Query Learning and
Attribute Exploration




Supervised learning
Input: a training set divided into (for example) two classesw.r.t. a
certain target property:
e positiveexamples;
* negative examples.

Build a classifierthat determines whether a previously unseen
object has the target property.

(i)



Learning with queries (Angluin 1988)

Input: an oracle capable of answering queries of certain
predefined types concerning a target property.

Build a classifierthat determines whether a previously unseen
object has the target property.

(i)



Types of queries

Membership query: Does the object have the target property?




Types of queries

Membership query: Does the object have the target property?

Equivalence query: Does the hypothesis H accurately describe
the set of objects with the target property? If not, the oracle
must provide

* apositivecounterexample that has the target property, but is
not covered by the hypothesis

or
* anegative counterexample that doesn’t have the property,

but satisfies the hypothesis.



Types of queries

Subset query: Does the hypothesis H describe only objects with
the target property?

 If not, providea negative counterexample.

Superset query: Does the hypothesis Hdescribe all the objects
with the target property?

 If not, providea positive counterexample.

(i)



Learning binary patterns

* A binarypatternisa nonempty string consisting of 0, 1, and
variables from a countably infinite alphabet X.

* A pattern p defines the language L(p) consisting of all words
that can be obtained by substituting nonempty binary strings

for variables.

* For example, the language of the pattern x,0 0x; includes
the strings 10101 and 0101 11001, but not 10700 or 1001.

(i)



Learning binary patterns

A hint: | have guessed one of the 2% variable-free patterns of
length k.
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Learning binary patterns

A hint: | have guessed one of the 2 variable-free patterns of
length k.

Membership query: Is word w in the language?
— No.
Equivalence query: Is p the right pattern?
— No: give a negative counterexample.
Subset query: Is p less general than the target pattern?

— No: give a negative counterexample.
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Learning binary patterns

A hint: | have guessed one of the 2 variable-free patterns of
length k.

Membership query: Is word w in the language?
— No.

Equivalence query: Is p the right pattern?
— No: give a negative counterexample.

Subset query: Is p less general than the target pattern?
— No: give a negative counterexample.

Each of the above queries excludes at most one of 2k

patterns. No polynomial-time algorithm.@



Learning binary patterns with superset queries

1. Determine the length k of the pattern.

2. Determine the constants in the pattern.

3. Determine identical variablesin the pattern.
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Learning binary patterns with superset queries

1. Determine the length k of the pattern.

— Query about patterns x;x,, X;X5X3, etc., until the answer is
”NO".

2. Determine the constants in the pattern.

— Fori=1,2, ...,k query about the patterns x;...x;.;0x;,1...x,
and x;...X 1 1X;1... X,

3. Determine identical variablesin the pattern.
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Learning binary patterns with superset queries
1. Determine the length k of the pattern.

— Query about patterns x;x,, X;X,X3, etc., until the answer is
”NO".

2. Determine the constants in the pattern.

— Fori=1,2, ...,k query about the patterns x;...x.10x;,1...X,
and x;...X 1 1X;,1...X,.

3. Determine identical variablesin the pattern.

— For each pair of positions i < j of variablesin the pattern,
query about the pattern x;... X 1¥Xi 1. . Xj1Y Xy 1. Xk

Polynomial-time algorithm! @



Formal Concept Analysis

Formal context (G, M, )
— a set G of objects
— a set M of attributes

— objects are described with attributes viaa binary relation
| < GXM

(i)



A formal context
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Formal Concept Analysis

Derivation operators

ForA S Gand B & M:
—A={me M| Vge A:gim}
— B ={g = G| Vm € B:glm}

Forg € Gand m & M, the set{g} is calledan object intent and
the set{m}’ is called an attribute extent.

(-)":2M > 2Mis a closure operator.

(i)



Derivation operators
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Derivation operators

TRE
g)o O
O —
Europe ol 81 & g
S| 3|l E =18
N @ || &=
[taly X | X | X | X
United Kingdom || X X | X
Poland X X | X
Denmark X X | X | X
Norway X | X | X
Russia
Spain X | X | X | X | X
Turkey X

{Italy, Spain}’'= {EU, Euro, Schengen, NATO} @



Formal Concept Analysis

ImplicationA - B (A,B< M)

 An attribute subsetX © Misa modelof A=> BifAis not a
subset of X or B is a subset of X.

e A- Bholdsinthe contextifA’ < B.

* Xisa modelofanimplicationsetlL ifitis a model of every
implicationfrom L.

* Two implicationsets are equivalentif they have the same
models.

 Among equivalentimplication sets, there is a particularone
called the canonical (or Duguenne-Guigues) basis. It is

minimal in the number of implicationsamong all equivale
implicationsets.



Canonical basis
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Computing implications

If M is finite, the canonical basis is finite, too.

If G is alsofinite, we can compute the canonical basis, e.q.,
using the NextClosure algorithm (Ganter 1984).

However, if G is infinite, it is not possible to work with the
entire context directly.

(i)



Learning implications with queries

* Forget about the context—talk to an oracle to compute the
implicationset L".

» A set of implications describes a set of models— attribute
combinations that satisfy these implications.

Membership queries:IsA & M a model of L™?
Equivalence queries: s an implicationset L equivalentto L?

 If not, the oracle must provide a counterexample: a set that
isa model of L*, but not of L (positive counterexample), or

vice versa (negative counterexample). C



Polynomial-time algorithm
(Angluin et al. 1992)

Equivalence queries: s an implicationset L equivalentto L?

* If not, the oracle must provide a counterexample: a set that
isa model of L*, but not of L (positive counterexample), or
vice versa (negative counterexample).

How to handle a counterexample X?

If X is positiveand it doesn't satisfy some A - Bfrom L, weaken
A = BbyreplacingitwithA—-> Bn X.

If X is negative, strengthen L by replacingsome A - B from L
with A n X = Bor by adding a new implicationX > M, so asto

exclude X from the set of models of L. @




Polynomial-time algorithm
(Angluinetal. 1992)

An examplefor M={a, b, ¢, d}:

Initial hypothesis: the empty implication set—everything is
possible!

Equivalence query returns a negative counterexample{a, b, c}.
New hypothesis:{a, b, c} 2> M.

(i)



Polynomial-time algorithm
(Angluinetal. 1992)

An examplefor M={a, b, ¢, d}:

Current hypothesis: {a, b, ¢} 2> M.

Equivalence query returns a negative counterexample {a}.
Strengthen the current hypothesis to exclude {a}.

The new hypothesis: {a} 2> M.

(i)



Polynomial-time algorithm
(Angluinetal. 1992)

An examplefor M={a, b, ¢, d}:

* Current hypothesis: {a} 2> M.
* Equivalence query returns a negative counterexample {c, d}.

* Can we strengthen {a} 2> M?

(i)



Polynomial-time algorithm
(Angluinetal. 1992)

An examplefor M={a, b, ¢, d}:

Current hypothesis: {a} =2 M.
Equivalence query returns a negative counterexample {c, d}.
Can we strengthen {a} > M?
Membership query w.r. t. {a} n {c, d} = 2.
Answer: yes!
e The empty setisa modelof L".

(i)



Polynomial-time algorithm
(Angluin et al. 1992)

An examplefor M={a, b, ¢, d}:

Current hypothesis: {a} =2 M.
Equivalence query returns a negative counterexample {c, d}.
Can we strengthen {a} > M?
Membership query w.r. t. {a} n {c, d} = 2.
Answer: yes!
e The empty setisa modelof L".
New hypothesis:{a} 2 M, {c, d} = M.

(i)



Polynomial-time algorithm
(Angluinetal. 1992)

An examplefor M={a, b, ¢, d}:

Current hypothesis: {a} 2 M, {c,d} > M.

Equivalence query returns a positive counterexample {q, ¢, d}.
Weaken {a} 2> M and {c, d} 2> M.

New hypothesis:{a} 2 {a, ¢, d}, {c d}—=>{a,c d.

(i)



Polynomial-time algorithm
(Angluinetal. 1992)

An examplefor M={a, b, ¢, d}:

Current hypothesis: {a} =2 {a, ¢, d}, {c,d}>{a,cdl.
Equivalence query returns a positive counterexample {a, c}.
Weaken {a} =2 {a, ¢, d}.

New hypothesis:{a} 2 {a, c}, {c,d} > {a,cd.

(i)



Polynomial-time algorithm
(Angluinetal. 1992)

An examplefor M={a, b, ¢, d}:

Current hypothesis: {a} =2 {a,c}, {c,d} =2 {a,c, d}.

Equivalence query returns a negative counterexample{a, b, c}.
Membership query w.r.t.{c,d} n {a, b, ¢} = {c}.

Answer: yes!

New hypothesis:{a} 2 {a, ¢}, {c,d} =2 {a, c, d}, {a, b, c} 2> M.

(i)



Polynomial-time algorithm
(Angluinetal. 1992)

An examplefor M={a, b, ¢, d}:

* Current hypothesis: {a} =2 {a,c}, {c,d} =2 {a,c, d}, {a, b, ¢ 2> M.
* Equivalencequery returns no counterexamples.
* Success!

(i)



Polynomial-time algorithm
(Angluin et al. 1992)

L =0
while there is a counterexample X to £ do {Equivalence oracle}
if £L(X) = X then {negative counterexample}

found := false
forall A - B € Ldo
C:=ANX
if A+ C and C # L*(X) then {Membership oracle}
L:=L\{A— B}
L:=LU{C — B}
found := true
exit for
if not found then
L:=LU{X — M}
else {positive counterexample}
forall A -+ B € Lsuchthat AC X and B € X do

L:=L\{A— B}
L:=LU{A—BnNX} @




Polynomial-time algorithm
(Angluinetal. 1992)

 Computes the canonical basis (Arias and Balcazar 2011)
* Makes O(m?n) membership and O(mn) equivalence queries
* misthe size of the basis

* nisthe number of attributes

(i)



Attribute exploration

An alternative technique from formal concept analysis.
Start with any (possibly empty) set of objects.
Generate an implicationvalid in the current subcontext.

If the implicationis not valid in the entire context, providean
object that violates it.

Go to the next implication, etc.

Follow the canonical basisto ask only questions that are

necessary. @




Attribute exploration

* An alternative technique from formal concept analysis.
 Start with any (possibly empty) set of objects.

* Generate an implicationvalidin the current subcontext.
 Iftheimplicationis not validin the entire context, providean

object that violates it.

* Gotothe next implication, etc.

This is a superset query:

Do the models of the implication A = B include all the models

of the target implicationset L?
/—\



Attribute exploration
in lexical typology

* Objects are words of different languages.

* Attributes are frames correspondingto individual
meanings.

* We want to build a semantic map showing which
meanings can be combined together within a single
lexeme.




Attribute exploration
of the semantic field empty’

e Start with three words (two Chinese and one Korean)
and three frames;:
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Attribute exploration
of the semantic field empty’

e Start with three words (two Chinese and one Korean)
and three frames;:

hollow sphere empty box

kongxin

empty room

thengpita kong

(i)



Attribute exploration
of the semantic field empty’

e Start with three words (two Chinese and one Korean)
and three frames;:

hollow sphere empty box

kongxin

empty room

thengpita kong

Does every word for emptyroom s also suitable for empty box?

(i)




Attribute exploration
of the semantic field empty’

Does every word for emptyroom s also suitable for empty box?

No: there is a counterexample in Korean.
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konghehata X




Attribute exploration
of the semantic field empty’

Does every word for emptyroom s also suitable for empty box?

No: there is a counterexample in Korean.

hollow sphere empty box empty room

kongxin konghehata

thengpita kong

(i)



Attribute exploration
of the semantic field empty’

Does every word for emptyroom s also suitable for empty box?

No: there is a counterexample in Korean.

hollow sphere empty box empty room

kongxin konghehata

thengpita kong

Is there a word used for both hollow sphere and empty room?

(i)



Attribute exploration
of the semantic field empty’

Does every word for emptyroom s also suitable for empty box?

No: there is a counterexample in Korean.

hollow sphere empty box empty room

kongxin konghehata

thengpita kong

Is there a word used for both hollow sphere and empty room?

(i)

Probably, no.



Attribute exploration
of the semantic field empty’

Let us add some Serbian words:

hollow sphere empty box emply room
kongxin konghehata
Supal] pust
thengpita kong
prazen

(i)



Object exploration
of the semantic field empty’

Let us add some Serbian words:

hollow sphere empty box emply room
kongxin konghehata
Supal] pust
thengpita kong
prazen

and run attribute exploration the other way round:
Are all the meanings of “pust” shared by "kong”,

“konghehata”, and "prazen”? @



Object exploration
of the semantic field empty’

Are all the meanings of “pust” shared by "kong”,
“konghehata”, and "prazen”?

No: “prazen” is not used to denote local spaces without people
(but only those without inanimate objects).

no people
kongxin
kong X
thengpita
konghehata X
Supalj
prazen

A o



Object exploration
of the semantic field empty’

Are all the meanings of “pust” shared by "kong”,
“konghehata”, and "prazen”?

No: “prazen” is not used to denote local spaces without people
(but only those without inanimate objects).

hollow sphere empty box emptly room

kongxin
Supalj

no people

thengpita LGS konghehata

pust

on @



Many possible extensions

Bernhard Ganter - Sergei Obiedkov

Background knowledge
Exceptions

Symmetries

Incompletely specified examples

Conceptual

Exploration

First-order rule exploration
Exploration for descriptionlogics
Concept exploration

Exploration of noisy, fuzzy, triadic data, etc.

Collaborative exploration




