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Preface

Concept discovery is a subdomain of Knowledge Discovery (KDD) that uses
human-centered techniques such as Formal Concept Analysis (FCA), Topic Mod-
eling, Visual Text Representations, Conceptual Graphs etc. for gaining insight
into the underlying conceptual structure of the data. Traditional machine learn-
ing techniques are mainly focusing on structured data whereas most data avail-
able resides in unstructured, often textual, form. Compared to traditional data
mining techniques, human-centered instruments actively engage the domain ex-
pert in the discovery process.

This volume contains the papers presented at the 3rd International Workshop
on Concept Discovery in Unstructured Data (CDUD 2016) held on July 18,
2018 at the National Research University Higher School of Economics, Moscow,
Russia. This workshop welcomes papers describing innovative research on data
discovery in complex data. It particular, it provides a forum for researchers and
developers of text mining instruments, whose research is related to the analysis
of linguistic and text data.

This year 15 papers had been submitted. Each submission has been reviewed,
at least, by 2 program committee members. Seven papers have been accepted
for regular publication in the proceedings, and three more submissions for pub-
lication as project proposals or abstracts.

Papers included in this volume cover a wide range of topics related to text
mining and structures for text representation: text navigation, statistical learning
models, automatic author or field identification in texts, among others.

An invited talk given by Natalia Loukachevitch from Moscow State Univer-
sity has opened the workshop program. She has surveyed modern tasks and
approaches in sentiment analysis of Twitter messages.

Our deep gratitude goes to all the authors of submitted papers, as well as
to the Program Committee members for their commitment. We also would like
to thank our invited speaker and our sponsors: National Research University
Higher School of Economics (Moscow, Russia), Russian Foundation for Basic
Research, and ExactPro. Finally, we would like to acknowledge the EasyChair
system which helped us to manage the reviewing process.

July 18, 2016
Moscow

Jaume Baixeries
Dmitry I. Ignatov

Dmitry Ilvovsky
Alexander Panchenko
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Sentiment Analysis of Twitter Messages: Tasks,
Approaches and Results

Natalia Loukachevitch

Research Computing Center, Moscow State University, Russia

Abstract. Microblog messages became a very popular tool for commu-
nication between people. Authors of the messages write about their life,
convey their opinions on various topics including political and religious
views, products and services, etc. Thus, microblogging sites as Twitter
become valuable sources of information about peoples’s opinions and sen-
timents. Approaches for extracting these opinions and their aggregation
are actively studied.
In my talk I consider sentiment analysis tasks proposed for processing
Twitter messages and the existing approaches including neural networks,
which allowed improving the existing results during last year. Also I
present results of the Russian evaluation of sentiment analysis systems
(SentiRuEval) organized in 2015-2016.

Keywords: sentiments analysis, microblog messages, opinion mining
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Abstract. In this paper, we investigate the performance of statisti-
cal language models on Instant Messaging (IM) data. Language Models
(LM) are quite useful for modeling text data, and hence they are helpful
in different contexts like spelling correction, speech recognition, part-of-
speech tagging etc. Construction of LM on a users past messaging data
would be a strategy to model her writing style, and that LM can then be
used to predict the next word in her future communications. However, we
hypothesize that a user follows a specific pattern of communication with
each of her virtual acquaintances. As a consequence, LM built on her en-
tire messaging history would degrade the performance of the next word
predictor, while communicating with a specific person. In this paper, we
deploy a special method that excludes some specific message contents
from the entire history in order to build LM. Our method suggests that,
at the time of communicating with a specific user, a special LM should
be invoked from a set of models for increasing accuracy. We analyze the
IM data of a set of users, and show that our method performs well in
terms of perplexity.

Keywords: Language Model (LM), Perplexity

1 Introduction

People have conversation with each other almost every day using computing sys-
tems as a media; the applications or software used for this purpose are usually
referred to as Instant Messaging (IM) system. It has become one of the mostly
used paradigms for communication. As a result, it is integrated as a service with
different types of social networks and e-mailing systems. As for example, Face-
book and Gmail provide instant messaging facility as a part of their core services.
People who use these systems, often need to communicate with friends, relatives,
business collaborators etc. Generally, people use a certain way of typing, while
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having casual conversation with another person. In order to facilitate and ex-
pedite such personalized typing, most IM software includes a component, that
predicts and suggests a set of words, given the current input words of the mes-
sage sender. Thus the next word prediction component is beneficial for everyday,
as it reduces the time consumed for typing.

Human communication is predominantly personalized in real world i.e. a
person internally uses and manages a specific dictionary for finding appropriate
words to chat with another specific person. As for example, people exchange
messages with their work groups formally using phrases like With reference to
our conversation previously, Yours sincerely etc. On the other hand, at the
time of exchanging messages with family or friends, they use casual phrases like
Hey wassup!, How you doing? etc. Languages like Bengali are exposed to more
personalized level of communication. For example, there are three different words
for addressing a person: tumi, tui and apni, in Bengali against a single word you
in English. Based on these three types of addressing, for a single sentence in
English, there can be three possible sentences in Bengali with the same meaning.
Some samples are shown in table 1. Thus, a personalized prediction system would
be a contribution to gear up the typing speed while having informal computer
based communication; especially for the case of languages like Bengali. As a
result, the need for constructing personalized language based statistical models
can never be obviated and undervalued.

Table 1. Sentence Variations in English and Bengali

English Bengali

How are you?
Apni kemon achen? (Formal Style)
Tumi kemon acho? (Semi-Formal Style )
Tui kemon achish? (Informal Style)

Researchers have taken keen interest on building personalized language mod-
els for different purposes. In 2009, Xue et al. proposed a method for personalizing
search results based on user interest [1]. They modeled individual profile using
statistical language models, and finally constructed clusters to form group mod-
els. The models incorporated in a cluster were gathered from people who have
same taste in web content. Li et al. used statistical language models for person-
alizing information extraction services i.e. text snippet extraction [2].

The existing methodologies for personalized word prediction emphasizes mostly
on estimation based upon the built-in statistical language models, which are
consisted of using the dictionary of a particular language. However, for phonetic
typing the task is not that simple, as the spelling of a word may differ from user
to user and deviate from the standard form, if one is considered as standard.
Apart from this, several other issues compound the task, and we look forward
to develop a personalized next word predictor as a remedy to this situation.
Based on the problems mentioned above, we would like to address the following
research questions in this work :
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– Will personalized language models improve the next word prediction com-
ponent used by an IM?

– How the sources of data for training language models effect personalization?
– How can we measure the performance improvement of such systems by cre-

ating a proper data set and evaluation strategy?

In order to answer these questions, we would like to develop person specific
statistical language models, of which one will be invoked, when a person is com-
municating with another person. Till this end, we have come up with two hy-
potheses:

– A single user follows a specific linguistic style while communicating with
another person

– Excluding data that degrades a language model, can improve the perfor-
mance of the model in the context of improving the next-word prediction
component of an IM service

Based on these two assumption we modeled specific persons style by building sta-
tistical language models with an exclusion method. Thus, the key contributions
of this work are :

– Building language models following a users linguistic style especially in Ben-
gali. The linguistic style is captured based on the interaction of a user with
other users.

– An exclusion method based language model which would exclude the unnec-
essary information from the model and would produce better suggestions for
user.

2 Related Works

In this section, we review the background literature related to our personalized
next word prediction strategy. A generalized word prediction system was pro-
posed by Bosch, which could predict millions of words per second [3]. He used
a simple decision-tree algorithm that was less costly in terms of complexity,
in order to use a large amount of data for training from the Reuters corpus.
However, a personalization component was not included in this method, as it
was not developed considering the dynamics of human communication. Siska et
al. designed an adaptive keyboard that could adjust its predictive features and
key displays based on current user input [4]. They implemented the personal-
ized word prediction module using common English dictionary to improve the
performance of such a system. The built-in English dictionary was used with
an existing database that the system needed to overwrite personalized phonetic
words. Nonetheless, this method requires a huge database of training corpora
which is not suitable for a smart-phone based implementation.

A learning approach employing hierarchical modeling of phrases was pro-
posed by Richard et al. [5]. This approach reduced the amount of initial training
data required to facilitate on-line personalization of the text prediction system.
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It is also intended for the development of assistive technologies for disabilities,
especially within the domain of augmentative and alternative communications
(AAC) devices. The key insight of the proposed approach is the separation of
stop words, which primarily play syntactical roles in phrases. Matthew suggested
a system to improve the rate at which users can participate in a conversation
using an AAC (Augmentative and Alternative Communication) device. This was
intended for persons who are unable to communicate verbally [6].

Author profiling techniques were also used for personalizing messaging sys-
tems, and most of these systems are based on machine learning approaches.
Tayfun et al. proposed to investigate the possibility of predicting several users
and message attributes in text-based, real-time, on-line messaging services [7].
Specifically, they aimed to identify instant message authors correctly using style-
based approach. Inches et al. designed a framework for identifying topic and au-
thor from on-line user-generated conversations [8]. They used different similarity
metrics to identify document features and took an entropy-based approach to
identify authors. Author identification have been improvised a step further by
Villatoro-Tello et al. where they identified misbehaving authors in instant mes-
saging by classifying user text and building models based on SVM and neural
networks [9].

Sarwar et al. showed that constructing a LM with the conversation text
pair of users, and trying to predict the text of other users provides different
outcomes for different users. Even though it seems quite intuitive, the outcome
of this research indicated that a LM built on a conversation text could be useful
to predict the text of a cluster of users [10].

3 Background

In this section we explain two necessary topics that are essential to our proposed
method: language model and perplexity.

3.1 Language Model

Language models (LM) are heavily used in many applications using Machine
Translation and Speech Recognition technology. Language models are used to
evaluate the probability of a sequence of words. Given a sequence of words of
length m, it is possible to estimate the probability of the sequence P (w1, w2, ..., wm),
using LM [11]. Based on the context there are different types of LM. If the prob-
ability of a word wk, depends on its previous word wk−1, then it is denoted as
bi-gram LM. However, in general LM are defined as n-gram language model,
where the probability P (w1, . . . , wm) of observing the sentence w1, . . . , wm is
approximated as shown in Equation 1.

P (w1, . . . , wm) =

m∏

i=1

P (wi | w1, . . . , wi−1) (1)
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The joint probability distribution can be estimated as below:

m∏

i=1

P (wi | w1, . . . , wi−1) =
count(w1, . . . , wi−1, wi)

count(w1, . . . , wi−1)
(2)

In case of bigram language model Equation 2, can be re-written as Equation
, based on markov assumption.

m∏

i=1

P (wi | w1, . . . , wi−1) = P (w1)
m∏

i=2

P (wi | wi−1) (3)

In these paper we have used bigram language model to extract the linguistic
style of an author.

3.2 Perplexity

Perplexity is a measure that is used to test the quality of LM. In order to test
LM, test data is used and perplexity is measured. Let us assume that there are m
sentences in test data: t1, t2, . . . , tm. It is possible to measure the log probability
of each sentences using LM:

log

m∏

i=1

P (ti) =

m∑

i=1

logP (ti) (4)

Now, Perplexity (PP) can be defined using the following equation:

PP = 2−l, where l =
1

M

m∑

i=1

logP (ti) (5)

in 5, M is the total number of words in the test data. The lower the value of
perplexity the better the LM are. The worst possible LM results in the number
of words in the test data. Perplexity is a measure of effective branching factor
[12].

4 Proposed Method

The proposed method is developed based on the hypothesis that A single user
follows a specific linguistic style while communicating with another person. Thus,
at first, our aim is to construct a collection of personalized dictionaries i.e.
language models for a user. Finally, those models would be used to predict the
next word for the user at the time of sending instant messages. The invocation
of a specific model would be completely dependent on the person, with whom
the user will be communicating.

Language models can assign a probability value to a word given a sequence
of words. For example, using bigram language model, we can predict the prob-
ability of a word “computer” given the word “personal”. Moreover, using lan-
guage model notation, we can represent it as P (computer | personal). Using
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this value, we want to estimate the probability of the word “computer”, given
the word “personal”. To describe our method, we use the terms language models
and models, interchangeably. In the following paragraphs, we would discuss our
methodology from the perspective of a single user (u), for whom we would build
a set of models (M), which will facilitate his computer-mediated communication
with other users (U) in his network. Moreover, there would be a one-to-one re-
lationship between M and U , i.e. |M | = |U |.
In order to describe the method, we consider that user u has connection with
a set of k users U = {u1, u2, u3, . . . , uk}, through an instant messaging service.
Interaction set I = {i(u, u1), i(u, u2), . . . , i(u, uk)} contains all the messages sent
to each uk ∈ U by user u. Hence, we are only considering the unidirectional
messages sent by user u to all other users. According to our own definition these
messages form a General Dictionary (GDu), which we use to build a generalized
model for u.

According to the first part of our research hypothesis, GDu can not be a
suitable source of observed data to build a generative model, which can be used
to predict the chat content of u and uk. As the instant messaging content of a user
varies significantly, based on the other person he is communicating with, GDu

would be a source of data that would degrade the model. Some conversations in
GDu can lead to the development of inefficient models, and building a next word
predictor based on those models would not improve the communication speed.
Thus, in order to model the interaction i(u, uk), we would need a distinct model
m(u, uk), and it should be built on Ik ⊂ I. This would result in a model set
M = {m(u, u1),m(u, u2), . . . ,m(u, uk)}. Now, when u would be communicating
with uk, m(u, uk) would be invoked to generate words for u.

The second part of our hypothesis is about the construction of Ik. If we
exclude a subset of interactions Ī from I, we would be able to get textual con-
tents that model the conversation between u and uk more closely. Thus, we can
construct Ik using the following equation:

Ik = I − Ī (6)

From equation 6, it can be seen that Ī is a cluster of interactions, which
we will exclude from I. Our goal is to construct m(u, uk) using Ik. In order to
build m(u, uk), we construct one model for each interaction from I − i(u, uk).
After that we evaluate the perplexity of each model on the held out data from
interaction i(u, uk). After that we select top-n models that result in highest
perplexity values, and create interaction set Ī, by including the associated inter-
actions with them. We also refer Ī as the Worst Interaction Set (WIS) for the
ease of understanding. Thus, we are trying to estimate, which models maximize
the uncertainty, while predicting the held out data. We hypothesize that the
associated interactions used to build these models introduce more uncertainty
in GDu. By excluding Ī from I, and constructing a model on Ik, we reduce the
entropy in GDu. As a consequence, the final model m(u, uk) would be a better
predictor than a generalized model constructed from GDu.
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Fig. 1. Interaction clustering based on top-3 interactions

We have shown a sample execution of our proposed method using Figure
1. Initially, we create a LM based on i(u, u1) and evaluate the perplexity of the
model using the Equation 5, for all the users uj ∈ U . As a result, for each uj ∈ U ,
we get a perplexity value. The worst perplexity of a LM on a test data is the
number of words in the test data. According to the scope of our work, we only
consider bigram based LMs.

After obtaining the perplexity values for each i(u, uj) ∈ I, we sort them
in descending order and select the top-n interactions. We extract the user id
ut ∈ U from the interactions and create a user group with those values. We
perform this process repeatedly by building LM with all the interactions from
I one by one. From Figure 1, it can be observed that for interaction i(u, u4),
three interactions have been grouped together: i(u, u1), i(u, u2) and i(u, u3). As
these three interactions produced three highest values of perplexity with the LM
constructed using i(u, u4), they are grouped together.

5 Experimental Setup

5.1 Data Set

We have collected the summary and analysis using our program from the chat
logs of three different facebook users. Chatting data is completely private and
we did not collect the data from users, instead we provided our program to the
users and they gave us the output generated from the program. All the users
were IT professionals; they could run our program to generate summary data
for us. Each of the users, who ran our program, communicated with at least 7
different people and their basic interaction was in Bengali; the total collection
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contained 22 interactions. Prior to running our program, a privacy agreement
was signed by each user.

Testing and training data set was created from the chat logs by our script.
Last 20% data of each interaction of a user was kept as test data. We trained
our model on the first 80% data and evaluated the model on the last 20% held
out data. In table 2, some properties of our data set are shown formally.

Table 2. User chat log data properties.

User
Average sen-
tence length
per line

Total words
per interac-
tion

No of Interac-
tions

101 14 5466 7

102 18 3555 8

103 24 5782 7

It can be seen from Table 2 that we have given each user a unique identifier,
so that he or she can be remained anonymous. According to the table, User
101 has 14 sentences on an average in each interaction set, with a total of 5466
words. It is also evident that user 101 interacted with 7 persons in total. Each
individual user was asked to provide his messaging content considering different
groups of people like family, friends, cousins, colleagues etc. so that we can get
different types of interactions.

5.2 Experimental Setup and Result

In this work, we have tried to select the best model that performs well in terms
of perplexity, on the held out data of a specific user interaction. At first, we
create a generalized bigram model over all the user interactions I. In this paper,
we use the term General Dictionary (GD) in exchange with I for the ease of
understanding. After the general bigram model is created, we use it to evaluate
the performance of GD for all the interactions of a specific user. Then we create
a specialized LM, namely WIM for each interaction by subtracting Ī from I. For
the experimentations in this paper, we subtract top-3 interactions from GD, and
build models on resultant data. Finally, each of the models is evaluated based on
the calculation of perplexity on the held out data of each user interaction. The
percentage improvement of WIM with respect to GD is calculated and shown in
all our result tables. A negative value depicts poor performance of WIM, whereas
a positive value represents performance improvement. The complied results from
the experimentation for each user are shown using Table 3, Table 4 and Table
5, respectively.

From Table 3, we can see that user 101 interacts with a total of 7 persons with
7 different ID’s. For interaction (101,201) its worst interaction set WIS consists
of the user with ID’s 202, 203, 206. This means that these interactions actually
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degrade the performance of the language model built for user 101, using the
GD. Here, the WIM improves the model by 9.49% which is considerably higher
than GD. However, in interaction (101,206) we can see that WIM actually gives
18.6% poor result comparing to GD. It is observed that those cases are very rare,
when GD outperforms WIM .

Table 3. Different LM result on user 101 chat log.

Interac-
tion
(ui,uj)

WIM
WIM
Perplex-
ity

GD
Per-
plex-
ity

Improvement
of WIM over
GD(%)

(101,201) {(101,202),(101,203),(101,206)} 14.27 15.76 9.49

(101,202) {(101,205),(101,207),(101,206)} 16.89 19.28012.36

(101,203) {(101,202),(101,205),(101,206)} 18.81 21.36 11.95

(101,204) {(101,201),(101,202),(101,206)} 17.83 19.39 8.00

(101,205) {(101,202),(101,207),(101,206)} 19.72 21.47 8.17

(101,206) {(101,203),(101,205),(101,204)} 31.77 26.78 -18.66

(101,207) {(101,205),(101,202),(101,206)} 15.21 17.22 11.66

Table 4. Different LM result on user 102 chat log.

Interac-
tion
(ui,uj)

WIM
WIM
Perplex-
ity

GD
Per-
plex-
ity

Improvement
of WIM over
GD(%)

(102,301) {(102,308),(102,306),(102,304)} 30.04 12.35 -143.28

(102,302) {(102,308),(102,306),(102,304)} 21.37 23.79 10.18

(102,303) {(102,306),(102,307),(102,30)8} 11.47 12.82 10.51

(102,304) {(102,305),(102,308),(102,306)} 12.46 13.59 8.36

(102,305) {(102,301),(102,308),(102,304)} 10.49 12.01 12.68

(102,306) {(102,305),(102,301),(102,304)} 12.61 14.32 11.90

(102,307) {(102,301),(102,306),(102,304)} 12.19 14.70 17.10

(102,308) {(102,305),(102,304),(102,307)} 11.74 13.85 15.26

In table 4, the interaction between user 102 and other users are shown. Here,
we can see that while interacting with user 301, WIM gives worse result com-
paring to GD. In all the other cases, WIM performs significantly better than
GD.

Table 5 shows the performance on the interactions of user 103. In the in-
teractions (103,402), (103,403), (103,404) WIM performs poorly giving the im-
provement percentage -13.57%, -79.64%,-13.63% respectively. However, in the
interaction (103,403) the result is very poor in comparison with GD.
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Table 5. Different LM result on user 103 chat log.

Interac-
tion
(ui,uj)

WIM
WIM
Perplex-
ity

GD
Per-
plex-
ity

Improvement
of WIM over
GD(%)

(103,401) {(103,406),(103,404),(103,402)} 10.16 11.83 14.10

(103,402) {(103,405),(103,404),(103,403)} 12.34 10.87 -13.57

(103,403) {(103,406),(103,407),(103,405)} 18.11 10.08 -79.64

(103,404) {(103,405),(103,402),(103,406)} 13.31 11.71 -13.63

(103,405) {(103,406),(103,401),(103,404)} 10.55 11.87 11.14

(103,406) {(103,403),(103,404),(103,405)} 8.98 9.86 8.93

(103,407) {(103,404),(103,402),(103,405)} 8.49 10.32 17.73

In our experiment, we have shown that the language models built by ex-
cluding the Worst Interaction Set (WIS) from I improves the performance of
the general dictionary based LM. By excluding WIS, we actually remove the
contents, which affect the performance. However in some cases, we have found
that excluding WIS from I doesn’t always improve the performance; in fact in
some situations GD outperforms WIM .This phenomenon occurs, because we
have subtracted a fixed number of interactions from GD for our experiment.
Moreover, there are some interactions in WIS cluster, which might generate im-
portant suggestions for user. By excluding them, we are removing those impor-
tant information from GD, which results in poor perplexity scores. As a result,
it can be experimentally inferred that excluding WIS from the interaction set
will build better LM than the LM built over the generalize dictionary for a single
user. But, in this paper, we have conducted small experimentation, and publish
the results after running our program with input from three users only. There-
fore, even though the results are quite interesting, we can not finally conclude
that excluding information from the GD of a user will model her conversation
more accurately.

6 Conclusion

The research leads to the development of a user-oriented and personalized next-
word predictor for instant messaging, which can speed up the text-based com-
munication among different people in the virtual world. The ever-growing field
of social media and instant messaging have created the necessity to design a sys-
tem that could support fast, comfortable and smooth typing. Even though we
have shown our result in terms of a standard NLP metric, perplexity, we hope
to implement an instant messaging system for the on-line evaluation of our idea.
Moreover, we would like to collect more user chat log with privacy agreement,
anonymize our data set using some well known anonymization algorithms like
k-anonymization and publish our data set in future. Besides, we would try to
filter out some unnecessary information i.e emoticon, stop words, punctuation
marks etc. which will improve the performance of the language models.
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Abstract. The paper presents the framework for conceptual modeling which 
has been used in on-going project of developing fact extraction technology on 
textual data. The modeling technique combines the usage of conceptual graphs 
and Formal Concept Analysis.  Conceptual graphs serve as semantic models of 
text sentences and the data source for formal context of concept lattice. Several 
ways of creating formal contexts on a set of conceptual graphs have been 
investigated and resulting solution is proposed. It is based on the analysis of the 
use cases of semantic roles applied in conceptual graphs and their structural 
patterns. Concept lattice building on textual data is interpreted as storage of 
facts which can be extracted by using navigation in the lattice and interpretation 
its concepts and hierarchical links between them. Experimental investigation of 
the modeling technique was performed on the annotated textual corpus 
consisted of descriptions of biotopes of bacteria. 

Keywords: conceptual modeling, conceptual graphs, concept lattice, biotopes 
of bacteria. 

 

1  Introduction 

Conceptual modeling in the Natural Language Processing (NLP) is a way of modeling 
semantics. Semantics of texts is transformed to semantics of conceptual models at a 
high level of abstraction, in terms of concepts. Conceptual graphs (CGs) [22] 
represent a well-known type of conceptual models and there are some applications of 
them in Text Mining problems solutions [13, 15].  

Another paradigm of conceptual modeling is Formal Concept Analysis [10]. It is a 
mathematical theory of data analysis which studies how objects can be hierarchically 
grouped together according to their common attributes. Strong mathematical 
background of FCA (it is based on the lattice theory [2] and uses matrix model of so 
named “formal context”) provides its implementations as rigorous instrument for 
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Information Retrieval (IR). The number of FCA applications now is growing up 
including applications in Text Mining and linguistics [6, 19]. It is also applied in more 
general field of knowledge processing [17].  

The idea of joining two paradigms of conceptual modeling - conceptual graphs and 
concept lattices - seems very attractive but not elaborated in the FCA community. 
There are several its realizations due the years, from early implementation in [23] up 
to recent investigations in [9].  

This idea may get a second breath when FCA is utilized on textual data and 
conceptual graphs serve as conceptual model of text semantics. Acquiring conceptual 
graphs from natural language texts is non-trivial problem but it is quite solvable [5, 
14]. The concepts of conceptual graphs may be treated as objects and attributes for 
formal context as far as the “attribute” conceptual relation really exists in conceptual 
graphs acquired from natural language texts. Actually, as it is followed from our 
investigations, the “attribute” relation is not always good and even enough for formal 
context. Except the “attribute” conceptual relation some other relations must be 
analyzed in conceptual graphs to find objects and attributes needed for formal context. 

The main problem which arises in CGs – FCA applications is the problem of 
building formal concepts on conceptual graphs. Solution of this problem and the 
whole principle of applying FCA on textual data are closely depended on the real-life 
problems have been solved with FCA on textual data [12, 16]. In the sense of 
Information Retrieval these problems may be generalized to the fact extraction 
problem. Using FCA in its solution is based on that concept lattice built on textual 
data may be interpreted as storage of facts which can be extracted by using navigation 
in the lattice and interpretation its concepts and hierarchical links between them. 

One of the fields where Text Mining applications are growing rapidly is 
Bioinformatics. New term of Biomedical Natural Language Processing (BioNLP) has 
been appeared there [1]. This is stipulated by huge amount of scientific publications 
in Bioinformatics and organizing them into corpora with access to the full texts of 
articles. FCA has great potential to take up a challenge from such areas as BioNLP. 

In this paper we present the framework for conceptual modeling which has been 
used in on-going project of developing fact extraction technology on textual data. 

The next section of the paper contains brief description of FCA basics and 
conceptual modeling technique which is used in the framework. 

Section 3 is devoted to the framework; its structure and functionality are described 
there. 

 In the section 4 current experimental results of using framework on bacteria 
biotope textual corpus are presented and section 5 contains conclusion and planning 
future works. 

2 CGs – FCA modeling on natural language texts  

We are developing conceptual modeling technique which combines the usage of 
conceptual graphs and conceptual lattices from Formal Concept Analysis.  Consider 
some FCA basics needed for understanding the modeling technique. 
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2.1 Formal Concept Analysis basics 

There are two basic notions FCA deals with: formal context and concept lattice. 
Formal context is a triple = ( , , )G M IK	= , where G is a set of objects, M – set of their 
attributes, I G M⊆ ×  – binary relation which represents facts of belonging attributes 
to objects. The sets G and M are partially ordered by relations ф  and – , 
correspondingly: = ( , )G G	= ф , ( , )M M= – . Formal context may be represented by   

[0, 1] - matrix ,= { }i jkK	= in which units mark correspondence between objects 

ig G∈  and attributes  jm M∈ . The concepts in the formal context have been 
determined by the following way. If for subsets of objects A G⊆  and attributes 
B M⊆  there are exist mappings (which may be functions also) :A A Bʹ → and
:B B Aʹ → 1

 with properties of : { | , }A m M g m I g Aʹ = ∃ ∈ < >∈ ∀ ∈ and
: { | , }B g G g m I m Bʹ = ∃ ∈ < >∈ ∀ ∈  then the pair (A, B) that ,A B B Aʹ ʹ= = is 

named as formal concept. The sets A and B are closed by composition of mappings:
'' , ''A A B B= = ; A and B is called the extent and the intent of a formal context 
= ( , , )G M IK	= respectively. 

A formal concept is a pair (A, B) of subsets of objects and attributes which are 
connected so that every object in A has every attribute in B, for every object in G that 
is not in A, there is an attribute in B that the object does not have and for every 
attribute in M that is not in B, there is an object in A that does not have that attribute. 

The partial orders established by relations ф  and – on the set G and M induce a 
partial order ≤ on the set of formal concepts. If for formal concepts (A1, B1) and (A2, 
B2), 1 2A Aф  and 2 1B B–  then (A1, B1) ≤ (A2, B2) and formal concept (A1, B1) is 
less general than (A2, B2). This order is represented by concept lattice. A lattice 
consists of a partially ordered set in which every two elements have a unique 
supremum (also called a least upper bound or join) and a unique infimum (also called 
a greatest lower bound or meet). 

According to the central theorem of FCA [10], a collection of all formal concepts in 
the context = ( , , )G M IK	=  with subconcept-superconcept ordering ≤  constitutes the 
concept lattice of K .  Its concepts are subsets of objects and attributes connected each 

other by mappings Aʹ , Bʹ and ordered by a subconcept-superconcept relation.  
Although that level of abstraction makes FCA suitable for use with data of any nature, 
its application to specific data often requires special investigation. It is fully relevant 
for using FCA with textual data.  

                                                             
1)  More rigorous definition assumes that these mappings are different: :A Bϕ → , :B Aψ →

but it is not a matter of principle here.   
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2.2 FCA on textual data 

The main problem in applying FCA on textual data is the problem of building formal 
context.  If textual data is represented as natural language texts then this problem 
becomes especially important.  

There are several approaches to the construction of formal contexts on the textual 
data, presented as separate documents, as data corpora.  One, mostly applied variant 
of context is that its objects are text documents and the attributes are the terms in 
these documents [6, 7]. The main problem which can be solved with that formal con-
text and concept lattice is the problem of retrieving textual documents.  

Another variant of formal context is building directly on the texts. In the general 
case, various word combinations constitute its concepts and the number of such con-
cepts may be very large. An advantage of such variant is that this context contains 
potentially more information about texts than previous one and more general prob-
lems such as fact extraction problem can be solved on that formal context. The disad-
vantage of it is its great dimension and possible many pointless concepts. 

Restricting the dimension of formal context and giving it more semantics is doing 
by representing in it the various features of its source texts: semantic relations (syn-
onymy, hyponymy, hypernymy) in a set of words for semantic matching [12], verb-
object dependencies from texts [7], words and their lexico-syntactic contexts [16]. 

For building formal context, one needs to distinguish some of these lexical 
elements in texts as objects and attributes. There are following approaches to solve 
this problem:   

• adding special descriptions to texts which mark objects and attributes and partial 
order – this is usually done manually; 

• using semantic models of texts and corpus tagging [7]. 

We apply the second approach and use conceptual graphs for representing 
semantics of individual sentences of a text. 

2.3 CGs – FCA modeling process  

The whole process of CGs – FCA modeling has the following steps.  
1. Acquiring a set of conceptual graphs from input texts. Conceptual graph [22] is 

bipartite directed graph having two types of vertices: concepts and conceptual 
relations. These vertices are connected by arrows representing binary relations. 
Conceptual graphs can be created by our tool CGs Maker 2. Some details about it can 
be found in [13, 14].  

2. Aggregating the set of conceptual graphs. Aggregation is needed to exclude 
excessive dimension of conceptual models, not related to useful information. We have 
tested two ways of conceptual graphs aggregation: conceptual graphs clustering and 
restricting the number of conceptual graphs by identifying and excluding sentences 
which are not corresponded to the problem solving with the current technique. 

                                                             
2 The lightweight online version of CGs Maker for simple English and Russian texts can be 

found at http://85.142.138.156:8888 . 
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3. Creating formal contexts. One or several formal contexts are built on the 
aggregated conceptual graphs. The number of formal concepts and the method of 
building them have been determined in the solving problem.  

4. Building concept lattice. Having a concept lattice, it is possible to identify 
connections between the concepts according to the principle of "common – 
particular". Each concept, the node in the lattice is interpreted as the set of potential 
facts of certain level, which is associated with other facts. 

5. Fact extraction from concept lattice. Concept lattice is the data storage for fact 
extraction system. This system has domain oriented user interface for query 
processing and generating output. 

This paper reflects results of investigations corresponded to steps 1-3 of the 
process. On the step 4 we used standard open source tool for building and visualizing 
concept lattices [8] which we integrated into the whole modeling system. Creating the 
fact extraction system (step 5) is separate problem currently being under 
development. 

2.4 Usage of conceptual graphs 

The crucial step in the described process of CGs – FCA modeling is creating 
formal contexts on the set of conceptual graphs. At first glance, this problem has 
simple solution: those concepts which are connected by "attribute" relation have been 
put into formal context as its objects and attributes. Actually the solution is much 
more complex. To illustrate it consider conceptual graph for the sentence “Xylella 
fastidiosa is a gram-negative fastidious, xylem-limited bacterium” shown on Fig. 1.  
This sentence is from bacteria biotopes textual corpus [4] which we use for our 
method evaluation.   

  
Fig. 1. Conceptual graph for the sentence “Xylella fastidiosa is a gram-negative fastidious, 

xylem-limited bacterium.” 
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Conceptual graph on the Fig.1 has four conceptual relations “attribute” but only 
three of them indicate real objects and attributes for formal context. Using 
“fastidiosa” as object and “Xylella” as attribute in the formal context is wrong way 
because “Xylella fastidiosa” is known full name of this bacterium. Full names of 
bacteria have to be objects in the formal context devoted to bacteria. Word 
combinations denoting the names of bacteria must be recognized before conceptual 
graphs building. There is no other way of doing this than to use an external source of 
information, for example, the corpus tagging.  

We also realize the following rules for creating formal contexts on conceptual 
graphs. 

1. Not only individual concepts and relations, but also patterns of connections 
between concepts in conceptual graphs represented as subgraphs have been 
analyzed and processed. The pattern “agent - patient” is mostly frequent in biotope 
texts.   

2. The hierarchy of conceptual relations in conceptual graphs is fixed and taken into 
account when creating formal context. Such hierarchy exists on the Fig.1: relations 
“agent” and “patient” are on the top level and relations "attribute" belong to 
underlying level. Using this hierarchy of conceptual relations we can select for 
formal contexts more or less details from conceptual graphs. This makes 
conceptual graphs more power and flexible semantic model for FCA than n-grams 
or  collocations. 

3. FCA – model for fact extraction is domain specific. Domain information is also 
taken into account in conceptual graphs building. This information is from external 
resources – thesauruses or tagging of textual corpuses.  
Concrete implementations of these rules are in the section 4.   

3 Architecture and Functionality of the Framework 

Architecture of the CGs – FCA modeling framework is shown on the Fig. 2. Consider 
its main elements. 

Database. Database is very important part of the framework. We use relational 
database on the SAP-Sybase platform. It was built with CASE technology 
PowerDesigner™ [18] and may be scaled and expanded. Database stores texts, 
conceptual graphs, formal contexts and concept lattices. Special indexing is applied to 
textual data. 

Conceptual graphs building module. This module and several other modules 
constitute the NLP block of modules of the framework. They realize our algorithm of 
acquiring conceptual graphs from texts, visualization of conceptual graphs and their 
clusters, interaction with external resources including WordNet.  

English and Russian languages have been supported in the framework. The 
framework has internal dictionaries and may communicate with external ones.  

Representing of modeling results. Modeling results have been presented as 
visualization of conceptual graphs and concept lattices as in table and textual forms. 
Storing all objects in database allows analyzing its data and computing conceptual 
graphs and concept lattice characteristics.  
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Programming environment. Java is the main programming platform which is used 
in the framework. Some modules of NLP block have been written on PowerScript 
language of SAP-Sybase platform. 
 

 
 

Fig. 2.  Architecture of the framework 

4 Experiments and Results  

Experimental evaluation of CGs – FCA modeling technique has been carried out 
on the textual corpus of bacteria biotopes which is used in the innovation named as 
BioNLP Shared Task [4]. This innovation includes three IR tasks: the Bacteria Gene 
Renaming, the Bacteria Gene Interaction and the Bacteria Biotopes. The Bacteria 
Biotope task is formulated as consisting of two standard Text Mining tasks of Named 
Entity Recognition (NER) and Relations Extraction (RE) [20].  

Biotope is an area of uniform environmental conditions providing a living place for 
plants, animals or any living organism. According to [4] there are two types of entities 
to be extracted: the names of bacteria and their locations. We added third entity of 
pathogenicity of bacteria.  
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It is preliminarily clear that the task of extracting the names of bacteria and the task 
of extracting locations and pathogenicity have different complexities. For extracting 
the names of bacteria some words or collocations (Xylella fastidiosa) have to be 
analyzed in the text. Locations and pathogenicity may be represented by more 
complex and long word combinations. As for bacterium Xylella fastidiosa on the Fig. 
1, the example of its location is the following fragment from the text about it: “the 
bacteria … receive a safe environment and metabolites from the insect”. To extract 
“insect” as location of bacterium we need to analyze some relations between words in 
the sentence. This is done also through the use of conceptual graphs. 

 Biotope texts tagging includes full names of bacteria, its abbreviated names and 
unified key codes in the database. We add additional tags if special words (extreme, 
obligately, etc.) recognized in the texts. 

A BioNLP data is always domain-specific. All the texts in the corpus [4] are about 
bacteria themselves, their areal and pathogenicity. Not every text contains these three 
topics but if some of them are in the text then they are presented as separate text 
fragments. This simplifies text processing. According to these three topics of interest 
we construct three different formal contexts of “Entity”, “Areal” and “Pathogenicity”. 
They engender three different concept lattices which are connected each other. To 
join lattices we use facet technology [19]. 

Our solution of the task of Named Entity Recognition is supported by conceptual 
graphs. As it is illustrated above (Fig. 1) conceptual graphs can represent names of 
bacteria as named entities.  Named Entity Recognition also includes anaphora 
resolution. 

4.1  Anaphora resolution and noise reduction 

Anaphora resolution is the problem of resolving references to earlier or later items in 
the text. These items are usually noun phrases representing objects called referents but 
can also be verb phrases, whole sentences or paragraphs. Anaphora resolution is the 
standard problem in NLP.  

Biotope texts we work with contain several types of anaphora: 

• hyperonym definite expressions (“bacterium” -  “organism”, “cell” - “bacterium”), 
• higher level taxa often preceded by a demonstrative determinant (“this bacteria”, 

“this organism”), 
• sortal anaphors (“genus”, “species”, “strain”). 

For anaphora detection and resolution we use a pattern-based approach. It is based 
on fixing anaphora items in texts and establishing relations between these items and 
the objects in conceptual models we use. These objects are bacteria names for 
“Entity” context, mentions of water, soil and other environment parameters for 
“Areal” context and names and characteristics of diseases for “Pathogenicity” context. 

Corpus tagging is also used for anaphora detection.  In particular encoding bacteria 
(for instance bacterium Burkholderia phytofirmans is encoded as PsJN) is found from 
tagging and further used as its name in text processing. 

Noise is constituted by the text elements that contain no facts or cannot be 
interpreted as facts. Also noise consider the data that are deliberately excluded from 
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consideration, for example, information about when and by whom a bacterium was 
first identified. 

4.2 Data Processing 

We have selected 130 mostly known bacteria and processed corresponding corpus 
texts about them. Three formal contexts of “Entity”, “Areal” and “Pathogenicity” had 
built on the texts. They have the names of bacteria as objects and corresponding 
concepts from conceptual graphs as attributes. 
Table 1 shows numerical characteristics of created contexts.  
 

Table 1. Numerical characteristics of created contexts 

As it is followed from the table there is relatively small number of formal concepts 
in the contexts. This is due to the sparse form of all contexts generated by conceptual 
graphs  and noise reduction. 

4.3 Fact extraction  

 
Extracting facts from concept lattices is realized by forming special views 

constructed on the lattice and corresponded to certain property (intent in the lattice) or 
entity (extent in the lattice) on the set of bacteria. Every view is a sub lattice. It shows 
the links between concrete bacterium and its properties.  

An example of such view as the fragment of lattice is shown on Fig. 3. The lattice 
on the Fig. 3 contains formal concepts related to the following bacteria: Borrelia 
turicatae, Frankia, Legionella, Clamydophila, Thermoanaerobacter tengcongensis, 
Xanthomonas oryzae. Highlighted view on the figure corresponds to gram-negative 
property of bacteria. Such bacteria are resistant to conventional antibiotics.  

Using this view, some facts about bacteria can be extracted: 

• only three bacteria from the set, Thermoanaerobacter tengcongensis, 
Clamydophila and Xanthomonas oryzae, are gram-negative; 

• two gram-negative bacteria, Thermoanaerobacter tengcongensis and Xanthomonas 
oryzae, have the shape as rod; 

• one of gram-negative bacteria, Clamydophila, is obligately pathogenic.  
 

Context name  Number of  
objects 

Number of  
attributes 

Number of   
formal concepts 

Entity 130 26 426 
Areal 130 18 127 
Pathogenicity 130 28 692 
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Note that attribute obligately pathogenic was formed directly from the same two 
words in the text according to the rule of marking words denoting extreme situation.

 
Fig. 3. Example of view concerned gram-negative property of bacteria. 

We can compare our results with the known ones, most completely presented in the 
work [20]. Although we use the same corpus and some resembling methods (they use 
pattern-based approach and domain lexical resources) our results are different in fact. 
Our main result is not certain words extracted from texts as solution of NER and RE 
tasks but the whole information resource of concept lattice which is similar to 
ontology. So we resume that CGs – FCA modeling provides solving wider set of tasks 
than Named Entity Recognition and Relations Extraction, the set which corresponds 
to fact extraction problem.  

5 Conclusion and Future Work 

 This paper describes the first but very important stage of creating environment for 
performing experiments of CGs – FCA modeling in the project of creating fact 
extraction technology on natural language texts. Some parts of this project are under 
construction but current results demonstrate effectiveness of   CGs – FCA modeling. 

Conceptual graphs were recognized as valid low level conceptual model for 
creating high level such model of concept lattice. Using conceptual graphs, it is 
possible to control semantic depth of representing sentences in formal concepts by 
selecting certain levels (sub graphs) of graph structure. 

Among the topics of our future work there are the following. 
Now the verb-centric approach which we use in acquiring conceptual graphs is not 

fully applied for creating formal contexts. When conceptual graph has the pattern  
<concept>  - (agent) – <verb> – (patient) - <concept> the verb serves as condition 
which links  two concepts. In other patterns with other conceptual relations including 
attribute verbs play the same role. This opens the need to construct tricontexts on 
conceptual graphs. We plan to construct multidimensional data model on our database 
under SAP PowerDesigner™ CASE technology and apply OLAP for modeling 
tricontexts and triclusters.  
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We also plan to use SAP HANA Environment [21] for work with big textual data. 
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Abstract. In this paper an extension of tf -idf weighting on annotated
suffix tree (AST) structure is described. The new weighting scheme can
be used for computing similarity between texts, which can further serve
as in input to clustering algorithm. We present preliminary tests of us-
ing AST for computing similarity of Russian texts and show slight im-
provement in comparison to the baseline cosine similarity after applying
spectral clustering algorithm.
Keywords: annotated suffix tree, clustering, similarity measure

1 Introduction

The text clustering applications exploit two major different clustering approaches:
either a text is represented as a vector of features, and distance-based algorithms
(such as k-Means) are used, or the similarity between texts are computed and the
similarity-based algorithms (such k-Medoids or Normalized cuts) are used. While
the former requires to extract features from texts, the latter requires the defini-
tion of similarity measure. The other algorithms, such as Suffix Tree Clustering
[8] explore internal features for the text collection and find clusters straightfor-
ward. We will concentrate of the preliminary step of applying distance-based
algorithms, i.e. computing similarity between texts. According to [2], there are
several approaches to computing text similarity: there are string-based (which
include character-based and term-based), corpus-based and knowledge-based ap-
proaches. This project belongs to the characters-based approach, which means,
we do not take corpora data or semantics into account. We describe a new sim-
ilarity measure, which is based on the notion of an annotated suffix tree and
present an example of using this measure.

2 Annotated suffix tree

The suffix tree is a data structure used for storing of and searching for strings
of characters and their fragments [3]. An annotated suffix tree (AST) is a suffix
tree whose nodes are annotated by the frequencies of the strings fragments.
An algorithm for the construction and the usage of AST for spam-filtering is
described in [6]. Some other applications are described in [4, 5].



26 Ekaterina Chernyak, Dmitry Ilvovsky

2.1 Definition of AST

According to the annotated suffix tree model [4–6], a text document is a set of
words or word n-grams, which we will address as strings. An annotated suffix
tree is a data structure used for computing and storing all fragments of the
strings and their frequencies (see Fig. 1 for an example of the AST for the string
“mining”). It is a rooted tree in which:

– Every node corresponds to one character
– Every node is labeled by the frequency of the text fragment encoded by the

path from the root to the node.

.

Fig. 1. AST for string “mining”

The AST has two important proprieties: the frequency of a parent node is
equal to:

1. the sum of the frequencies of children nodes;
2. the sum of the frequencies of underlying leaves.

According to these properties we can calculate the frequency of the root: it
is equal to the sum of the frequencies on the first level of the AST. For example,
the frequency of the root of the AST in Fig. 1 is equal to 2+2+1+1 = 6.

2.2 Similarity measure

To estimate the similarity between two texts we find the common subtree of
the corresponding ASTs. We do the depth-first search for the common chains of
nodes that start from the root of the both ASTs. After the common subtree is
constructed we need to annotate and score it.

We annotate the common subtree in the following way. A new node of a
common subtree is annotated by two numbers:the minimum and the maximum
frequencies of the corresponding nodes of original ASTs.

Let us provide an example of common subtree construction and annotation.
Given two ASTs:



Annotated Suffix Trees for Text Clustering 27

– for two strings “mining” and “dining” in Fig. 2
– for one string “dinner” in Fig. 3

we construct the common subtree for them. There are three common chains,
which start from the roots: “D I N”, “I N”, “N”. All the nodes of the chain “D
I N” have frequencies equal to unity in both ASTs, so in the common subtree
the minimum and the maximum frequencies of all three nodes coincide and are
equal to unity. The chain “I N” occurs once in the AST in Fig. 3 and four times
in the AST in Fig. 2, hence the minimum frequencies are equal to unity and
the maximum frequencies are equal to four. The node “N” is annotated by four
in the AST in Fig. 2 and by two in the AST in Fig. 3. So its minimum and
maximum frequencies are equal to two and four, respectively.

Fig. 2. AST for strings “mining” and “din-
ing”

Fig. 3. AST for string “dinner”

Fig. 4. Common subtree of ASTs in Fig. 2 and Fig. 3

Following the general principle of the AST-based string to text scoring we
suggest to score the common subtree in several steps:

1. weighting each node by computing the mean between two frequencies. At this
step we can use different type of means, such as geometric mean or harmonic
mean. For the sake of simplicity we use further the arithmetic mean;

2. scoring every chain of the common subtree;
3. summing up all chain scores and standardizing them by dividing by the

number of chains;
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To score the chain we compute the sum of the node frequencies divided by
their parents frequencies, which is again divided by the length of the chain:

score(chain) =

∑
node∈chain

fnode

fparent

|chain| =

∑
node∈chain

(fnode
min +fnode

max )/2

(fparent
min

+fparent
max )/2

|chain|

For example, the scoring of the common subtree in Fig. 4 is computed as:

score(‘‘D I N’’) + score(‘‘I N’’) + score(‘‘N’’)

3
,

where

score(‘‘D I N’’) =

(1+1)/2
(4+9)/2 + (1+1)/2

(1+1)/2 + (1+1)/2
(1+1)/2

3
=

2
13 + 1 + 1

3
= 0.718

score(‘‘I N’’) =

(1+4)/2
(4+9)/2 + (1+4)/2

(1+4)/2

2
=

4
13 + 1

2
= 0.6538

score(‘‘N’’) =

(2+4)/2
(4+9)/2

1
=

6

13
= 0.4615

and the final scoring is:

0.718 + 0.6538 + 0.4615

3
= 0.6111

At this point the scoring of the common subtree is based on using only the
frequencies of the strings and their fragments. To make the scoring analogous to
computing tf -idf we can introduce the idf -like component to the scoring.

Let us think about a collection of texts. As a source for idf values we can
construct a global AST from the whole text collection. To construct the global
AST we split every text in strings and exclude from further computations re-
peating strings and construct the AST then from these unique strings. This way
we calculate not the frequencies of the strings, but the number of texts where
every string and their fragments occur, that is exactly the df ’s of all the possible
fragments of the texts.

To combine common subtrees and the global tree, we update the chain scoring
step:

score(chain) =

∑
node∈chain

fnode

fparent × dfnode

dfparent

|chain| ,

where df are extracted from the global tree.
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2.3 Construction of AST

It is possible to construct an AST straightforward form a set of tokens using quite
an obvious iterative algorithm, which requires splitting each token in suffixes and
adding them consecutively to the AST [5]. However, is is shown in [1], that it
is more time- and space-efficient to construct a suffix tree, using one of the
well-known algorithms and than annotate the tree with the frequencies.

3 Evaluation

We manually created the text collection for further testing of the proposed algo-
rithm. The collection consists of 50 documents in Russian, every 10 text devoted
to different definitions of the word “jaguar”: an animal, a car, a beverage, a film
or a sewing machine. We supposed, that the clusters we would achieve should
coincide with the predefined text classes, i.e. we should get five clusters, every
cluster corresponding to the initial class. We used the Shi-Malik algorithm [7]
with the default parameters to cluster the similarity matrices. Two approaches
to the similarity matrix construction:

1. the tf -idf transformation and the cosine similarity
2. the AST technique, presented above.

To compare these approaches we computed the number of errors in the
achieved clusters. Given a cluster we found the mode value of the class and
calculated how many documents do not belong to this class. The higher this
number is, the worse is the result of clustering. Using the cosine similarity and
Shi-Malik algorithm for finding five clusters, we achieved four perfect cluster and
one cluster, that contained six errors. Hence 44 texts were clustered correctly
and 6 were not. Using the AST technique, we got only 2 errors, which means
that 48 texts were clustered correctly. The results of clustering are presented in
Table 1.

Fig. 5 and Fig. 6 present the heat maps of both similarity measures and
reveal some issues of the suggested AST technique. First of all, when the AST
technique is applied to compute the similarity of a text to itself, the result is
not equal to unity. What is more, for different texts it results in different values.
Second, all the similarity values are more or less the same, there is no drastic
difference at all between the inside or outside classes values. These are the issues
to be solved in the future.

Table 1. Clustering quality

Accuracy # of errors

cosine similarity 0.88 6

AST similarity 0.96 2
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Fig. 5. Heat map of the cosine similarity
matrix

Fig. 6. Heat map of the AST similarity
matrix

4 Conclusion

We suggest a new text similarity measure, which is based on annotated suffix
trees. To estimate the similarity between text A and text B, one should construct
two annotated suffix trees, find the common subtree and score it. The scoring
can be extended by document frequencies, if a text collection is given. The pre-
liminary experiments show, that although the proposed similarity measure has
some clear advantages in comparison to the baseline cosine similarity, because
of being more robust, some formal aspects should be improved. For example,
currently the similarity of a text to itself is not equal to unity, which affects the
visualisation. Obviously, more experiments should be conducted to find other
limitations and possible improvements.
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Abstract. Formal concept analysis has been used to support informa-
tion retrieval tasks in many domains, in particular the traditional “by
keyword” document search with a conjunctive query interpretation. How-
ever, support for exploratory search or browsing needs new navigation
algorithms that allow users (i) to continuously update the current query
and (ii) to broaden as well as refine the result set. In this paper we
investigate a step-wise navigation algorithm that supports both broad-
ening and refinement operations. Our navigation operations maintain
some useful algebraic properties. We motivate our approach on a dataset
of wine reviews, which contains different facets of information.

Keywords: Information Retrieval, exploratory search, step-wise navigation, broad-
ening navigation, Formal Concept Analysis

1 Introduction

Formal concept analysis has been used to support information retrieval (IR) [1,
2] tasks in many domains [3, 4] and to implement different IR algorithms. The
traditional approach [5] to IR using formal concept analysis views the documents
as objects and their associated meta-data and extracted terms as attributes. The
concept lattice is then computed from these document contexts. Each concept’s
intent represents a possible query (interpreted as the conjunction of all corre-
sponding terms), with the extent forming the set of retrieved documents [5].

One particular IR task, and the one that we are interested in, is exploratory
search [6] or browsing [7, 8]. It is aimed at familiarizing the user with the underly-
ing data through serendipitous navigation, and so complements the traditional,
direct keyword lookup-based document retrieval. Browsing is supported in graph
structures by moving from vertex to vertex where each vertex represents the cur-
rent query [7]. Therefore, in order to implement browsing with concept lattices,
we need a step-wise navigation algorithm that allows users (i) to incrementally
update the current query and (ii) to restrict (i.e., move down in the lattice) as
well as broaden (i.e., move up in the lattice) the result set. In this paper we
focus on such step-wise navigation algorithms and in particular a broadening
navigation approach.
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Concept lattices can in principle be navigated directly, by following the sub-
concept relation to move from one concept to another concept in its direct
neighborhood [7]. However, this only allows for small navigation steps and thus
restricts the serendipitous nature of the browsing operation and becomes im-
practical for large lattices. Instead, we aim at large step navigation algorithms
that allow users to select and deselect arbitrary attributes and rely on the meet
and join operations to move between concepts [9].

Large-step navigation algorithms should ideally satisfy a number of proper-
ties that ensure that their behavior is transparent to users. First, they should
be Markovian, i.e., rely only on the current query concept and the new selection
(or de-selection) to determine the next concept as result of the navigation step.
This means that users do not need to remember the navigation history in order
to understand the results. Second, they should be Abelian, i.e., the order of the
navigation steps should have no effect on the next navigation result. This allows
users a certain degree of freedom in how they navigate through the underlying
document collection. Finally, they should have the single focus property, i.e.,
each query result can be represented by a single concept in the lattice. If the
concept lattices constructed from the document contexts were Boolean lattices
then these properties would follow automatically; however, this is not the case
for most document collections.

If we follow a purely conjunctive query interpretation (i.e., consider all query
terms to be connected by the AND operator), we can use the lattice’s meet oper-
ation as implementation of the AND operator [10] in a document-term concept
lattice. Moreover, the navigation algorithm is then by construction Markovian
and Abelian, and has the single focus property. However, this does not pro-
vide us with disjunctive queries, or, with any broadening navigation operations.
We therefore investigate broadening navigation approaches that maintain only
a single focus concept.

It remains unclear what exactly constitutes broadening navigation, and there
are several different operations that extend the query result and can be consid-
ered as “broadening”.

– We can de-select a previously selected term; under a purely conjunctive query
interpretation the new focus is then computed as the meet of the introducing
concepts of the remaining terms (although Lindig [11] has described an op-
timized implementation). Note that the new focus has not necessarily been
visited during the previous navigation steps (so de-selection is not always an
undo operation), but it is a super-concept of the old focus, and conjunctive
navigation with selection and de-selection is still Markovian and Abelian.

– We can use a separate concept to represent each argument of an OR operator;
the result of such a disjunctive query is then the union of all corresponding
extents [12]. However, this disjunctive navigation gives up the single focus
property and is no longer Abelian, since the order of AND and OR operators
matters.

– We can also retrieve or insert a query concept [13] into the lattice, where
the query concept’s intent contains the current search terms and retrieve the
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USA South	Africa Fruity Berry Cabernet	
Sauvignon Merlot Pinotage

wine-bottle1 X X X
wine-bottle2 X X X X
wine-bottle3 X X X
wine-bottle4 X X X

{country} {review	text} {varietal}

Fig. 1: Example context derived from wine review data, wine bottles are objects with
review text, review year, vintage, location and winery as attributes. Attribute facets
are indicated by the color of the column.

parents of the query concept (called the query generator), as a generalization
[14]. Additionally, more children of the query generator can be included to
broaden the results further. These are referred to as cousin concepts [14].

– We can use the lattice’s join operation as a generalization operation; if the
generalized concepts are determined by objects (rather than attributes) this
is also known as object-based navigation [15]. This navigation has the single
focus property by construction, and is still Markovian and Abelian (when
it is not mixed with refinement operations, otherwise lattice distributivity
is also required to ensure the Abelian property), but does not implement
the Boolean OR operation: due to the closure operations in the lattice con-
struction, the extent of the new focus typically contains additional objects.
This could be seen as a feature [15] but in contexts where the attributes rep-
resent different categories or facets [16] this is prone to overgeneralization.
Overgeneralization refers to the focus moving too high in the lattice (pos-
sibly to top) which would result in a decrease of precision for the query’s
results. In particular, if we have functional facets (where each object can
have only a single attribute for a given category, such as year of birth), the
join will effectively cancel the selected attributes from this category. The
join operation is thus unsuited as an intuitive generalization operation. We
therefore investigate an alternative generalization operation that makes use
of only subsets of the extents of the attribute concepts of the selected items,
in order to provide a more intuitive broadening navigation.

Our approach is motivated from navigation in a dataset of wine reviews
extracted from [17]. The full dataset contains over 16000 objects. However, we
use a small example of the dataset in order to make the drawing of the concept
lattices feasible. For each wine bottle we have as attributes, the winery, the
vintage, the reviewer, the review year as well as the location and keywords
extracted from the reviews. We use individual wine bottles as objects in the
context and assign all other fields as the attributes. Figure 1 provides an example
of the constructed context for this dataset. This dataset contains functional
facets, such as the country, where each wine bottle can originate from only one
country.
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In this paper we provide a brief overview of information retrieval tasks and
navigation in concept lattices (Section 2). We then illustrate our refinement
selection and de-selection approach (Section 3) where the de-selection operation
reverses a refinement selection. We define a single-focus boolean OR navigation
operator, followed in Section 5 by an intuitive generalization operation which
prevents the full object set in the lattice from being returned. Additionally in
Section 5 we discuss an approach for finding similar objects within the concept
lattice.

2 Information Retrieval and Navigation using Concept
Lattices

There have been many approaches to supporting information retrieval tasks us-
ing concept lattices, some of which extend to disjunctive queries and broadening
approaches.

Codocedo et al. [14] propose an information retrieval approach using con-
cept lattices where queries are answered using the cousin concepts of the query
concept. The query concept is inserted into (or identified in) the concept lattice
with a placeholder object and all the attributes that form a part of the current
query [13]. The superconcept of the query concept is then referred to as the query
generator. The cousin concepts of the query concept refer to the subconcepts of
the query generator. The cousin concepts and the query generator are used to
implement a broadening approach in the concept lattice [14]. The query’s result
is then returned as the union of the cousin concepts’ extents.

Ferré [18] uses a navigation technique where a generalization is similar to
our de-selection (it does not need to take place in any particular order) and de-
selection refers only to removing the last selected item (e.g., an undo operation).

Godin et al. [8] described an iterative retrieval algorithm which maintains
a focus concept whose extent is the retrieval result. Initially, the focus is the
lattice’s top element; in each iteration the user moves it to an adjacent concept,
by adding (removing) an attribute (not) in the intent of a concept directly above
(below) the current focus. However, this navigation style is too incremental,
because the focus can move only one level at a time, and too constrained, because
the user can only choose attributes from the intents of the directly adjacent
concepts, and has no indication which choices are hidden behind paths not taken.

Lindig [9] introduced a semi-constrained navigation algorithm where, the fo-
cus can be refined by selecting any attribute from any concept (except ⊥) below
the focus, provided the attribute is not already in the focus’ intent. The focus is
then updated by computing its meet with the attribute concept. A restriction on
selectable attributes prevents navigation into dead ends, and ensures that each
query refinement also refines the query results.

Fischer [15] exploited the duality of concept lattices and introduced object-
based navigation; here, selection of an object not in the focus’ extent is a widen-
ing step that is implemented via the join.
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Lindig [11] uses object-based navigation to implement relevance feedback ;
selecting an object in the focus’ extent selects all attributes in the intent of its
object concept.

3 Refinement Selection and Deselection

Refinement operations in the lattice can be computed using the meet operation.
For step-wise navigation, we maintain a current focus concept at each navigation
step. The focus can be refined with a new selection by calculating the meet of
the current focus and the attribute concept of the new selection.

Additionally, items available for selection can be restricted to those that have
a non-bottom meet with the focus, ensuring that a selection never returns an
empty extent.

Because of the duality in the lattice, we might expect that the de-selection
(removing a previously selected item) can be implemented by the join (least
upper bound) operation, however this is not the case. Intuitively the de-selection
of the most recently selected item should return the focus concept to its previous
position, undoing the selection. However, computing the join of the focus with
the attribute concept of the new de-selection will cause all previous selections to
be removed, except the attribute we are de-selecting, which is counterintuitive.
Therefore, in order to reverse a single selection operation we need to recompute
the focus as the meet in the lattice from all still-selected items.

Our de-selection performs essentially the same operation as illustrated by
Lindig [11], although Lindig optimizes this operation by making use of the search
path in order to compute the new focus concept. Note that de-selections do not
always need to take place in the same order as the initial selections. The de-
selection operation can return a focus which has not been visited during the
previous navigation steps. De-selection is therefore not only an undo operation.

4 Boolean Disjunctive Selection

The meet operation in the lattice satisfies conjunction between selected items.
The meet of the attribute concept of item a (µ(a)) AND the attribute concept
of item b (µ(b)), results in a concept whose intent contains both items a AND
b. However, boolean OR navigation, where an attribute must only apply to at
least one object is not supported by either the meet or join operations.

Priss [12] makes use of a boolean disjunctive query operation which returns
the union of the extents of the concepts that are retrieved for each of the items
in the query when selected individually. This approach requires more than one
focus to generate the query’s result.

Codocedo et al.’s approach [14] (illustrated in Figure 4) does not implement
a purely disjunctive query operation as the query generators are not necessarily
the attribute concepts of the items selected for the disjunctive query.

In our approach (Figure 3) we alter the underlying context table in order to
support the disjunctive navigation and maintain the single-focus property. By
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updating the underlying context we are able to support further navigation steps
(refinements or generalizations) and maintain the disjunctive queries using only
a single focus concept.

Fig. 2: Full concept lattice generated from the wine data context in Figure 1. The
attributes are generated from different facets such as wine varietals and the objects are
the individual wine bottles. Lattice generated with Concept Explorer [19]

In order to compute the boolean OR of two items, a and b, we merge the
items in the underlying context table into a new attribute a OR b. We compute
the introducing concept of the newly created merged item (µ(a or b)) as the new
focus. Our approach therefore returns the same query results as those that would
be obtained in [12] for a single disjunctive query with no consequent navigation
steps.

Figures 2 and 3 illustrate our approach. Figure 2 shows the initial concept lat-
tice generated from the unaltered context. However, if we select item “Cabernet
Sauvignon”, the focus will be the meet of > and the attribute concept of “Caber-
net Sauvignon” (resulting in the attribute concept of “Cabernet Sauvignon”).
Selecting “Merlot” for a boolean OR operation, the context will be updated to
add the combination of the two attributes to the context and the updated lattice
will appear as in Figure 3.

The join of the focus and the attribute concept of “Merlot” would return
the top concept in the lattice and our result-set would contain wines of other
varietals (such as “Pinotage”) which is undesirable. By using the boolean OR
operation we are able to retrieve all wines that are only of the “Merlot” OR
“Cabernet Sauvignon” varietals and the attributes which these wines possess.

Note that this approach is similar to the use of conceptual scales in the
concept lattice [20] for multi-valued attributes (such as prices). However, instead
of using pre-defined scales, our scale is generated automatically when the user
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Fig. 3: Full concept lattice generated from the wine data context in Figure 1; where
attributes “Cabernet Sauvignon” and “Merlot” have been selected for boolean OR
navigation. A new concept with attribute “Cabernet Sauvignon or Merlot” has been
inserted into the lattice. Lattice generated with Concept Explorer [19]

makes a boolean OR selection of an item in the dataset. The scale is therefore
interactively created and we update the context on-the-fly.

5 Broadening Navigation Approach

The join operation supports broadening navigation, however, if the extents of
both concepts are large then the join is likely to overgeneralize and can result in
the top concept (>) thereby losing all previous navigation steps and resulting in
a low precision for the constructed query.

In order to support a broadening selection, that does not overgeneralize and
return a concept with a large extent (and little or no common attributes) result-
ing in a low precision, we compute the join from only a subset of the objects in
the full extents of the two concept selections. If the join of the two concepts is
not > then we return their join, otherwise we recompute the join after removing
one or more objects, until the join does not result in the top concept.

5.1 Generating Candidate Focus Concepts

Our broadening approach results in an updated focus that shows attributes
which are common to some of the objects in the current focus and some of the
objects in the attribute concept of the new item (µ(b)) selected for broadening.

For example, in our wine review dataset if we select winery a for refinement
and then broaden on winery b, our updated focus will show which wine char-
acteristics (text from reviews etc.) are common to some bottles produced at
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Fig. 4: Query concept with intent “Merlot” and “Cabernet Sauvignon” inserted into
the concept lattice. Lattice generated with Concept Explorer [19]

winery b and some bottles produced at winery a. The join would reveal only
characteristics that are common to all wine bottles from winery a and winery
b, and since the set of all bottles from winery a and winery b it is likely to be
large, the join risks navigating to top (>).

If the join does not return >, we return the join concept as the new focus,
otherwise we traverse the lattice with a top-down depth-first approach using
the focus as starting point. For each new concept in this traversal we then also
perform a top-down depth-first traversal starting at µ(b). We compute the join
of every concept derived from these iterations as candidate focus concepts for
the next navigation step as shown in Algorithm 1.

Note that the amount of candidate focus concepts could be large and there-
fore we need to select a new focus from this pool in order to maintain only a
single focus.

5.2 Selecting a new Focus Concept from the Candidate Focus
Concepts

We choose a single focus from the generated set of candidate focus concepts. If
a join for the previous focus (a = (A,B)) and the introducing concept of the
selection (b = (C,D)) that is not the top concept in the lattice exists then we
return the join concept, otherwise if the join results in the top concept then we
want to return the highest concept (with the largest extent) such that at least
one object from concept (a) is present and at least one object from concept (b)
is contained in the extent.



40 Gillian J. Greene and Bernd Fischer

Data: Current focus concept f, and attribute concept of selected item b, µ(b)
Result: Focus concept candidates for broadening navigation
iterator = top down traversal starting at f
while iterator.next is not null do

f subset = iterator.next
inner iterator = top down traversal starting at µ(b)
while inner iterator.next is not null do

µ(b) subset = iterator.next
concept = join of µ(b) subset and f subset
add concept to candidate focus concepts

end

end
Algorithm 1: Computing candidate focus concepts for our broadening nav-
igation operation. Join operations are computed using only a subset of the
objects in the extents of the attribute concepts of the selections.

We therefore return the concept (c = (E,F )) which results in the highest
score where the score is computed as

score = |E| −
∣∣|A| − |C|

∣∣ where |A| > 0 and |C| > 0.
Our broadening operation therefore generalizes as much as possible without

losing all previous selections and navigation steps and removing all previous
navigation steps (navigating to >).

6 Finding Similar Objects

Another method of generalizing from a single object in the dataset is to find a
group of related or similar objects. To find objects that are similar to a selected
object in the dataset we introduce a more like this operation. For example, if we
want to find bottles of wine that are similar to a bottle that we have previously
tried (i.e. generalize from a single wine bottle), we can apply the more like this
operation to shift our focus to a concept that contains similar bottles, without
the user needing to be aware of any of the attributes of the wine.

All concepts in the lattice in which the object of interest appears in the
extent can be considered to present similar objects. However, in multi-faceted
data, we are interested in finding a similarity between the objects in comparable
facets (e.g, wine bottle 1’s origin and wine bottle 2’s origin). We also restrict the
operation to returning results from only a single concept in the lattice so that all
subsequent navigation steps can continue after a more like this’ generalization
operation.

Since not all facets can be used to compare objects, for example being re-
viewed by the same wine reviewer may not imply that two wine bottles are
similar, we use only relevant facets (such as the wine review text and varietal)
to compare objects. Various objects in the lattice will be similar across different
dimensions. We look at descriptors from relevant facets of the object that are
introduced lower in the lattice (are more specific) and include as many of these
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as possible in the meet calculation to derive the new focus. However, if specific
terms result in the meet returning only the original object of interest then we
remove these terms in order to move the focus up and generate a larger extent.

Calculating the size of the extent of the attribute concept can provide a
kind of TF/IDF [21] measure for the attribute in the entire corpus of objects.
If the extent of an attribute concept is large, then the objects in that extent
are unlikely to be very similar, since the attribute can be considered to be less
specific as it applies to a large portion of the corpus.

Fig. 5: Finding Similar Objects in a Concept Lattice. The object of interest is indicated
in red, its attribute concepts are labeled 1,2 and 3. Similar objects (bottles 3 and 4)
are indicated in green.

Figure 5 provides an example of our approach to finding similar objects. Wine
bottle 2 (indicated in red) is the object of interest. The introducing concepts of
the attributes of wine bottle 2 (berry, south africa, fruity, cabernet sauvignon)
are indicated in blue. The meet of all three of these concepts would lead only to
wine-bottle 2. Therefore the concept with the smallest extent is removed from the
meet set first in order to move the focus up. Since concepts 1 and 2 both have an
equal extent size, we use the size of the intent in order to decide which concept to
remove from the meet calculation. Concept 1 provides two introducing attributes
and so we remove concept 2 from the meet set. The meet of concepts 1 and 3
returns only wine bottle 2 (providing no similar wine bottles) and so concept 1 is
subsequently removed from the meet set, leaving only concept 3. Therefore, wine
bottles 3 and 4 are considered similar to wine bottle 2 in our approach because
according to their reviews they all share flavors of “berry”. Although bottle 1
can also be considered similar to wine bottle 2 as they both share attribute
(“Merlot”), our approach favors the more general concept (concept 3) so that
the updated focus has a larger extent, including more similar objects.
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7 Related Work

There have been many applications of concept lattices in the information re-
trieval domain [22], for example, the FaIR [12] and Credo systems [5].

The FaIR information retrieval system [12] combines a lattice-based the-
saurus approach with boolean queries. The lattice-based thesaurus is used to
generate the query language. Terms from each facet are separated into different
lattices, unlike in our approach where the term and the facet name are used to
represent a term in a single lattice. The thesaurus is used to add synonyms to
the lattice so that queries with a wider vocabulary can be handled.

Credo [5] facilitates the exploration of web search results. Index terms from
each retrieved search result are extracted from the documents. Credo supports
refinement of the search results by selecting additional terms. Initially the pre-
sented information is derived from the lattice’s top element and possible refine-
ments are presented to the user. These refinement terms can then be selected to
display a more specific set of search results and refine the initial query. Credo
only includes support for refinement navigation.

8 Conclusions

In this paper we have discussed step-wise refinement and broadening navigation
approaches in concept lattices that maintain the single focus property. We have
developed a broadening navigation algorithm that makes use of subsets of the
extents of two concepts in order to prevent the join from resulting in the top
concept in the lattice. We have modified the disjunctive navigation technique
to allow only a single focus concept to be stored and used to generate the re-
sults of the disjunctive query, allowing consequent broadening and refinement
navigation steps to take place. We have discussed refinement navigation in con-
cept lattices and our de-selection operation which is able to reverse refinement
selections and does not restrict the order of the de-selection operation. Our nav-
igation approaches can be used to facilitate exploratory search in large concept
lattices and allow subsequent refinement, broadening and boolean OR navigation
operations to take place.
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Abstract. Automatic extraction of information about authors of texts (gender, 
age, psychological type, etc.) based on the analysis of linguistic parameters has 
gained a particular significance as there are more online texts whose authors ei-
ther avoid providing any personal data or make it intentionally deceptive de-
spite of it being of practical importance in marketing, forensics, sociology.  
These studies have been performed over the last 10 years and mainly for Eng-
lish. The paper presents the results of the study of a corpus of Russian-language 
texts RusPersonality that addressed automatic identification of the gender of the 
author of a Russian text using mostly topic-independent text parameters. The 
identification of the gender of authors of texts was addressed as a classification 
as well as regression task. For the first time for Russian texts we have obtained 
the models classifying authors of texts according to their gender with the accu-
racy identical to the state-of-the-art one.  

Keywords: authorship profiling · corpus · stylometry · text classification · re-
gression · gender attribution 

1 Introduction 

In recent years, exponential increase in textual information has sparked interest in 
automatically predicting users’ personal information (gender, age, personality traits 
and so on). This field of research is often referred to as authorship profiling. Automat-
ic prediction of such information has various applications in the fields of forensics, 
business intelligence and security.  

The general algorithm for solving this problem is as follows:  
1) Collecting a corpus of texts with metadata containing information about their 

authors; 
2) Designing a list of text parameters, linguistic labelling of a corpus and extraction 

of numerical values of selected text parameters; 
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3) Designing a mathematical model to detect a certain personality trait based on 
qualitative values of texts and evaluation of their accuracy.  

This area of research has been rapidly developing. There have been contests to find 
most accurate techniques for categorizing texts according to their authors’ personal 
information [10]. 

One of the most important characteristics of authors of texts is their gender, i.e. 
there are a lot of papers on automatic detection of personality traits using texts. Re-
search in identifying author’s gender started with extensions of the earlier work on 
categorization and classification of text [7]. Using the various methods and features, 
researchers have automated prediction of an author’s gender with accuracies ranging 
from 80% to 90%. [1;2;4;5;12]. For instance, the winners of PAN 2015 obtained 
models to classify texts according to the gender of their authors with the accuracy as 
high as 0.97 for Danish and Spanish and 0.86 for English [10]. 

There are still a lot of issues to be addressed and selecting the parameters to study 
seems most crucial. Different groups of text parameters were used which can be ex-
tracted using NLP tools such as content-based features (bag of words, words n-grams, 
dictionary words, slang words, ironic words, sentiment words, emotional words) and 
style-based features (frequency of punctuation marks, capital letters, quotations, to-
gether with POS tags) as well as feature selection along with a supervised learning 
algorithm (see [10] for review). Different research including the one mentioned above 
have used the parameters of the frequency of words of different topics but it is obvi-
ous that the resulting models might not be appropriate to use for corpora of texts of 
other genres. We are also cautious about the fact that «the reported performance 
might be overly optimistic due to non-stylistic factors such as topic bias in gender that 
can make the gender detection task easier» [12, p. 78]. Therefore it is essential that 
the high-frequency parameters less dependent on a particular topic and genre are used.  

Most studies of the classification of texts according to the gender of their authors 
have been conducted using English texts and there have been only a few studies deal-
ing with other languages (see [3] for details), especially Slavic ones.  

The author’s gender is known to be explicitly expressed in Russian texts if a verb 
in a sentence is in the past form and the subject is a singular first-person pronoun “я”. 
Compare: "Прошлой зимой я ездила в Альпы" (a female speaker); "Прошлой зи-
мой я ездил в Альпы " (a male speaker). If the subject is not the pronoun "я" or if 
the verb is not in the past form, the gender of the speaker is not explicit. Compare: "Я 
поеду в Альпы" (the gender of the speaker is not explicit). It is worth emphasizing 
that the existence of grammatical forms which reflect the speaker’s gender does not 
automatically make gender identification in Russian texts a trivial task. In Russian 
“the gender of the speaker” is explicit in a statistically insignificant number of state-
ments. Any non-first-person narrative does not indicate the gender of its author. Be-
sides, it is easy for the author to imitate the speech of an individual of the other gen-
der using the above forms. Therefore it is only by relying on these parameters that the 
gender of the author can be identified particularly in a forensic context.  

In our lab, we focus on identifying the gender of authors of Russian texts using dif-
ferent methods of data analysis and different sets of text parameters. The basic as-
sumptions of our research rely on issues facing forensic analysis, i.e. we use relatively 
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short texts (150-300 words) as material for training and testing models and the text 
parameters were relatively topic-independent and cannot be consciously controlled 
and imitated and quantifiable and extracted by means of different NLP tools.   

2 Design of the study 

2.1 Dataset  

For this study, we used corpus “RusPersonality” which consists of Russian-language 
texts of different genres (e.g. description of a picture, essays on different topics, etc.) 
labelled with information on their authors (gender, age, results of psychological tests, 
and so on). As of now, the corpus “RusPersonality” contains 1 867 texts by 1 145 
respondents (depending on the type of a task, they wrote one or two texts). Overall 
corpus contains about 300 000 words. The average length of texts was 230 words. 
Most of the respondents were students of Russian universities. For experimental stud-
ies of automatic identification of an author’s gender we selected only students’ texts 
so that other factors (age, education level, etc.) do not have any influence on gender 
and linguistic text parameters. Selections in all of the experiments were balanced by 
gender. The selections in all the experiments were balanced by gender.  

2.2 Feature set 

We employed different text parameters that are relatively topic-independent. 
 
Morphological features: 

─ POS tag features, which mainly represent a particular part of speech for every word 
in a given text: the number of nouns; the number of numerals; the number of adjec-
tives; the number of prepositions; the number of verbs; the number of pronouns; 
the number of interjections; the number of adverbs; the number of рarticles, the 
number of conjunctions, the number of participles, the number of infinitives, the 
number of finite verbs (were extracted in different experiments using a morpholog-
ical parser by XEROX, pymorphy 2 library script, morphosyntactic parser [11]);  

─ Derivatives of the coefficients which were different relationships of parts of 
speech: Treiger index, dynamics coefficient, 27 in total [9], [13];  

─ POS bigrams extracted using a morphological parser by XEROX [8];  

1. Syntactical features (60): 

─ Synto – frequencies of different types of syntactic relationships between heads and 
dependents. Syntactic structure of sentences was analyzed as a dependency tree 
and extracted using a morphosyntactic parser [11]; 

─ number of sentences of different types: compound and complex, etc. (extracted 
manually); 
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2. Punctuation features – the number of commas, exclamatory marks, the number of 
question marks; the number of dots; the number of emoticons etc. extracted by 
means of a specially designed script; 

3. Lexical features – lexical diversity indices extracted using online service istio.com 
and EmoDicts – frequencies of words denoting different types of emotions (e.g., 
“Anxiety”, “Discontent”, the total of 37 categories, see [6] for details). 

2.3 Methods 

We have addressed automatic detection of an author’s gender as a regression and text 
classification task. Logistic regression was designed using IBM SPSS Statistics soft-
ware.  

Basically, the prediction of gender and age of the author of a text document is 
made by machine learning algorithms. Independent of the classifier used (see Section 
IV-D), the input consists of a large list of features with appropriate values and a cor-
responding classification class. The class is used to train the algorithms if the docu-
ment is part of the training set, as well as for evaluating if the document is part of the 
test set. To determine the best working algorithm for this approach, several commonly 
used methods have been tested, which are well studied and have been used extensive-
ly in several text classification tasks. In particular, we used Gradient Boosting Classi-
fier, Adaptive Boosting Classifier (adaBoosting), ExtraTrees, Random Forest, PNN 
(sigma = 0.1), Support Vector Machine with linear kernel (SVMs), ReLU (1 Hidden 
Layer with 26 neurons). Python libraries were used for learning the classification 
models: scikit-learn fitted with machine learning methods and keras for designing 
neural network models (http://scikit-learn.org/, https://pypi.python.org/pypi/Keras). 

3 Results 

3.1 Regression models 

1. First experiment. For a pilot study, 150 texts from 75 participants (26 males, 49 
females) were selected with the average number of words being 166. There was a 
total of 75 text parameters all of which are relatives values that is correlations of nu-
merical values of different text parameters (part-of-speech correlations, e.g. 
(vfin+vinf)/noun, adj/(adv+pronadv), correlations of the number of types of various 
syntactic structures and so on) [9]. Ratios, i.e. relative frequencies, were used as the 
parameters in order to refrain from the dependence on the length of the text.  

In order to estimate the closeness and direction of the linkage between the parame-
ters of the text and personality and to establish the analytical expression (form), corre-
lation and regression analysis was used based on modern statistical data visualization 
software. The main aim of the study was to establish a function dependence of a con-
ditional mean of the result property (Y) (gender) on the factor properties (х1, х2, …, 
хk), which are the parameters of the text. Therefore the initial regression equation, or a 
statistical model of the relationship between the author’s gender and quantitative pa-
rameters of the text is given by the function 
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 ( ) ( )1 2  ,  ,  ,  ,nY x f х х х= …  (1) 

where n is a number of factors included in the model; хi are the factors that influence 
the result Y. 

In order to determine the characteristics of and type of connection between the text 
parameters and individual characteristics of the author, a correlation analysis was 
performed (р < 0.05) using the software IBM SPSS Statistics. We established a num-
ber of correlations between the text parameters and the author’s gender (0 – woman, 1 
– man). The following correlations (p < 0.05) are found: the number of content words 
/ the number of function words (0.258); the number of nouns / the total of words 
(0.252), the number of function words / the number of nouns (0.297), (pronouns of all 
types + prepositions + pronominal adverbs) / the total of words (-0.269) and so forth. 

The accuracy of the model assessed on test corpus is ~60%. 
2. Second experiment. The study [8] is a follow-up of the search for the text pa-

rameters independent of its subject matter and consciously uncontrolled by the author 
and therefore impossible to imitate. As the analysis of scientific literature suggests, 
these are frequencies of sequences (bigrams) of parts of speech. The research using 
English-language materials has proved the analysis of the frequencies of different 
bigrams in texts to be efficient in authorship profiling [14]. 

96 texts were used for the study which were randomly selected from RusPersonali-
ty corpus. The frequencies of POS bigrams in each text (227 types of bigrams were 
overall identified) were calculated, bigrams were then selected which are found in no 
less than 75% of the analyzed texts. 

The only bigram found to have a significant correlation with the gender of the au-
thor of the text is prep_noun bigram. Its Pearson’s correlation coefficient is 0.215. 
Therefore, it can be stated that there is weak linear connection between the propor-
tions of prep_noun bigrams in the text and the gender of its author, males typically 
score more on this parameter. 

Selecting different types of linear functions revealed that this dependence is most 
accurately described by a four-parameter linear regression.  

The model was tested on test set (texts not used for designing the model, 10 written 
by males, 10 written by females, mean length = 161 word). The model was found to 
be 65% accurate. It also should be noted that the model was considerably better at 
distinguishing females than males. 

3. Third experiment. A number of the text parameters correlated with gender of 
their authors allowed us to design a regression models [8;9]. However, testing of the 
quality of the models showed that this type of approximation yields a low level of 
accuracy as the parameters of texts by individuals of different gender are usually in 
overlapping ranges. This makes it impossible to design a functional model as part of a 
multiparameter regression. Therefore, it was decided to design a few regression mod-
els instead. In order to design regression models, 1090 texts by 545 authors were ran-
domly selected (two texts by each respondent) from RusPersonality. 

The text parameters were only those that were not consciously controlled: indica-
tors of lexical diversity of a text, proportions of parts of speech, and different correla-
tions of parts of speech (a total of 78 parameters). 
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For each text parameter a regression model was designed based on an optimal se-
lection considering the sign of a correlation coefficient and exclusion of statistical 
outliers. Let us show the suggested approach using an example of 5 text parameters 
correlated with the gender of an author (p<0.05): TTR (type-token ratio, r = 0.390), 
formality (r = 0.315), a proportion of prepositions and pronoun-like adjectives (r = 
0.243), proportion of the 100 most frequent Russian words in a text (r = -0.322); a 
ratio of function words to content words in a text (r= -0.295). 

In order to properly estimate the obtained result, let us determine the average 
arithmetic values from the solution of the five equations:  

 ( )1 0.669 2.622GENDER TTR= − + , (2) 

 ( )2 0.637 0.971 GENDER Formality= − + , (3) 

 ( )3 0.188 0.0432  GENDER preposition pronoun like adjective= − + + − , (4) 

 ( )4  1.500 0.0303 GENDER Frequent= − , (5) 

 ( )5  1.392 0.0229 GENDER Function= −  (6) 

In order to properly estimate the obtained result, let us determine the average 
arithmetic values from the solution of the five equations. 

In order to estimate the suggested approach, we used a corpus of texts with contribu-
tions from 553 individuals (368 women, and 185 men, while two texts from each 
respondent were considered as one text). Their topic and length were identical to 
those used to design the regression models. Gender was correctly identified in 65% of 
women and 63% of men. Thus, the accuracy of the approach was 64%. 

4 Classification models 

For the current research we have chosen 556 respondents and each of them wrote two 
texts (a description of a picture and a letter to a friend). Each of two texts were joined 
and considered as one text with average length of 350 words. All the texts were split 
into the learning (80%), cross-validation (10%) and trial (10%) samples. We used 
different groups of features, in total 141 features: 
1) Emomarkers – psycholinguistic markers of emotiveness based on morphological 
features [8]; 
2) EmoDicts – frequencies of emotional words (e.g., “Anxiety”, “Discontent”, the 
total of 37 categories [6]); 
3) Litvinova – a set of parameters used in [9] which are ratios of PoS frequencies, 
number of sentences in a text, number of clauses, number  of exclamation marks etc. 
4) PoS – frequencies of part-of-speech (nouns, adjectives, adverbs, pronouns, numer-
als, particles, prepositions, verbs, conjunctions) [11]; 
5) Sinto – frequencies of different types of syntactic relationships between head and 
dependents [11]. 
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Comparative analysis of different machine learning algorithms has shown that 
ReLu is the most efficient classification algorithm with the F-score of 0.74 (see Table 
1). 

Table 1. F-scores for different classification algorithm 

Model  Feature selection techniques Mean F1-score (25 cycles) 
Gradient Boosting imp_quarter 0.72 
adaBoosting imp20 0.71 
ExtraTrees imp10 0.7 
adaBoosting common 0.7 
Random Forest imp10 0.7 
PNN(sigma = 0.1) imp10 0.68 
SVM PCA (30) 0.66 
ReLU (1 Hidden Layer 
with 26 neurons) imp10 0.74 

In order to understand which groups of parameters yield the most accurate result, 
we designed graphs of f1-score distribution of the trained models (for SVM with a 
linear core) with different sets of parameters, each model was trained 100 times with a 
new combination of example sets. The selection was divided into the training (80%) 
and testing (20%) samples each time (see Fig. 1).  

Fig. 1. F1-scores of the trained models (for SVM with a linear core) with different sets of pa-
rameters (the values of f1-score are plotted along the axis X, the number of models with a spec-

ified accuracy is plotted along the axis Y) 
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e) Sinto 

As Fig. 1 shows, the most informative parameters for identifying the gender of text 
author are different ratios of parts of speech, syntactic parameters, frequencies of 
various emotional words.  

5 Conclusion and future work 

The study performed for the first time for Russian-language texts confirms previously 
reported for English and some other languages findings that gender can be traced in 
texts beyond topic and genre using both regression and classification approach. It is 
shown that the author’s gender is conveyed through specific syntactical and morpho-
logical patterns and use of emotion words. Comparative analysis of different machine 
learning algorithms has shown that ReLu is the most efficient classification algorithm 
with the F-score of 0.74. There are plans to expand the list of the text parameters and 
to test the obtained models on a Russian corpus of tweets and online chats. 
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Abstract. Baseline solutions for the named entity recognition task in
Russian language were published a few years ago. These solutions rely
heavily on the addition data, like databases, and different kinds of prepro-
cessing. Here we demonstrate that it is possible to reproduce the quality
of existing database-based solution by character-aware neural net trained
on corpus itself only.

Keywords: named entity recognition, character awareness, neural nets,
multitasking

1 Introduction

Named entity recognition is a well known task in natural language processing
field. It is highly demanded in the industry and has a long history of academic
research.

Current approaches are critically dependent on the size and quality of the
knowledge-base used. The knowledge base should be kept up to date, which
requires additional resources to be constantly involved.

In contrast our solution relies only on the text of the corpus itself without
any additional data, except of the training corpus markup.

Contributions of the paper are following:

– We propose an architecture of artificial neural net as an alternative to the
knowledge base based approach for the named entity recognition task.

– We provide results of the model tests on publicly available corpus for Russian
language.

2 Related work

The first results for character-based named entity recognition in English language
were presented in early 2000-s [1]. The close idea of character-based named entity
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tagging was introduced in [2] for the Portuguese and Spanish languages, but our
model does not use convolution inside. For the English language text classifica-
tion (close task for the named entity recognition) character-aware architecture
was described in [3], it is also basing on convolutions, so principally differs from
our model. Previous research for Russian language hadn’t been based on charac-
ters, but on words [4]. State of the art solution on the public corpus with named
entity markup [5] is also word-level based.

One of the core ideas for our model comes from the character aware neural
nets introduced recently in [6], [7]. Another idea, that of matching the sequences
to train the artificial neural net to get the text structure is coming from [8]. Our
solution is based on the multi-task learning which was introduced for natural
language processing tasks in [9].

3 Model

The architecture of our recurrent neural network is inspired by [7]. The network
consists of long short-term memory units, which were initially proposed in [10].
There are two main differences to the Yoon Kim setup [7]. First one is that our
model predicts two things instead of one:

– the next character,

– a markup label for the current character.

Second one is that we do not use convolution, so we not exploiting word concept
inside our architecture, only character concept. We suppose that model could
learn the concept of word from data, and rely on this assumption while quality
measurement. Prediction errors and gradients are calculated, and then weights
are updated by truncated back-propagation through time [11].

3.1 Mathematical formulation

Let ht be the state of the last neural net layer before softmax transformations
(hidden state). The probability is predicted by standard sotfmax over the set of
characters C and the set of markup labels M:

Pr(ct+1|c1:t) =
exp(ht·pj

1+qj1)∑
j′∈C ht·pj′

1 +qj
′

1

(1)

Pr(mt|c1:t) =
exp(ht·pi

2+qi2)∑
i′∈M ht·pi′

2 +qi
′

2

(2)

Here pj1 is j-th column in character output embedding matrix P1 ∈ Rk×|C|, qj1
is a character bias term. pi2 is i-th column in markup output embedding matrix
P2 ∈ Rl×|M| and qi2 is markup bias term, k and l are character and markup
embedding vector lengths.



56 Valentin Malykh and Alexey Ozerin

The final negative log likelihood (NLL) is computed over the test corpus of
length T :

NLL = −
T∑

t=1

(logPr(ct+1|c1:t) + logPr(mt|c1:t)) (3)

The diagram of our model could be found on the figure 1.

4 Experiments

The corpus parameters are presented at table 1, more details on it could be found
in [5]. It can be obtained from the authors of the original paper by sending a
request to gareev-rm@yandex.ru or to any other author of the original paper.

Table 1. Russian NER corpus statistics

Tokens 44326

Words & Numbers 35116

Characters 263968

Organization annotations 1317

Org. ann. characters 14172

Person annotations 486

Per. ann. characters 5978

Similar to [5] we calculate 5-fold cross-validation with precision (P), recall
(R), and F-measure (F) metrics. The results of experiments are presented in
table 2. Since we are working with characters we cannot use labelling produced
for characters by our system directly, so we parse the produced markup for every
token (which is known for us from the corpus) and take the label for the majority
of characters in the token as a token label.

Table 2. 5-fold cross-validation of the NN-based NER.

Fold # Person Organization Overall
P R F P R F P R F

1 93.09 93.32 93.20 68.75 78.57 73.33 63.25 71.94 67.32

2 94.85 94.16 94.51 64.29 73.90 68.76 59.38 67.86 63.33

3 90.91 93.37 92.12 66.22 65.52 65.87 58.45 58.76 58.60

4 90.45 91.74 91.09 68.02 77.48 72.45 60.12 68.56 64.06

5 94.03 93.06 93.54 62.15 68.81 65.31 57.06 61.40 59.15

mean 92.67 93.13 92.89 65.89 72.86 69.14 59.65 65.70 62.49

std 1.92 0.88 1.32 2.70 5.60 3.67 2.31 5.44 3.63
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5 Comparison

The results of comparison are presented on tables 3, 4, 5.

Table 3. Person class performance comparison.

System Person
Precision Recall F-measure

mean std mean std mean std

Best KB-based [5] 79.38 N/A 79.22 N/A 79.30 N/A

CRF-based [5] 90.94 4.04 79.52 2.91 84.84 3.33

NN-based 92.67 1.92 93.13 0.88 92.89 1.32

Table 4. Organization class performance comparison.

System Organization
Precision Recall F-measure

mean std mean std mean std

Best KB-based [5] 59.04 N/A 52.32 N/A 55.48 N/A

CRF-based [5] 81.31 7.44 63.88 6.54 71.31 5.38

NN-based 65.89 2.70 72.86 5.60 69.14 3.67

Table 5. Overall performance comparison.

System Overall
Precision Recall F-measure

mean std mean std mean std

Best KB-based [5] 65.01 N/A 59.57 N/A 62.17 N/A

CRF-based [5] 84.10 6.22 67.98 5.57 75.05 4.82

NN-based 59.65 2.31 65.70 5.44 62.49 3.63

On the person token class our system performed better than CRF-based one
by all the metrics by the mean value and standard deviation. On the organisation
class our system is better by recall and comparable by F-measure with CRF-
model. In overall case our system was on par with knowledge-base approach
performance in F-measure and in recall with CRF-model.

6 Conclusion

We applied character aware RNN model with LSTM units to the problem of the
named entity recognition in Russian language. Even without any preprocessing
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and supplementary data from external knowledge-base the model was able to
learn solution end-to-end from the corpus with markup. Results demonstrated
by our approach are on the level of existing state of the art in the field.

The main weakness of proposed model is differentiation between person and
organization tokens. This is due to the small size of the corpus. A possible
solution is pre-training on a large corpus such as Wikipedia, without any markup,
just to train internal distributed representation of a language model. We presume
that such pre-training would allow RNN to beat CRF-model.

Another direction of our future work is addition of attention as it was demon-
strated to improve performance on character-level sequence tasks [12].
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Abstract. Dead field is one of the most common test smells found in
the test code which is responsible for degrading performance and creating
misapprehension about the code. The reason of its occurrences is that in
most of the cases, developers initialize setup fields without considering
the usage of those fields in the test methods. In this paper, an automatic
dead field identification technique is proposed where the test code is
statically searched for identifying the usage of all the setup fields. It
does so by figuring out all the setup fields which are initialized in the
setup method or its invoked methods. After that, it detects such fields
which are used by at least one test method directly or indirectly. In
addition, field dependency is resolved to find all the fields on which used
setup fields depend. At last, all the unused setup fields are gathered and
considered as dead fields. To evaluate the technique, it was implemented
in the form of a tool and two open source projects were run on it. It has
been seen that it identifies all the dead fields in those projects correctly
and performs better than existing dead field detection techniques.

Keywords: test smell, dead field, setup fields, test fixture, test smells,
test code comprehension, code search

1 Introduction

Dead fields are the initialized fields in the setup method of a test class that are
never used by any test method. However, manually scrutinizing test code to find
dead fields slows down the production of software, and may induce bugs while
applying refactoring methods to stump out this smell. On the other hand, when
test code fails to convey its intent is considered to have the test smells which
have no impact on the behavior of the test code but causes the attrition of the
test code quality. Dead field is one of those which degrades the performance of
the test code as well as maintainability by unnecessarily using computational
resources and creating misunderstanding among the developers. So, dead fields
should be identified and removed from the test code to maintain the quality.
Dead fields can be identified by analyzing the test fixtures and test methods in
the test code. However, the major challenges are to find all setup fields in the
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test fixtures, resolve field dependency among those and figure out the usage of
those fields in test methods automatically.

Generally, a test fixture defines the configuration of the system under test
including setup methods. Those setup methods are invoked before execution of
any test case to ensure that all the setup fields are initialized properly for running
the test cases. On the other hand, after preparing the system for testing, test
methods use their required setup fields directly or indirectly through invoking
other method(s). To identify dead fields, unused setup fields are required to be
detected for which all the setup fields and their usage in the test methods are
needed to be analyzed. However, in order to identify setup fields, all the setup
methods in the test fixture are required to be analyzed. In addition, to find the
usage of the setup fields, dependency relationship among the setup fields and
those fields’ usage in test methods need to be resolved.

Martin Fowler coined code smell [1] and later, van Deursen first introduced
the concept of test smells in test code [2]. Michael Grielar and van Deursen
identified five new test smells including dead fields and developed a tool named
TestHound1 to identify those smells by analyzing test fixture [3]. The tool per-
forms well in identifying those test smells but for dead field detection, manual
code inspection is required to resolve field dependency and usage of setup fields
among the test methods. TestLint, another automatic test smells identification
tool, can deal with some test smells by finding the properties of those smells
in the test code [4]. However, this tool cannot handle dead fields in the test
code through test fixture and test method analysis because dead fields have not
been considered here. Although Bart van Rompaey proposed a metrics-based
approach based on the unit test concept to identify eager test smell, the author
did not address any metric to automatically detect dead fields [5, 6]. Bavota dis-
closed the distribution and impact of test smells in software maintenance but no
approach was explained to automatically identify dead fields in his analysis [7].

In this research, a technique named Dead Field Identifier (DFI) is proposed
to identify dead fields automatically by analyzing usage of setup fields and field
dependency in test methods. Initially, all the fields in the test code are searched
and gathered from test code. As header fields2 are also considered as setup fields,
so all the header fields are figured out from the identified fields by parsing the
code. Later, setup method and all other methods invoked directly or indirectly
by it are identified. The body of those methods are extracted to find all the
setup fields in the code. To find usage of those fields, all the test methods and
other methods invoked by those are obtained and fields which are used in those
methods are detected. Usually, it is found in the code that a setup field which is
used in at least one test method may depend on one or more other setup fields
which are never used by any test method. So, those fields are identified through
analyzing field dependency among the setup fields and considered as used setup
fields. At the end, all unused fields are separated from the setup field list and
those are marked as dead fields.

1 http://www.swerl.tudelft.nl/twiki/pub/MichaelaGreiler/TestHound/TestHound
2 Header fields are those fields which are initialized in the class header
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In order to assess the technique, a tool is implemented based on it. The pro-
posed technique requires test code related information like fields in the test class,
method signature, method body etc. For this reason, test code is converted into
compiler centric Abstract Syntax Tree (AST) by the tool where AST is a semi-
structured form of the code [8, 9]. This tree based representation assists to find
required information more easily for dead field detection than searching in the
raw test code [10]. Two open source projects (eGit3 and EquationSolverTest4)
are used for the justification of the technique. Both projects are run on DFI and
TestHound for comparative analysis of the technique. Manual inspection is also
carried out to ensure the correctness of the result. While analyzing the results,
it is seen that for eGit, 3 percent of the fields could not be identified as used
fields whereas DFI figures out all the dead fields by properly identifying all used
setup fields. On the other hand, 82 percent setup fields can not be detected for
EuqationSolverTest and as a result 67 percent setup fields are not considered
as dead fields by it. However, DFI resolves field dependency among setup fields
and finds the usage of those in test methods correctly. For this reason, it per-
forms better than TestHound by identifying all the setup fields and dead fields
correctly in the project.

The rest of the paper is organized as follows. Section 2 describes related
works in detecting dead fields. The proposed technique is discussed in Section 3.
Section 4 presents implementation and result analysis of the proposed technique.
Conclusion is drawn in Section 5.

2 Related Work

The presence of dead field in the test code indicates incomplete or deprecated
software development activities. This smell is a recent contribution in the litera-
ture. Several researches have been carried out so far for analyzing the impact of
test smells in the test code. Besides, researchers proposed different techniques to
identify and remove those smells from the code. These are outlined as follows.

van Deursen et al. first described the concept of test smells [11, 12]. They
identified a list of eleven different test smells such as Mystery Guest, Resource
Optimism, Test Run War, General Fixture, Eager Test, Lazy Test, Assertion
Roulette, Indirect Testing, For Testers Only, Sensitive Equality, and Test Code
Duplication. They discussed about the characteristics of the smells and appro-
priate refactoring mechanism to remove those, but they did not provide any
technique for automatically identifying dead field in the test code because this
smell was not discovered at that time.

A metrics-based approach was proposed by Bart van Rompaey et al. [5, 13]
for the detection of two test smells which were test fixture and eager test to in-
crease the quality of test cases. To identify test fixture, they used several metrics
like setup size, fixture size, and fixture usage. Setup size is the combination of
the number of method or attribute references to non-test object from the setup

3 http://www.eclipse.org/egit/
4 https://github.com/rifatbit0401/EquationSolverTest
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method of a test case, and number of production type used in the test code.
They also defined fixture size as number of fixture elements and production type
in the fixture. For eager test identification, they used production type method
invocation as metric which is the number of invocations to the methods in the
production code from a test command. Their result was compared against man-
ual inspection. The technique worked well in identifying test fixture and eager
test smell. However, the metrics that were used to identify those smells are not
adequate enough to detect dead field in the test code as its characteristics are
different.

In order to understand the distribution of unit test smells and the impact
of those smells on software maintenance, Gabriele Bavota et al. conducted an
empirical analysis regarding this [7]. Two studies were carried out for the analysis
where one was an exploratory study and another was a controlled experiment.
The exploratory study was performed for the analysis of the distribution of
test smells. On the other hand, the controlled experiment was carried out for
analyzing the impact of test smells on the comprehension of test code during
software maintenance. Although they provided an insight about the distribution
and impact of test smells while managing test code, they did not provide any
approach to automatically detect dead fields in the code. The reason is that they
only analyzed the impact and distribution rather than detection of test smells.

Stefan Reichhart et al. developed a tool named TestLint for assessing the
quality of test code [4]. This rule-based tool identifies static test smells such as
Guarded Test, OverReferencing, Assertionless Test, Long Test, Overcommented
Test, and so on. It performs so by parsing the source code, analyzing the source
tree, detecting patterns, and computing metrics on the test code. All the rules
used to develop the tool were the characteristics of those smells [2, 14, 15]. How-
ever, the tool can not identify dead field in the test code because no metric was
defined for the identification of this smell.

Manuel Breugelmans and Bart van Rompaey presented a tool called TestQ
for exploring structural and maintenance characteristics of unit test suites [6]. It
allows developers to visually explore test suites and quantify test smelliness. The
tool could identify twelve different test smells proposed by van Deursen [5]. For
the detection, the tool uses a list of metrics defined by the authors such as number
of invoked framework asserts for Assertionless, number of invoked description-
less asserts for AssertionRoulette, number of invoked production methods for
EagerTest, and so on. However, the tool can not detect dead field in the test
code because they did not define any metric or strategy for it.

A static analysis technique to identify test fixture related smells in the test
code was presented by Michaela Greiler et al. [3]. Here they introduced five new
test smells which are Test Maverick, Dead Fields, Lack of Cohesion of Test Meth-
ods, Obscure In-Line Setup, and Vague Header Setup. To identify those smells,
they developed a tool named TestHound. It takes the test code, all dependen-
cies and all test cases as input. Next, it analyzes the code, finds the smells, and
provides a report describing all identified test smells in the code. The tool was
assessed by running on three projects (eGit, HealthCare and Mylyn). However,
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it produced false positive results while detecting dead fields due to not being
able to resolve field dependency and find usage of setup fields in the test code.
So, manual inspection was performed to identify dead fields correctly.

Although dead field is a recently introduced test smell in the literature, some
significant works have been performed in identification of test smells so far. Re-
searchers explained the impact of test smells in test code maintenance and pro-
posed different techniques to detect test smells like metrics based approach, rule
based assessment, test fixture analysis and so on. Some of those could identify
dead fields in the test code but the outcome is not accurate enough. Sometimes
it is seen that those techniques provides false positive result which ultimately
induces serious impact while managing the code. For that reason, test code is
needed to be inspected manually for making sure the correctness of the result
in dead field detection. So, automatically identifying dead fields in the code
properly is still an open problem in the literature.

3 The Proposed Technique

The intent of this research is to develop a technique named Dead Field Identifier
(DFI) to identify dead fields in the test code for making the code more maintain-
able and comprehensible by removing those fields. For the identification, firstly,
it is required to identify all the invoked methods for any method in the test code.
In addition, all the setup fields are required to be obtained and usage of those
fields are needed to be identified in the code which assist to detect dead fields. So
the technique for the identification comprises several steps like invoked method
identification, setup field detection, finding usage of setup fields and dead field
identification which are described in the following subsections.

Algorithm 1 Invoked Method Identification

Require: A method (M) for which all the methods invoked directly or indirectly by
it will be identified and an empty list L to store invoked methods

1: procedure GetAllInvokedMethod(M)
2: if M /∈ L then
3: add M into L
4: end if
5: initialize an empty list N to store methods invoked by M
6: get all methods invoked by M through parsing its body
7: store those methods into the list N
8: for each m ∈ N do
9: A← GetAllInvokedMethod(m)

10: Insert all items in A into L
11: end for
12: return L
13: end procedure
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3.1 Invoked Method Identification

In order to identify invoked method(s) in the test code Algorithm 1 is developed.
Usually, the first step to identify dead fields in the test code is to identify all
the methods invoked directly or indirectly by any method in the code. This is
required because fields in the test class may be initialized by any method invoked
directly or indirectly by the setup methods. Even setup field(s) may not be used
directly by a test method but may be used by other methods which are invoked
by the test method directly or indirectly.

In Algorithm 1, the procedure GetAllInvokedMethod takes a method as
input and returns a list of all methods invoked directly or indirectly by the
method. For this, first of all, a list is initialized to store all invoked methods and
the body of the inputted method is parsed to identify all the methods invoked
by it which are inserted into another list (Algorithm 1 Line 5-7). A loop is used
to identify all the invoked methods for each method in the list by recursively
calling GetAllInvokedMethod. For each iteration, the corresponding method is
also added into the list which is responsible for containing all invoked methods
(Algorithm 1 Line 8-11).

3.2 Finding Setup Fields

Setup fields in the test code are those which are initialized in the implicit setup
procedures or the class header. All the setup fields in the test code are required
to be identified because such setup fields are considered as dead fields which
have never been used by any test method in the test code.

Algorithm 2 describes a procedure GetAllSetUpFields which works on given
test code and provides a list of all setup fields in the code. Initially two lists are
initialized - one is to store all setup fields and another is to store all the fields by
parsing the test code (Algorithm 2 Line 2-3). In the loop, all the header fields
are identified from the list of fields and those are added to the setup field list as
header field is also considered as setup field (Algorithm 2 Line 4-8). After that,
from rest of the fields those which are initialized in the implicit setup are added
to the list of setup fields (Algorithm 2 Line 9-22).

3.3 Finding Usage of Setup Fields

After identifying all setup fields following the previous step, the usage of all these
fields are required to be found in the test code. This will help to detect which
setup fields are never been used by any test method in the test code.

In Algorithm 3, all the test methods and all the setup fields in the test code
are identified and stored in two different lists respectively (Algorithm 3 Line
3-5). For each identified test method, the procedure GetAllInvokedMethod is
called to obtain all the methods invoked directly and indirectly by the method
(Algorithm 3 Line 6-8). After that, the body of each invoked method and the test
method are checked to identify which setup fields are used in the body and such
fields are added to the used setup field list (Algorithm 3 Line 9-16). At last, the
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Algorithm 2 Finding Setup Fields

Require: Test code T for identifying all setup fields in T
1: procedure GetAllSetUpFields(T )
2: initialize an empty list S to store setup fields
3: identify all the fields in T using parser and store those fields in the list F
4: for each f ∈ F do
5: if f is header field then
6: Add f to S
7: end if
8: end for
9: find setup method M by parsing T

10: create an empty list I to store method
11: I ← GetAllInvokedMethod(M)
12: add M to I
13: for each m ∈ I do
14: for each f ∈ F do
15: if f ∈ S then
16: continue
17: end if
18: if f is initialized in m then
19: add f to S
20: end if
21: end for
22: end for
23: return S
24: end procedure

Algorithm 3 Finding Usage of Setup Fields

Require: Test code T for finding usage of setup fields in the test code
1: procedure GetAllUsedSetUpField(T )
2: initialize an empty list U to store all used setup fields in T
3: initialize an empty list M to store all test methods in T
4: identify all test methods by parsing T and add those into M
5: S ← GetAllSetUpFields(T )
6: for each m ∈M do
7: L← GetAllInvokedMethod(m)
8: add m to L
9: for each i ∈ L do

10: Get the body of the method (i) and save it in b
11: for each f ∈ S do
12: if f is used in b and f /∈ U then
13: add f to U
14: end if
15: end for
16: end for
17: end for
18: return U
19: end procedure
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Algorithm 4 Dead Fields Detection

Require: Test code T to identify dead fields in the code
1: procedure GetAllDeadField(T )
2: S ← GetAllSetUpFields(T )
3: U ← GetAllUsedSetUpField(T )
4: F ← S − U
5: initialize a list D to store dead fields
6: for each f ∈ F do
7: flag ← false
8: for each i ∈ U do
9: if i depends on f for initialization in the implicit setup then

10: flag ← true
11: end if
12: end for
13: if flag = false then
14: add f to D
15: end if
16: end for
17: return D
18: end procedure

list of all used setup fields are returned by the procedure GetAllUsedSetUpField
(Algorithm 3 Line 18).

3.4 Dead Fields Detection

Subsection 3.3 provides all the setup fields that are used by at least one test
method directly or indirectly. However, such setup fields can be found in the test
code, which are not being used by any test method, but some used setup fields
may depend on those fields for initialization. So, those fields are not considered
as dead fields. For finding all those fields, incorporating those with the list of
fields obtained using subsection 3.3 and finally providing a list of all identified
dead fields in the test code, Algorithm 4 is used for implementation.

To detect dead fields, all the setup fields and used setup fields are gathered
(Algorithm 4 Line 2-3). A list is used to store all the setup fields which are not
used by any test method (Algorithm 4 Line 4). The nested loops identify which
setup fields of the list are never used for the initialization of any used setup field
(Algorithm 4 Line 6-16). All those unused fields are considered as dead fields
which are returned by the procedure GetAllDeadField as a list (Algorithm 4
Line 17).

Complexity Analysis

The overall complexities of GetAllInvokedMethod, GetAllSetUpFields,
GetAllUsedSetUpField, and GetAllDeadField are O(p), O(pq), O(prs), and
O(pq + prs + mn) respectively. Here, p, q, r, s, m and n are number of invoked



68 Satter et. al.

methods, number of fields, number of test methods, number of setup fields,
number of unused setup fields, and number of used setup fields correspondingly.

4 Implementation and Result Analysis

In order to evaluate DFI, a tool is implemented based on it. TestHound [3] is
used for comparative analysis with DFI. At last, manual inspection is carried
out to make sure the correctness of the result which is provided by DFI.

4.1 Environmental Setup

This subsection outlines the software tools required for the experimental analysis.
For this analysis, DFI is developed using Java programming language. Although
the tool works to identify dead fields in the test code written using Java, the
approach proposed here is platform independent and only the facts extraction
aspect is language specific. So, the technique can easily be implemented in any
programming language. Some other tools are also used in the experiment and
those are addressed as follows.

– Eclipse Juno5: Java IDE for the development of DFI
– Byte parser6: Java byte code parser which has been developed to parse java

byte code and construct AST
– Maven7: Apache build manager for building the java projects used as the

dataset in the experiment

Table 1. Experimented Projects

Project Name Line of Code Number of Test Class

EquationSolverTest 800 4

eGit 130k 87

For the analysis, two open source projects have been used which are depicted
in Table 1. One of those is EquationSolverTest which is developed to solve equa-
tion having different expressions. It is an open source project and it has 800 lines
of code as well as 4 test classes. Another is eGit which is also an open source
Eclipse integrated version control system. It consists of 130K lines of code and
87 test classes. Both are available in the GitHub.

4.2 Comparative Analysis

As we have said above, two different sized projects are used for the experiment
to observe the behavior of the proposed technique. One of those is eGit which is

5 https://eclipse.org/juno/
6 https://github.com/rifatbit0401/ByteParser
7 https://maven.apache.org/
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Table 2. Result for EquationSolverTest

Class Name No.
Test
Method

No. of Setup Fields No. of Dead Fields

TestHound DFI Manual
Inspection

TestHound DFI Manual
Inspection

Simulate
EquationTest

4 0 5 5 0 4 4

Expression
FormatterTest

3 1 4 4 1 3 3

Expression
Simulation
ResultTest

4 2 7 7 2 2 2

OperationTest 4 0 1 1 0 0 0

large in size, and another is EquationSolverTest which is comparatively small.
The results obtained using those projects are explained as follows.

Result Analysis for EquationSolverTest: For comparative analysis, ini-
tially the project EquationSolverTest is run by TestHound and DFI. In addition,
manual inspection is also performed on the code. Table 2 summarizes the result
produced by the tools and manual inspection. In the table, it is seen that there
are four test classes. Comparative analysis for those classes are described below.

For the test class SimulateEquationTest, TestHound can not identify any
setup field whereas DFI detects 5 setup fields as well as 4 dead fields from those.
The outcome of DFI is equal to the result of manual inspection. The reason is
that TestHound can not identify those setup fields which are initialized in the
methods invoked by setup method, but DFI considers all those methods and
checks the initialization of setup fields.

In the test class ExpressionFormatterTest, there are 4 setup fields where one
is header field and others are initialized through indirect method invocation by
the setup method. TestHound detects no usage of the header field and thus,
considers it as dead field, but others are ignored because of the same reason as
stated earlier. However, DFI identifies all those and recognizes as dead fields.

Both tools identify two dead fields correctly for the test class ExpressionSim-
ulationResultTest. However, TestHound identifies 2 setup fields out of 7 because
those two are header fields and rest 5 are initialized in the setup method which
are not considered in it. On the other hand, DFI checks the setup method as
well as header field, that is why it detects all setup fields.

There is a single header field in test class OperationTest and this field is used
in all 4 test cases. As both tools can detect header fields and usage of setup fields
in test cases so those tools provide the same result for the test class.

Result Analysis for eGit: DFI is also run on a module of eGit named
org.eclipse.egit.core.test. There are 13 test classes and 46 test methods in total.
The result provided by the tool for the project is shown in Table 3. According
to the table, DFI identifies 78 setup fields and 6 dead fields. To ensure the cor-
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rectness of the result, manual inspection is performed and the same outcome is
produced. During manual inspection, it is found that test classes which extend
the same super class contain dead fields. This is because setup fields are initial-
ized in the super class but never been used by any test method in the subclasses.
However, DFI first identifies all the fields of a test class. Later, all the inherited
fields are accumulated with those if the class extends another class. After that,
it identifies setup fields among those by analyzing all methods’ body invoked by
the setup method and detects dead fields by finding usage of those fields in test
methods. For this reason, DFI’s result is the same to the manual inspection’s
outcome. However, 3% of the fields in this project could not be identified as field
usage by TestHound [3]. So, in comparison with it, DFI performs better than it
in dead field identification.

Table 3. Result of eGit by DFI

DFI Manual Inspection

Number of Test Class 13 13

Number of Test Method 46 46

Number of Setup Field 78 78

Number of Dead Field 6 6

DFI and TestHound, both can identify dead fields in the test code. However,
TestHound can not detect dead fields correctly due to not handling some cases
properly like setup fields initialization in a method invoked by setup method,
field dependency among setup fields, and usage of setup fields by test methods
indirectly. On the other hand, DFI can appropriately deal with those and as a
result it detects dead fields correctly in the test code.

5 Conclusion

The presence of dead fields in the test code reduces the manageability and com-
prehensibility of the code. To detect those fields in the code, an automatic iden-
tification technique is introduced. A tool is also implemented based on the tech-
nique which identifies dead fields in the test code.

The technique first identifies all the fields in the test code through static
code search. Setup fields are identified from those by analyzing the initialization
of those fields in the setup method and its invoked method. At last, usage of
those fields in test methods and dependency relationship among those fields are
resolved to figure out dead fields in the code.

For the experimental analysis of the approach, two open source projects were
run on it. The result of DFI was compared to another tool named TestHound.
The experimental result shows that DFI identifies all the dead fields in those
projects correctly and performs better than TestHound. In future, more open
source projects and industrial projects will used to evaluate the technique.
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Abstract. The paper presents an approach to evaluation of the quality of domain 

ontology. The approach is based on construction of concept lattice based on 

ontology relations. The approach allows to evaluate the completeness of the 

ontology relations. The result of this analysis helps to draw conclusions about the 
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1  Introduction 

In computer science, the term "ontology" means the formal representation of knowledge. It 

is used as a form of knowledge representation of the real world, or part of it [1]. 

Currently, many intelligent systems use ontology as a knowledge base. The effectiveness of 

this system depends on the effectiveness of knowledge represented in the ontology. 

Regardless of the type of ontology its creation is a laborious and expensive task. At the 

same time there is a possibility to receive of ineffective product as a result in accordance 

with the obsolescence of developed knowledge, priorities change with time or just give 

incorrect or contradictory knowledge a part of the ontology. To avoid it is necessary to 

evaluate the quality of ontology at every stage of its production. In the existing ontology 

analysis methods are based on the expert evaluation. Experts in this case often act domain 

experts or knowledge engineers. The main problem here is the amount of time required for 

checking the quality of the ontology. Modern methods provide a variety of tools for 

ontology analysis, but most of them are only effective in ontologies with a certain structure. 

Therefore, a search for new approaches to the analysis of the quality of ontology of various 

structures is needed. 

One such approach could be the approach to ontology evaluation, based on an analysis of 

the relations between the terms of concept lattice. This approach analyzes the various 

inconsistencies that are detected by comparing the basic structure of the relations of 

ontology and concept lattices constructed on the basis of the same relations. Thus, the 

approach makes it possible to calculate the completeness of the ontology relations. 

We introduce some definitions of key terms used in paper on the basis of [10]. 

The term is a sign of a special semiotic system, which is the minimum carrier of scientific 

knowledge, and it is the short name of an established concept of having a definition. 



Concept is knowledge, which is expressed by this term at the conceptual modeling domain. 

According to [1] conceptual objects are divided as follows: 

 entities (tangible and intangible objects); 

 properties (quantitative, qualitative, relative); 

 actions (operations, processes, state); 

 dimensions (time, position, space). 

Conceptual relations are divided as follows: 

 quantitative relations (relations of identity, inclusion, exclusion, intersection, union); 

 qualitative relations (hierarchical and functional relations). 

2  Domain ontology 

In [2] the history of the sign in semiotics and logic was analyzed. Categories and their 

design of signs representing them were defined on the basis of a pentagon of Nikitina S.E., 

described in [11], and the concept structure and classification of conceptual objects of 

Dahlberg. 

This approach of building structures of signs of conceptual objects of Dahlberg as the main 

categories of abstraction allows you to create a common conceptualization of the domain, 

which will be able to understand the different systems. 

On the basis of this approach the basic design of structure of the terms of the domain 

ontology, proposed in [2], was created. Therefore the object of the analysis the studied 

approach is the ontology built on the basis of this ontology. The ontology is represented in 

this case in the form of groups of related terms, divided into categories: concept, action, 

state, event, property, quantity. Each term is a vector structure, a certain term category. The 

structure contains a full description of the term, including its name, relations to other terms 

meta-signed representation, etc.  

Each term in this case is represented by a specific set of names, definitions and relations. 

Categorical sign is a sign that represents the general structure of the term of a certain 

category. Construction of categorical sign is represented as a vector of sets of definitions 

and relations represented by the term. Each categorical sign corresponds to one category of 

ontology terms. 

This representation of domain ontology introduces sematic differences between terms of 

different categories, making this ontology structure semantically active. 

Consider some of the categorical construction signs and the possible relations between the 

ontology terms. 

"Concept" and "Action" categories have most semantic meaning in the ontological structure 

than others. 
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The design "Concept" sign is eight: 

𝐶𝑜𝑛𝑐𝑒𝑝𝑡 = < 𝑡, 𝐷, 𝑃, 𝐴, 𝐶, 𝑆, 𝑇, 𝑀 >                    (1) 

 

Fig. 1. Graphic representation of "concept" sign 

The design of the "Action" sign is nine: 

𝐴𝑐𝑡𝑖𝑜𝑛 = < 𝑎, 𝐷, 𝑃, 𝑆𝑂, 𝐶, 𝐼, 𝐴, 𝐸, 𝑀 >                (2) 

 

Fig. 2. Graphic representation of "action" sign 

Here the elements of t and a - the term name, the type of object and the conceptual view of 

nature: material or immaterial. Most of the other data elements of the vectors represent the 

relations between the terms. Set of substantial definitions (D) and methods metalinguistic 

representation (M) in this case are not considered. Detailed design of categorical signs 

presented in [1]. 
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Concerning types of conceptual relationships qualitative relations between ontology terms 

can be classified as follows: 

 hierarchy (abstract-concrete area) 

 Concept-Concept (T) 

 Action-Action (A) 

 Property-Quantity (Q) 

 aggregation (attachment area) 

 Concept-Concept (T) 

 Action-Action (A) 

 Concept-State (S) 

 State-Event (E) 

 <term>-Property (P) 

 functional (processuality area) 

 Concept-Action (A, I) 

 Concept-Action \ Action-Concept (SO) 

 Action-Event (E) 

 Event-State (S) 

 Property-Quantity (Q) 

 semiotic relations (area of content and form) relate to methods of metalinguistic 

representation (M) 

 

Fig. 3. Diagram of the relations between the terms of categorical signs 

Also present quantitative relations in the ontology (the identity of the scope and correlation, 

C). Analysis of these relations will determine the consistency of concepts and relations of 

the ontology. 

C, T Concept 

Action 

A, SO, I 

C, T 

C 

E 

Event 

C 
State 

E, S 

S 

Property 
C 

P 

Quantity 
Q 
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Domain ontology contains a structured open data, which makes it possible to assess the 

application of certain properties of formal concept analysis methods. Our study is to 

analyze the relations within these structures through the use of concept lattices. 

3  The approach to ontology evaluation 

3.1  The purpose of the analysis 

The purpose of the analysis of this approach is the completeness of the ontology relations. 

This property shows the extent to which knowledge about the relations between domain 

terms displayed in the ontology. 

To evaluate this property is necessary to determine whether the ontology relations complete 

and consistent. In this paper, we consider only the qualitative relations. 

3.2  Description of the approach 

The basis of the analysis is to find inconsistencies between the grid concepts, built on a 

certain relation, and ontology relations. 

Analysis in accordance with the approach consists of several sequential steps (figure 4): 

1. Select the type of term relation that you want to analyze. Every relation type has its 

semantic meaning, so the result of the analysis is interpreted according to the selected 

type. 

2. Construction of concept lattices. On certain relations between the concepts of the lattice 

constructed ontology terms where terms are considered categories are taken as objects 

and attributes. The theme of constructing a formal context and concept lattice is 

mentioned in a large number of works devoted to the FCA, such as [10-13] and etc. 

This theme has been well studied. Depending on the relation type it is possible to use 

different methods of constructing a formal context to maximize the effectiveness of 

analysis. 

3. Search lattice inconsistencies and the structure of the ontology relations. Here are 

compared with corresponding lattice of concepts relating to the structure of the 

ontology. A search of all relations, which are absent in the resulting lattice or structure 

of ontology relations. When constructing lattices on the basis of terms between the 

different categories of objects and attributes are taken in such a lattice terms of different 

categories. 

4. Analysis of the inconsistencies. This analysis is performed by an expert, however, can 

be made automatically concluded terms with the greatest discrepancy coefficient, ie, 

terms which are associated with greater inconsistencies. 
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Fig. 4. Sequence of analysis steps 

By the terms of categorical signs exist qualitative relations that define some hierarchy of 

terms relative to each other. However, only the terms of "Concept" and "Action" categories 

are qualitative relations with the terms of its category. 

The relations between the terms of these categories can be divided into two types: relations 

of one category (Сoncept-Сoncept, Action-Action) and relations between categories 

(Сoncept- Action, Action-Сoncept). When looking for inconsistencies using both types of 

relations, and they have different effects on the result of the analysis. 

3.3  Relations of one category 

"Concept-Concept" and "Action-Action" relations have different semantics. However, they 

are similar to the structure, so the relations are equivalent to the analysis of terms. 

Consider the example of such relations "Class-Kind" between the terms of the "Concept" 

category of ontology. Table 1 provides a formal context received on the relation. 

In the construction of the formal context the known methods of its constructing can be 

used. In this example, we use a simple method: all terms that do not take the role of "Class" 

in any relations are formal objects, and other terms are formal attributes. 

Table 1. Example of formal context 

G\M hoofed herbivorous overland predator 

Cow X X X  

Rabbit   X X  

Wolf     X X 

Piranha    X 

Figure 3 shows a lattice of concepts on the formal context. 

Ontology 

Relations

` 

Concept lattice building 

Inconsistencies search 

Inconsistencies analysis 

Completeness of 

ontology relations 

Domain expert 
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Fig. 5. Example of concept lattice  

For example, in this example, fragment structure of " Class-Kind " relations of ontology is 

as follows: 

 overland. Connected with: 

 cow 

 rabbit 

 wolf 

 herbivorous. Connected with: 

 rabbit 

 cow 

 hoofed. Connected with: 

 cow 

From this it follows that the relation between the terms "overland" and "herbivorous" and 

the relation between the terms "herbivorous" and "hoofed" obtained during the construction 

of the lattice are absent in the source ontology (relations are marked in Figure 3). Thus, we 

can infer the probability that the set of relations of the ontology is incomplete. Found 

relations probably must be included in the ontology. 

Let the set of relations of a particular type of source ontology is TO, and the set of relations 

derived from a concept lattice of relations of the same type is TR. Then the set of 

inconsistencies relations of one category is defined as 

NT : TO\TR  TR\TO.    (3) 

However, it should be separated by a set of lattice inconsistencies (NTR : TR\TO) and 

ontology inconsistencies as they may have a different weight in determining the 

completeness of the ontology relations. 

As a result, we get a lot of incredible inconsistencies. Such inconsistencies can be a great 

multitude, which may confuse the expert. Therefore, relations between categories should be 

considered. 
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3.4  Relations between categories 

"Concept-Action" and "Action-Concept" relations have different semantics. However, they 

are similar to the structure, so the relations are equivalent to the analysis of terms. 

Consider the example of such "Concept-Action" relation of ontology. Table 2 presents a 

formal context received on the relation. Unlike the previous example, where the objects and 

attributes are terms of the same category, in this case the objects are all terms of "Concept" 

category, and attributes are terms of "Action" category. 

 Table 2. Example of formal context  

G\M moos jumps eats meat floats 

Cow X X    

Rabbit   X    

Wolf   Х X  

Piranha    X X 

overland Х Х Х  

herbivorous Х Х   

Hoofed Х Х   

predator  Х Х Х 

Figure 4 shows concept lattice of the formal context. 

 

Fig. 6. Example of concept lattice 

Assume in this example in the initial ontology actions "moos", "jumps", "eats meat" and 

"floats" are not connected qualitative relations between each other. 

It follows from this relation between the terms "eats meat" and "floats" and the relation 

between the terms "jumps" and "moos" are absent in the source ontology and may be 

included therein (the relation of marked in Figure 4). 

Let the union of qualitative relations of one category of original ontology is TOi, and the 

set of relations derived from the concept lattice of relations of the same type is AR. 
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Then the set of inconsistencies of the relation is defined as  

NA : (TOi)\AR  AR\(TOi).   (4) 

However, it should be separated by a sets of lattice inconsistencies (NAR : (TOi)\AR) and 

ontology inconsistencies (NTO : AR\(TOi)) as they may have a different weight in 

determining the completeness of the ontology relations. 

Unlike lattices of relations of one category in this case is not specified the type of relations 

based on the qualitative, which searches for inconsistencies. On the basis of the terms of 

relations with the other categories of construction abstract terms this category hierarchy.  

Because of lack of a particular type of relations such inconsistencies have little weight in 

the analysis, however, together with the inconsistencies obtained by relations of one 

category define a more detailed analysis of the completeness of the ontology relations. 

Thus, inconsistencies, which are available to the expert for consideration, determined by  

N : NT  NA.    (5) 

As a result, the expert receives the set is not appropriate for the two parameters of relations. 

This allows it to draw a conclusion about the completeness of the ontology relations. 

4  Conclusion 

Formal Concept Analysis provides additional opportunities for analysis of the ontology of 

the model. Formal context and concept lattice allows sharing the concepts of the ontology 

of individual relations, which provides a more detailed analysis of ontological knowledge. 

The presented approach allows us to evaluate the coherence of concepts and relations of 

ontology based concept lattice. Lattice allows you to identify the logical dependencies 

based on the relations of one category or hidden depending based relations with the terms 

of different categories. 

To develop an accurate and effective method for the analysis of completeness of ontology 

relations requires further research relations and properties of the ontology. In this paper, we 

considered only the basic relations on the terms of the "Concept" and "Action" categories. 

For complete analysis there is needed for further study of the relations and the inclusion in 

the analysis of the terms of other categories. 

At the moment, the approach is still under development. For further development of the 

approach required to examine all possible relations between the terms of ontology. It is 

necessary to determine the exact relations between the types of relations for a full analysis 

of inconsistencies in the ontology and the completeness of the ontology relations. 
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