more suitable in comparison to
DBscan since DBscan needs individual options for each image. Another ad-
vantage of Mean shift is its speed. Here we have also used coordinates trans-
formation from Eq. 2.
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4 Conclusion

This paper presents the first steps of comparison of image processing and ma-
chine learning techniques for signal detection in ionograms. Both groups of meth-
ods are suitable for noise filtering and isolation of the original (important) signal.
We have compared several methods of computer vision and machine learning for
this problem. It seems that Mean shift works better than its two competitors
in the conducted comparison. In the future we plan to apply deep learning meth-
ods for better signal detection based on a large set of ionograms. The usage of
autoencoder for automatic clustering of signal types is an attractive opportunity
as well. Other image segmentation techniques that are widely used in computer
vision community are highly relevant as well.
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Abstract. Temporal ontologies contain events that are concepts and roles with 
references to temporal intervals. Therefore, a temporal ontology induces the in-
terval ontology. We consider fuzzy interval ontologies written in a fuzzy Bool-
ean extension of Allen’s interval logic. Syntactically, the extended logic ELA is 
the set of all Boolean combinations of propositional variables and sentences of 
Allen’s interval logic. Semantics of ELA is defined using fuzzy interpretations 
of propositional variables and atomic sentences of Allen’s logic. An interval on-
tology in ELA is a finite set  ELA sentences (formulas). A fact is an estimate of 
a formula i.e. an expression of the form r ≤ φ ≤ s where φ is a ELA formula 
and 0 ≤ r ≤ s ≤ 1.  A fact base for an interval ontology is a finite set of facts 
with formulas from the ontology. We present a method of finding answers to 
queries addressed to fact bases for fuzzy interval ontologies. The method uses 
analytical tableaux.   

Keywords: knowledge representation, ontologies, fuzzy ontologies, temporal 
logics, Allen’s interval logic, query answering  

1 Introduction 

Temporal ontologies contain events that are concepts and roles with references to 
temporal intervals. Therefore, a temporal ontology induces the interval ontology. 
Consider an example. 

Example 1.  Suppose, we should define the structure of the concept Agent  in some 
ontology for a multi-agent system. Then we may write declarations such as 

Agent[Name: String, Carry_out: Action(*)],  
Action[Name: String, Interval: (Integer,Integer), Procedure: Program]. 

The terms Agent(Name=rob07) and Agent(Name=rob07).Carry_out.Interval denote 
the robot rob07 and the temporal intervals of the actions carrying out by rob07. Let 
the robot rob07 is able to carry out the actions a, b and c, i.e. 
Agent(Name=rob07).Carry_out  = {a, b, c}. These actions spend certain time. Thus, 
temporal intervals A, B and C are associated with the actions.   

 Suppose, there is the following knowledge about the intervals: 
(1) If p is true then there is no time point at which both actions a and b are carried 

out; 
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(2) If q is true then the action b is carried out only when the action c is carried out. 
Consider the question:  

(3) What Allen’s relations are impossible between the C and A if both conditions 
p and q take place? 

In Allen’s interval logic (see [1, 2]) with implication, the statements (1) and (2) can be 
written as the interval ontology O ={p →A bb*B, q →B edfs C}(see further). The 
query (3) is written as ?x – p ∧ q → C –x A.   

(End of Example 1.) 
In Allen’s interval logic LA, there are 7 basic relations between intervals: e 

(equals), b (before), m (meets), o (overlaps), f (finishes), s (starts), d (during). (See 
Table 1 for interpretation of these relations, where A– and A+ denote the left and the 
right ends of the interval   A).   Let   tr(A θ B)   be the set of inequalities characterized 
of the basic Allen’s relation   θ   (see the third column of   Table 1).   For   example,   
tr(A f B) = {A– > B–, А+ ≥ В+, B+ ≥ A+}. 

Table 1. Basic relations of Allen’s interval logic  

Interval 
relation               Illustration Inequalities  for the ends of intervals  

  A b B     |===A===|    |===B===|                                                              В– > А+ 

  A m B |===A===|=====B=====|           А+ ≥ В–,  В– ≥ А+  

  A o B 
 

        |===A===|                   
|=====B=====| 

       B– >A–, A+ > В–, B+ >A+ 

  A d B 
 

              |===A===|   
         |=====B=====| 

            A– >B–, B+ >A+ 

  A s B 
 

        |===A===|   
        |=====B=====| 

      A– ≥ B–, B– ≥ A–, B+ > A+ 

  A f B 
 

                  |===A===| 
         |=====B=====| 

      A– > B–, А+ ≥ В+, B+ ≥ A+ 

  A e B          |=====A=====| 
         |=====B=====| 

A– ≥ B–,  B– ≥ A–, А+ ≥ В+, А+ ≥ В+ 

 
The inverted relations are marked by asterisks: b* (after), m* (met-by), o* (over-

lapped-by), f* (finished-by), s* (started-by), d* (contains); so, A α*B ó  B α A.  
 Let Ω0 = {e, b, m, o, f, s, d} and Ω = Ω0 U { b*, m*, o*, f*, s*, d*} = {e, b, m, o, 

f, s, d, b*, m*, o*, f*, s*, d*}. 
A sentence (formula) of LA is an expression of the form A ω B where ω is any 

subset of the set Ω and A, B are interval variables. If ω = {α}, then instead of A{α}B  
we write simply  A α B. If ω ={α1, α2,…, αk} then we write A α1α2…αk B instead of 
A{α1, α2,…, αk}B. By definition, the formula A α1α2…αk B is true if it is true at least 
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one formula A αi B (1 ≤ i ≤ k). The sentences of the form A α B with α ∈ Ω0 are called 
atomic.   

The fuzzy Boolean extension ELA Allen’s interval logic is defined as follows.  
SYNTAX of ELA: 
• propositional variables are ELA formulas; 
• every LA formula belongs to ELA, i.e. LA ⊆ ELA; 
• if φ and ψ are ELA formulas then ~φ, φ /\ ψ and φ \/ ψ are also ELA formulas, 

and 
  φ → ψ is ELA formula considered as shorthand for ~φ \/ ψ.   
An (interval) ontology is a finite set of ELA formulas. Let P(O) be the set of all 

propositional variables entering the formulas from O, and A(O) be the set of all atom-
ic sentences entering the formulas from O. Let  В(О) = U{tr(β) | β ∈ А(О)}. For ex-
ample, if   О  = {A o B → (B mf C) /\ p,  q → A s C, C o*A} then Р(О) = {p, q} and  
А(О) =  {B m C, B f C, A s C, A o C}, and B(O) = {B+ ≥ C–, C– ≥ B+, B– > C–, B+ ≥ 
C+, C+ ≥ B+, A– ≥ C–, C– ≥ A–, C+ > A+, C– >A–, A+ > C–, C+ >A+ }. 

SEMANTICS of ELA is defined using fuzzy interpretations. 
A fuzzy interpretation of an ontology O  is any function “...” from Р(О) ∪ B(О) to  

[0,1] = {x | 0 ≤ x ≤ 1} with the following constraints: 
(a) If  X <Y and Y ≤ X belong to В(О) then  “X <Y” + “Y ≤ X” = 1; 
(b) If X =Y, X <Y and Y <X belong to В(О) then “X=Y”+ max{“X <Y”, “Y 

<X”}=1; 
(c) If X <Y, Y <Z and X <Z belong to В(О) then  “X <Z” ≥ min{“X <Y” ,“Y <Z”},      

and the similar constraints which are obtained by replacing signs  “<”  by 
signs        “≤” or “=”. 

We expand the function “...” to А(О) by “A θ B”= min{“V” | V ∈ tr(A θ B)}. Fur-
ther, we expand “...” to formulas by the usual rules of Zadeh’s fuzzy logic: “~ φ” = 1 
–“φ”, “φ /\ ψ” = min{“φ”,“ψ”}, “φ \/ ψ” = max{“φ”,“ψ”} [3]. 

Let  r  and  s  be  numbers from  [0,1]  and φ be a ELA formula. Expressions of the 
forms φ > r,  φ ≥ r,   φ < r  and  φ ≤ r  are called  estimates  of the formula φ,   and  
expressions of the form r ≤ φ ≤ s  (where 0 ≤ r ≤ s ≤ 1) are called bilateral estimates 
of φ. The estimates are interpreted naturally. Let “...” be any interpretation of the 
ontology {φ}. Then “φ > r” ódf “φ” > r,  “φ ≥ r” ódf “φ” ≥ r, “φ < r” ódf “φ” < r, 
“φ ≤ r” ódf “φ” ≤ r, “r ≤ φ ≤ s” ódf  r ≤ “φ” ≤ s.  

The set EST of all estimates for ELA formulas can be considered as a crisp logic 
with fuzzy interpretations. As every logic, EST has the relation ‘|=” of logical conse-
quence. Let E ⊆ EST and σ ∈ EST. We state E |= σ when there is no fuzzy interpreta-
tion “...”: E → [0,1] such that all estimates from E are true but the estimate σ is false. 

We  consider  estimates  with  the  relation  “≤”  as  facts.  For  any  interval  ontol-
ogy O = {φ1, φ2,…, φn} (φi ∈ ELA), any set Fb = {r1 ≤ φ1 ≤ s1, r2 ≤ φ2 ≤ s2,…, rn ≤ φn ≤ 
sn} (0 ≤  ri, si ≤ 1) of bilateral estimates is called a fact base for the ontology O.  

We can query a fact base and get the appropriate answers. Let ψ = ψ[x1, x2,…, xn] 
be an ELA formula in which some of its Allen’s connectives are replaced with varia-
bles x1, x2,…, xn whose values are in Ω. A query is an expression of the form 

? (x1, x2,…, xm) – ψ[ x1, x2,…, xm],                                                                         
(1.1) 
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where ψ = ψ[x1, x2,…, xn] is an ELA formula in which some of its Allen’s connectives 
are replaced with variables x1, x2,…, xn whose values are in Ω. (For example, the ex-
pression ?(x1, x2) – (p \/ A bs B) → B x1od C /\ ~A x2 D is a query.) 

The answer to query   (1.1), addressed to the fact base   Kb,   is the set of all tuples  
(g, h; α1, α2,…, αm) with αi ∈ Ω and g, h ∈ [0,1] such that Kb |= g ≤ ψ[α1, α2,…, αm] ≤ 
h with maximal g and minimal h. So, we have g = max{r | Kb |= r ≤ ψ[α1, α2,…, 
αm]}and g = min{s | Kb |= ψ[α1, α2,…, αm] ≤ s}. 

Remarks. 1) It is easy to prove that the maximum and the minimum exist. 2)  Since 
“φ ≤ r” ó “φ” ≤ r ó 1–“φ” ≥ 1 – r ó “~ φ” ≥ r ó “~ φ ≥ 1– r” and “r ≤ φ ≤ s” ó r 
≤ “φ” ≤ s  ó r ≤ “φ”, “φ” ≤ s  ó “φ ≥ r”, “~ φ ≥ 1– s”, then any fact base with bilat-
eral estimates is equivalent to a fact base with lower estimates i.e. of the form φi ≥ ri.  
We will consider further only fact bases with lower estimates. 

Example 3. Consider the ontology O from Example 1 as a fuzzy ontology with the 
fact base Fb = {р → А bb*В ≥ 0.6,  q →В edfs С ≥ 0.9}. In the next section we show 
that the set {(0.6, d), (0.6, e), (0.6, f), {(0.6, s)} is the answer to the query ?x – p ∧ q 
→ ~ C x A.    

(End of Example 3.) 
Generally, we can associate with any fuzzy logic the crisp logic of estimates whose 

sentences are expressions of the form r ≤ φ ≤ s where φ are formulas of the fuzzy 
logic and 0 ≤ r ≤ s ≤ 1.  Umberto Straccia have studied a fuzzy description logic 
which are the logics of estimates for description logics [4, 5].  The logic of estimates 
for propositional logic was considered in [6] where the method of query answering 
over fact bases was described.    

In the paper, we present the method (based on analytical tableaux [6]) for finding 
the answers to queries addressed a fact base for an interval ontology.  

2 Finding Answers to Queries Addressed to a Fact Base 

The method of analytical tableaux can be applied to the problem of finding an-
swers to queries addressed to fact bases for fuzzy interval ontologies. We show, by 
example, how to do this. 

Example 3. Consider again the interval ontology O and the its fact base from Ex-
ample 2: Fb = {р → А bb*В ≥ 0.6,  q →В edfs С ≥ 0.9}. In Fig.1, it is shown the 
deduction tree constructed step by step from Fb and the estimate p ∧ q → ~ C x A < g 
which is corresponded to the body of the query  ?x – p ∧ q → ~ C x A.  

Constructing the deduction tree, we start with the initial branch containing the for-
mulas р → А bb*В ≥ 0.6, q →В edfs С ≥ 0.9. At the first step we apply the rule from 
Table 2 in the fourth row and second column (denote by T2(4,2) this rule) to the for-
mula р → А bb*В ≥ 0.6 and we put the label “[1]” on the right of the formula. As a 
result of the application of the rule T2(4,2), the “fork” with the estimates p ≤ 0.4  and 
А bb*В ≥ 0.6 are added to the initial branch and the label “1:” is put on the left of 
each of the estimates. At the step 2, the rule T2(4,2) is applied to q →В edfs С ≥ 0.9. 
As a result, the “fork” with the estimates  q ≤ 0.1 and В edfs С ≥ 0.9 are added to each 
of two current branches. At the step 8, the rule T8(1,2) is applied to the estimates q ≤ 



Query Answering over Fact Bases for Fuzzy Interval Ontologies 97 

0.1 and q >1– g. As a result, we get the inequality g ≤ 0.9 that means the estimates q ≤ 
0.1 and  q ≥ 1– g  are inconsistent (and therefore, the first branch is inconsistent) if 
and if g ≤ 0.9. At step 9, the rule T8(1,2) is applied to the estimates p ≤ 0.4 and p >1– 
g. As a result, we obtain that the second branch is inconsistent if and only if g ≤ 0.6. 
At step 10, the rule T8(1,2) is applied to the estimates q ≤ 0.1 and  q ≥ 1– g. As a re-
sult, we obtain that the third branch is inconsistent if and only if g ≤ 0.9. Thus, the 
first, second and third branch are inconsistent if and only if g ≤ min{0.9, 0.6, 0.9} = 
0.6.  

At step 12, the rule T4(1,1) is applied to the estimates  В edfs С ≥ 0.9  and В edfs С 
≥ 0.9, and as result, the estimate А bb*dfmm*oo*s C ≥ 0.6  is obtained. Indeed, using 
Table 4  which is a fragment of the Allen’s table of compositions   (see [2]),   we have  

bb* ᵒ edfs =  b ᵒ e U b ᵒ d U b ᵒ f U b ᵒ s U b* ᵒ e U b* ᵒd U b* ᵒ f U b* ᵒ s =   
                     b U bdmos U bdmos U b U b* U b*dfm*o* U b* U b*dfm*o* =  
                     bb*dfmm*oo*s. 
At step 13, the rule T4(1,3) is applied to the estimate  А bb*dfmm*oo*s C ≥ 0.6, 

and we have C b*bd*f*m*mo*os*A ≥ 0.6. At step 14, the substitution {x := defs, g := 
0.6}   is applied to the estimate   C –x A < g, and we have C b*bd*f*m*mo*os* A < 
0.6. Finally, at step15 we obtain the contradiction:  C b*bd*f*m*mo*os* A ≥ 0.6 and                                    
C b*bd*f*m*mo*os* A < 0.6. From the substitution we obtain the following  answer 
to the query ?x – p ∧ q → ~ C x A: {(0.6, d), (0.6, e), (0.6, f), {(0.6, s)}. 

(End of Example 3.) 
     
                                          

                                           p ∧ q → ~ C x A < g        [3] 
                  ……………….…………….    

                                   р → А bb*В ≥ 0.6            [1] 
                                   q →В edfs С ≥ 0.9           [2] 
                        ______________|____________________ 

                               |                                                                    | 
              1:  p ≤ 0.4   [9]                                       1:  А bb*В ≥ 0.6   [12] 
      _________|___________                            _________|___________ 

             |                                        |                            |                                       |  
  2:   q ≤ 0.1  [8]           2:  В edfs С ≥ 0.9      2:   q ≤ 0.1   [10]     2:  В edfs С ≥ 0.9  [12]             
  ……..|…………………………|……….....….….|…….…………..…..…..|……….…  
  3:  p ∧ q >1– g  [4]   3:  p ∧ q >1– g  [5]    3:  p ∧ q >1– g  [6]       3:  p ∧ q >1– g  [7] 
  3:  ~ C x A < g          3:  ~ C x A < g            3:  ~ C x A < g               3:  ~ C x A < g  [11] 
  4:  p >1– g               5:   p >1– g  [9]          6:  p >1– g                    7:  p >1– g  
  4:  q >1– g   [8]       5:   q >1– g                 6:  q >1– g  [10]           7:  q < 1– g       

       8:  g ≤ 0.9  X            9:  g ≤ 0.6  X             10:  g ≤ 0.9  X               11:  C –x A < g 
                                                                                                            {x := defs, g := 0.6} [14]                             
                                                                                         12: А bb*dfmm*oo*s C ≥ 0.6  [13]                                                                             
                                                                                 13:  C b*bd*f*m*mo*os* A ≥ 0.6    [15] 
                                                                                  14:  C b*bd*f*m*mo*os* A < 0.6    [15] 
                                                                                  15:   X 

                                       Fig. 1.  Deduction tree for Example 2 
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Remark. In Example 2, the Tables 2, 3 and 4 were used to construct the deduction 
tree in Fig. 1. Generally, the Tables 5, 6, 7 may be needed. The inference rules enter-
ing all these tables are formed a complete system for query answering over fact bases 
for ontologies written in the language ELA.  

 
                          Table 2. Inference rules for propositional connectives 
 
 
                                                                    
                          

 
 
 
 
 
 
 
 
 
 

 
                                 
                                  
                  Table 3. 

Fragment of Allen’s table of compositions 
 

            b        d     f         s  
   b      b    bdmos     b         b  
   b*    Ω  b*dfm*o*     b*  b*dfm*o* 

                
                    Table 4 . Inference rules with the composite relations ω and ρ 
 

A ω B ≥ r    B ρ C ≥ s 
_________________________                              
A ω ᵒ ρ C ≥ min{r, s}   
            

A ω B ≤ r    B ρ C ≤ s  
_________________________                               
A ω ᵒ ρ C ≤ max{r, s}              

       A ω B ≥ r    
        _____________                                           
        B ω*A ≥ r               

 A ω B ≤ r   
 ____________                                         
 B ω*A ≤ r                  

A ω B ≥ r    A ρ B ≥ s  
_________________________                     

 A ω ⋂ B ≥ min{r, s} 
       

A ω B ≤ r    A ρ B ≤ s  
_________________________    
A ω ⋂ B ≤ max{r, s}        

        A αω B ≥ r   
________________________   

A α B ≥ r | A ω B ≥ r   

A αω B ≤ r  
_____________    
  A α B ≤ r  
  A ω B ≤ r     

                 
                         Table 5. Inference rules for modification of estimates 
 

     (X ≥ A+) ≥ t     
     ______________ 

     (X >A–) ≥ 
t 

   (X ≥ A+) > t  
     _______________ 

    (X > A–) > 
t 

    (X ≥ A+) ≤ t  
    ______________ 

    (X >A–) ≤  
t 

    (X ≥ A+) < t  
    ______________ 

    (X >A–)  < 
t 

     ~ φ > t  
    _________      

    φ < 1– t    
       

     ~ φ ≥ t   
    __________       
φ ≤ 1– t 

     ~ φ < t   
     _________     
φ > 1– t 

    ~ φ ≤ t   
   _________     

   φ ≥ 1– t 
 

    φ /\ ψ > t  
    ___________ 

      φ > t 
      ψ > t  
 

    φ /\ ψ ≥ t  
    ___________ 
       φ > t 
      ψ > t  

    φ /\ ψ < t  
  _____________ 

  φ < t | ψ < t   
 

    φ /\ ψ ≤ t  
  _____________ 

  φ ≤ t | ψ ≤ t   
 

    φ \/ ψ > t  
  ______________ 

  φ > t | ψ > t   
 

    φ \/ ψ ≥ t  
  ______________ 

  φ ≥ t | ψ ≥ t  
 

   φ \/ ψ < t  
   ___________ 

     φ < t  
     ψ < t 

   φ \/ ψ ≤ t  
    __________ 

      φ ≤ t 
      ψ ≤ t  
 

    φ→ψ > t   
 _______________ 

φ <1– t | ψ > 
t   
 

    φ→ψ ≥ t 
------------------ 
φ ≤ 1– t | ψ ≥ t  
 

     φ→ψ < t 
     ----------- 
      φ >1– t 
     ψ < t   
 

    φ→ψ ≤ t 
    ----------- 
     φ ≥ 1– t 
     ψ ≤ t 
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    (A– ≥ X) ≥ t 
    -------------- 
    (A– ≥ X) ≥ t 
 

    (A– ≥ X) < t 
    -------------- 
    (A– ≥ X) < t 
 

    (A– ≥ X) ≤ t 
    -------------- 
    (A– ≥ X) ≤ t 
 

    (A– ≥ X) < t 
    -------------- 
    (A– ≥ X) < t 
 

                                            X ∈{B+, B–}             
                 
                              Table 6. Inference rules for Allen’s connectives 
                         

      А b В > t            
    ______________    
   (В– ≥ A+) > t 

      А b В ≥ t          
     _______________  

   (В– ≥ A+) ≥ t 

       А b В < t    
    _______________ 

    (В– ≥ A+) < t 

      А b В < t    
   --------------- 
   (В– ≥ A+) < t 
 

      А m В > t  
    _______________   

    (A+ ≥ В–) > t 
    (В– ≥ A+) > t 
 

     А m В ≥ t    
     ______________ 

   (A+ ≥ В–) ≥ t  
   (В– ≥ A+) > t 
 

      А m В < t   
  _________________  

  (A+ ≥ В–) < t | 
  (В– ≥ A+) < t 
 

      А m В ≤ t  
    _______________    

    (A+ ≥ В–)  t | 
    (В– ≥ A+) < t 

     А o В > t   
   _______________   

   (B– > A–) > t 
   (A+ > B–) > t 
   (A+ < B+) > t 
 

    А o В ≥ t   
  _______________      

  (B– > A–) ≥ t 
  (A+ > B–) ≥ t 
   (A+ < B+) ≥ t 

       А o В < t   
   ________________    

   (B– > A–) < t  | 
   (A+ > B–) < t  | 
   (A+ < B+) < t 

      А o В ≤ t      
   ________________ 

   (B– > A–) ≤ t  |               
   (A+ > B–) ≤ t  | 
    (A+ < B+) ≤ t 
 

       А f В > t   
      ______________  

   (A– > B–) > t   
   (A+ ≥ B+) > t   
   (A+ ≥ B+) > t 
 

     А f В ≥ t  
  _______________     

  (A– > B–) ≥ t 
  (A+ ≥ B+) ≥ t   
  (B+ ≥ A+) > t 

         А f В < t    
      _________________   

    (A– > B–) < t  | 
    (A+ ≥ B+) < t  |  
    (A+ ≥ B+) < t 

       А f В ≤ t  
     _________________   
   (A– > B–) ≤ t  | 
   (A+ ≥ B+) ≤ t  |  
   (A+ ≥ B+) < t 
 

     А s В > t 
     _______________      

   (A– > B–) > t   
   (B+ ≥ A+) > t   
   (B+ > A+) > t 
 

     А s В ≥ t  
  _______________     

  (A– > B–) ≥ t 
  (B+ ≥ A+) ≥ t   
  (B+ > A+) > t 

       А s В < t   
    _________________   

    (A– ≥ B–) < t   | 
    (B+ ≥ A+) < t  |  
    (B+ > A+) < t   
 

      А s В ≤ t   
    _________________    

    (A– ≥B– )  ≤ t  | 
    (B+ ≥ A+) ≤ t  |  
    (B+ > A+) ≤ t   
 

      А d В > t     
   _______________  

   (A– > B–) > t 
   (B+< A+) > t 
 

     А d В ≥ t    
  _______________   

  (A– > B–) ≥ t 
  (B+< A+) ≥ t 
 

       А d В < t     
    ________________  

    (A– > B–) < t | 
    (B+< A+) < t 
 

    А d В ≤ t     
  ________________ 

  (A– > B–) ≤ t | 
  (B+< A+) ≤ t 
 

       А e В > t   
   _______________    

   (B– ≥ A–) > t 
   (A– ≥ B–) > t 
   (B+ ≥ A+) > t 
   (A+ ≥ B+) > t 
 

      А e В > t    
   _______________   

   (B– ≥ A–) ≥ t 
   (A– ≥ B–) ≥ t 
   (B+ ≥ A+) ≥ t 
   (A+ ≥ B+) ≥ t 
 

       А e В < t     
   _________________  

   (B– ≥ A–) < t   | 
   (A– ≥ B–) <  t  | 
   (B+ ≥ A+) < t  | 
   (A+ ≥ B+) < t 
 

       А e В ≤ t  
   ________________     

   (B– ≥ A–) ≤ t  | 
   (A– ≥ B–) ≤ t  | 
   (B+ ≥ A+) ≤ t | 
   (A+ ≥ B+) ≤ t 
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                    Table 7. Inference rules for contrary pairs (where V ∈ {X ≥ Y, X > Y}) 
 

    p < x     p ≥  t   
   _________________   

         x ≤  t 

    p > x    p ≤  t  
     ________________      

         x ≥  t 

  (V) < x  (V) ≥  t  
   ___________________       

        x ≤  t 

  (V) > x  (V) ≤  t  
   ___________________       
       x ≥  t 
 

                                           V ∈ {X ≥ Y, X > Y}) 
 

3 Conclusion 

We have defined the fuzzy Boolean extension of Allen’s interval logic and consid-
ered ontologies written in the extension. Fact bases for such ontologies consist of 
bilateral estimates for formulas from the ontologies. We have considered the problem 
of query answering over fact bases. For decision of this problem the analytical  tab-
leaux method was applied. 
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Abstract. We investigate traffic management in the mechanical transport 
system. A major factor in the management of the MTS is search of the optimal 
route. Therefore, this article is described the routing in the MTS taking into 
account the inaccuracies and uncertainties of transportation options. We have 
developed a routing algorithm that takes into account the temporal fuzzy nature 
of the variables. We have illustrated the example of the developed routing 
algorithm. 

Keywords. Routing algorithm, mechanical transport systems, fuzzy temporal 
graph 

1. Introduction 

Mechanical transport system (MTS) is a class of transport systems using conveyors 
for moving cargo [1]. Conveyors form a network, where nodes are switches direction. 
The switch is a mechanical device that directs the load unit from one conveyor output 
to one input of the adjacent conveyors [2]. Example of such systems is the MTS 
delivery of luggage at airports. The total number of conveyors and switches in these 
systems can be quite large, which suggests several options for each cargo transport 
unit. The main element in the management of MTS is a routing, which enables us to 
construct the optimal path taking into account various parameters. 

2. Formulation of the problem 

We have following problem taking into account the changing reality and inaccuracies 
of incoming information. It is necessary to build a set of optimal routes for each of the 
MTS units. Information about received routes is stored in each node of MTS. And for 
determination of optimal route is used as a time parameter, and the parameter range. 
These parameters are presented in fuzzy form. The initial data are given on the MTS 
by expert to analyze the system. 

𝐿∗ = min
!
min
! !

{ 𝑤 𝑡 < 𝑠!, 𝑥! > , 𝑤 𝑡 < 𝑥! , 𝑥! > , 𝑤 𝑡 < 𝑥! , 𝑟! > } (1) 
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3. Routing Algorithm in MTS under fuzzy given distance and 
time 

There are various ways to implement the routing of mechanical transport systems 
taking into account only the distance parameter, such as Ford's algorithm, Floyd’ 
algorithm and etc [3]. We consider the algorithm that contains both parameters. The 
parameters are presented in fuzzy form. For the decision of problem, it is advisable to 
use the apparatus of the theory of graphs, namely based on fuzzy temporal graph. 

Fuzzy temporal graph is a triple 𝐺 = (𝑋,𝑈! ,𝑇), where X is set of vertices of the 
number of vertices c 𝑋 = n,T = {1,2,… ,N}is the set of natural numbers, 
determining (discrete) time; 𝑈! = {< 𝜇!(𝑥! , 𝑥!)| 𝑥! , 𝑥! >} is fuzzy set of edges, 
where 𝑥! , 𝑥! ∈ 𝑋, 𝜇! 𝑥! , 𝑥! ∈ [0,1] is the value of the membership function 𝜇! for the 
edge 𝑥! , 𝑥!  at time 𝑡 ∈ 𝑇, and at different times for the same edge 𝑥! , 𝑥!  values of 
the membership function (in general) different. Vertex 𝑥! is fuzzy adjacent vertex 𝑥! 
on the moment of time 𝑡 ∈ 𝑇, if the condition 𝜇! 𝑥! , 𝑥! > 0 [4]. 

Step 1. To form the matrix D! (dimension N×N, where N is number of vertices in 
the graph). Each element i, j of the matrix d!"!(𝑡) determines the length of the shortest 
arc leading from vertex i to vertex j. In the absence of such an arc put in d!"!(𝑡) = ∞. 

Step 2. Here 𝐷! denotes the dimension of the matrix 𝑚×𝑚 with d!"!(𝑡),𝑚 =
1,𝑚 − 1. To determine successively the elements of the matrix 𝐷! from elements of 
the matrix of 𝐷!!! for 𝑚, taking values 1, 2,… ,𝑁: 

𝑑!"! 𝑡 = min
!!!,!!!

𝑑!"! 𝑡 + 𝑑!"!!! 𝑡 𝑗 = 1,𝑚 − 1  (2) 

𝑑!"! 𝑡 = min
!!!,!!!

𝑑!"!!! 𝑡 + 𝑑!"! 𝑡 𝑖 = 1,𝑚 − 1  (3) 

𝑑!"! 𝑡 = min 𝑑!"! 𝑡 + 𝑑!"! 𝑡 ,𝑑!"!!! 𝑡 𝑖, 𝑗 = 1,𝑚 − 1  (4) 

Moreover, for all 𝑖 and put 𝑚 

𝑑!!! 𝑡 = 0 (5) 

As a result of the algorithm in the beginning is searched for the minimum 
distance, and then made to minimize the time. 

Step 3. After the algorithm to produce defuzzification [5]. 

4. Example of illustration the routing algorithm in MTS with 
fuzzy given parameters and temporal dependence 

You need to find the shortest routes to all nodes. Data are presented in fuzzy form. In 
round brackets is the distance, in square brackets indicates the time. Figure 1 shows 
example of MTS. 
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The initial matrix of distance and time as follows (equation (6)): 

𝐷! 𝑡 =

1 2 3
1 0,0,0 0,0,0 3,4,6 1,3,5 4,5,6 [2,3,4]
2 − 0,0,0 0,0,0 −
3 − − 0,0,0 [0,0,0]
4 2,4,5 3,4,5 − −
5 − 2,5,7 3,5,6 −
6 − − −

	

4 5 6
1 − − −
2 − 2,5,7 3,5,6 −
3 − − 5,6,7 2,3,5
4 0,0,0 [0,0,0] − −
5 − 0,0,0 [0,0,0] 4,6,8 2,3,4
6 3,4,7 1,3,4 4,6,8 2,3,4 0,0,0 [0,0,0]

	

(6) 

2

1

3

4

5

6

(3
,4

,6
)[

(1
,3

,5
)]

(4
,5

,6
)[

(2
,3

,4
)]

(2,4,5)[(3,4,5)]

(2,5,7)[(3,5,6)]
(6,8,12) [(4,6,8)]

(5,6,7)[(2,3,5)]

(3,4,7)[(1,3,4)]

(4
,6

,8
)[

(2
,3

,4
)]

 
Fig. 1 – Illustration example of MTS scheme 

Using the formula (5) of the algorithm we get equation (7). 

𝑑!!! 𝑡 = 0 (7) 

So we get the matrix 𝐷! 𝑡  below 

𝐷! 𝑡 = 1
1 0,0,0 0,0,0  (8) 
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Then the next phase for the elements use the formula (2) at the beginning, we 
obtain 

𝑑!"! 𝑡 = min{𝑑!"! 𝑡 + 𝑑!!! 𝑡 } = min ∞ + 0,0,0 0,0,0 = ∞ (9) 

Consequently, instead of element 𝑑!"! 𝑡  in the matrix 𝐷! 𝑡  we have element “–“. 
The next step we use the formula (3): 

𝑑!"! 𝑡 = min{𝑑!!! 𝑡 + 𝑑!"! 𝑡 } = min 0,0,0 0,0,0 + 3,4,6 [1,3,5]
= 3,4,6 [1,3,5](𝑟𝑜𝑢𝑡𝑒 𝑓𝑟𝑜𝑚 1 𝑡𝑜 2) (10) 

Then we use formula (5) 

𝑑!!! (𝑡) = 0,𝑑!!! (𝑡) = 0 (11) 

Fill matrix 𝐷! 𝑡  

𝐷! 𝑡 =
1 2

1 0,0,0 0,0,0 3,4,6 1,3,5
2 − 0,0,0 0,0,0

 (12) 

We turn to the calculation of the matrix 𝐷! 𝑡 . Similarly, the use early in the 
formula (2): 

𝑑!"! 𝑡 = min{𝑑!"! 𝑡 + 𝑑!!! 𝑡 ;𝑑!"! 𝑡 + 𝑑!"! 𝑡 }
= min ∞ + 0,0,0 0,0,0 ;∞ +∞ = ∞ (13) 

𝑑!"! 𝑡 = min{𝑑!"! 𝑡 + 𝑑!"! 𝑡 ;𝑑!"! 𝑡 + 𝑑!!! 𝑡 }
= min ∞ + 3,4,6 [1,3,5];∞ + 0,0,0 0,0,0 = ∞ (14) 

Using equation (3) we obtain the following values of the elements of the matrix: 

𝑑!"! 𝑡 = min{𝑑!!! 𝑡 + 𝑑!"! 𝑡 ;𝑑!"! 𝑡 + 𝑑!"! 𝑡 }
= min 0,0,0 0,0,0 +∞; 3,4,6 1,3,5 +∞ = ∞ (15) 

𝑑!"! 𝑡 = min{𝑑!"! 𝑡 + 𝑑!"! 𝑡 ;𝑑!!! 𝑡 + 𝑑!"! 𝑡 }
= min ∞ +∞; 0,0,0 0,0,0 +∞ = ∞ (16) 

We recalculate values of the matrix by the formula (4) with the new values 
obtained in the previous step. 
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𝑑!"! 𝑡 = min{𝑑!"! 𝑡 ;𝑑!"! 𝑡 + 𝑑!"! 𝑡 } = min 3,4,6 [1,3,5];∞ +∞
= 3,4,6 [1,3,5](𝑟𝑜𝑢𝑡𝑒 1,2 ) (17) 

𝑑!"! 𝑡 = min{𝑑!"! 𝑡 ;𝑑!"! 𝑡 + 𝑑!"! 𝑡 } = min ∞;∞ +∞ = ∞ (18) 

For further calculation of matrix elements we use the formula (5): 

𝑑!!! 𝑡 = 0,𝑑!!! 𝑡 = 0,𝑑!!! (𝑡) = 0 (19) 

Fill the matrix 𝐷! 𝑡  

𝐷! 𝑡 =

1 2 3
1 0,0,0 0,0,0 3,4,6 1,3,5 4,5,6 [2,3,4]
2 − 0,0,0 0,0,0 −
3 − − 0,0,0 [0,0,0]

 (20) 

We repeat similar iterations for the calculation of the matrix 𝐷! 𝑡 . Similarly, we 
use early in the formula (2): 

𝑑!"! 𝑡 = min{𝑑!"! 𝑡 + 𝑑!!! 𝑡 ;𝑑!"! 𝑡 + 𝑑!"! 𝑡 ;𝑑!"! 𝑡 + 𝑑!"! 𝑡 }
= min 2,4,5 3,4,5 + 0,0,0 0,0,0 ;∞ +∞;∞ +∞
= 2,4,5 3,4,5  (𝑟𝑜𝑢𝑡𝑒 4,1 ) 

(21) 

𝑑!"! 𝑡 = min{𝑑!"! 𝑡 + 𝑑!"! 𝑡 ;𝑑!"! 𝑡 + 𝑑!!! 𝑡 ;𝑑!"! 𝑡 + 𝑑!"! 𝑡 }
= min 2,4,5 3,4,5 + 3,4,6 [1,3,5];∞
+ 0,0,0 [0,0,0];∞ +∞
= 5,8,11 [4,7,10](𝑟𝑜𝑢𝑡𝑒 4,1 → (1,2)) 

(22) 

𝑑!"! 𝑡 = min{𝑑!"! 𝑡 + 𝑑!"! 𝑡 ;𝑑!"! 𝑡 + 𝑑!"! 𝑡 ;𝑑!"! 𝑡 + 𝑑!!! 𝑡 }
= min 2,4,5 3,4,5 + 4,5,6 [2,3,4];∞ +∞;∞
+ 0,0,0 0,0,0 = 6,9,11 [5,7,9](𝑟𝑜𝑢𝑡𝑒 4,1
→ (1,3)) 

(23) 

Using equation (3), we obtain the following values of the elements of the matrix: 
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𝑑!"! 𝑡 = min{𝑑!!! 𝑡 + 𝑑!"! 𝑡 ;𝑑!"! 𝑡 + 𝑑!"! 𝑡 ;𝑑!"! 𝑡 + 𝑑!"! 𝑡 }
= min 0,0,0 0,0,0 +∞; 3,4,6 1,3,5 +∞;∞ +∞
= ∞ (24) 

𝑑!"! 𝑡 = min{𝑑!"! 𝑡 + 𝑑!"! 𝑡 ;𝑑!!! 𝑡 + 𝑑!"! 𝑡 ;𝑑!"! 𝑡 + 𝑑!"! 𝑡 }
= min ∞ +∞; 0,0,0 0,0,0 +∞;∞ +∞ = ∞ (25) 

𝑑!"! 𝑡 = min{𝑑!"! 𝑡 + 𝑑!"! 𝑡 ;𝑑!"! 𝑡 + 𝑑!"! 𝑡 ;𝑑!!! 𝑡 + 𝑑!"! 𝑡 }
= min ∞ +∞;∞ +∞; 0,0,0 0,0,0 +∞ = ∞ (26) 

We recalculate values of the matrix by the formula (4) with the new values 
obtained in the previous step. 

𝑑!"! 𝑡 = min{𝑑!"! 𝑡 ;𝑑!"! 𝑡 + 𝑑!"! 𝑡 }
= min 3,4,6 [1,3,5];∞ + 5,8,11 [4,7,10]
= 3,4,6 [1,3,5](𝑟𝑜𝑢𝑡𝑒 1,2 ) (27) 

𝑑!"! 𝑡 = min{𝑑!"! 𝑡 ;𝑑!"! 𝑡 + 𝑑!"! 𝑡 }
= min 4,5,6 2,3,4 ;∞ + 6,9,11 5,7,9
= 4,5,6 [2,3,4](𝑟𝑜𝑢𝑡𝑒 1,3 ) (28) 

𝑑!"! 𝑡 = min{𝑑!"! 𝑡 ;𝑑!"! 𝑡 + 𝑑!"! 𝑡 } = min ∞;∞ + 2,4,5 3,4,5
= ∞ (29) 

𝑑!"! 𝑡 = min{𝑑!"! 𝑡 ;𝑑!"! 𝑡 + 𝑑!"! 𝑡 } = min ∞;∞ + 6,9,11 [5,7,9]
= ∞ (30) 

For further calculation of matrix elements we use the formula (5): 

𝑑!!! 𝑡 = 0,𝑑!!! 𝑡 = 0,𝑑!!! (𝑡) = 0,𝑑!!! (𝑡) = 0 (31) 

Fill the matrix 𝐷! 𝑡  
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𝐷! 𝑡 =

1 2 3 4
1 0,0,0 0,0,0 3,4,6 1,3,5 4,5,6 [2,3,4] −
2 − 0,0,0 0,0,0 − −
3 − − 0,0,0 [0,0,0] −
4 2,4,5 3,4,5 5,8,11 4,7,10 6,9,11 [5,7,9] 0,0,0 [0,0,0]

 (32) 

As a result, similar calculations obtain intermediate matrix of routes 𝐷! 𝑡 . 

𝐷! 𝑡 =

1 2
1 0,0,0 0,0,0 3,4,6 1,3,5
2 − 0,0,0 0,0,0
3 − −
4 2,4,5 3,4,5 5,8,11 4,7,10
5 − 2,5,7 3,5,6

 

3 4 5
1 4,5,6 2,3,4 − 5,9,13 4,8,11
2 − − 2,5,7 3,5,6
3 0,0,0 0,0,0 − −
4 6,9,11 5,7,9 0,0,0 0,0,0 7,13,18 7,12,16
5 − − 0,0,0 0,0,0

 

(33) 

Using the 𝐷! 𝑡  intermediate matrix performs calculations and obtain the resulting 
matrix routes. 

𝐷! 𝑡

=

1 2 3
1 0,0,0 0,0,0 3,4,6 1,3,5 4,5,6 [2,3,4]
2 11,19,27 [9,15,19] 0,0,0 0,0,0 15,24,33 [11,18,23]
3 10,14,19 [6,10,14] 11,17,22 [7,11,15] 0,0,0 [0,0,0]
4 2,4,5 3,4,5 5,8,11 4,7,10 6,9,11 [5,7,9]
5 9,11,20 [6,10,13] 2,5,7 3,5,6 13,19,26 [8,13,17]
6 5,8,12 [4,7,9] 6,11,15 [5,8,10] 19,13,18 [6,10,13]

 

4 5 6
1 12,15,20 [5,9,13] 5,9,13 [4,8,11] 9,11,13 [4,6,9]
2 9,15,22 [6,11,14] 2,5,7 [3,5,6] (6,11,15)]6,8,10]
3 8,10,14 [3,6,9] 9,12,15 [4,6,9] 5,6,7 [2,3,5]
4 0,0,0 0,0,0 7,13,18 [7,12,16] 11,15,18 [7,10,14]
5 7,10,15 [3,6,8] 0,0,0 [0,0,0] 4,6,8 [2,3,4]
6 3,4,7 [6,10,13] 4,6,8 [2,3,4] 0,0,0 [0,0,0]

 

(34) 

5. Conclusion 
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The specific management tool of MTS is routing. The proposed routing algorithm is 
applicable to any mechanical transport system. The use of the described routing 
method gives the best effect for MTS, which are operated in the unstable conditions 
for major changes of cargo flow intensity. This case of temporal dependence reflects 
the real environmental situation and its cost. 
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Abstract. We consider simple and complex objects in stationary and
non-stationary cases and their usage in a sentence. An object is described
by a conjunction and/or disjunction of attributes in case compatibility
and incompatibility of the original attributes should be taken into ac-
count. For this setting, we consider the structure of a formal concept and
the structure of the sets of objects and attributes together with opera-
tions similar to those of reasoning. The relation of the resulting model
to FCA is considered.
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