Ontology matching tutorial

Jérôme Euzenat

Thanks to Pavel Shvaiko & Natasha Noy

Problem	Applications	Methods	OM & FCA	Conclusions
Goals of the	e tutorial			

- Provide an introduction to ontology matching;
- ... and eventually the semantic web;
- Start the discussion on links with formal concept analysis

Ontology matching tutorial (v17): CLA-2016 (Moskow, Russia) - Euzenat and Shvaiko

2 / 42

Problem	Applications	Methods	OM & FCA	Conclusions
Outline				
1 Problem				
2 Applicatio	ns			
3 Methods				
Ontology	matching and FC	CA		
5 Conclusion	าร			

Problem	Applications	Methods	OM & FCA	Conclusions
The ser	nantic web?			

The semantic web is an effort for publishing formal knowledge on the web.

It has developed various languages:

RDF Expressing data as graphs;

OWL, RDFS Expressing the ontologies governing such graphs;

SPARQL Query language for such graph

GRDDL, RDFa Embedding knowledge on the web

There are many tools for dealing with such languages and many resources expressed through it.

Problem	Applications	Methods	OM & FCA	Conclusions
The sem	nantic web is a	success!		

Such technologies are used every day (by yourself).

- ▶ Tens of billions of RDF triples and thousands of ontologies on the web;
- Governments and their agencies publish their data in RDF;
- Facebook (OG), Google (GKG), Yandex, Yahoo, Microsoft (schema.org) produce and consume semantic markup.
- And you do not even have to notice it.

Problem	Applications	Methods	OM & FCA	Conclusions
What is a	n ontology?			

An ontology typically provides a vocabulary that describes a domain of interest and a specification of the meaning of terms used in the vocabulary.

Depending on the precision of this specification, the notion of ontology encompasses several data and conceptual models, including, sets of terms, classifications, thesauri, database schemas, or fully axiomatized theories.

7 / 42

Conclusions

Problem	Applications	Methods	OM & FCA	Conclusions
Living wit	h heterogene	eity		
The semantic	: web will be:			
huge,				
 dynamic 	· ,			
heteroge	eneous.			

- different models are used:
 - different classes: Autobiography vs. Paperback;
 - classes vs. property: Essay vs. literarygenre;
 - classes vs. instances: One physical book as an instance vs. one work as an instance.

Conclusions

11 / 42

different scopes and granularity are used.

- Only books vs. cultural items vs. any product;
- Books detailed to the print and translation level vs. books as works.

Ontology matching tutorial (v17): CLA-2016 (Moskow, Russia) - Euzenat and Shvaiko

Ontology matching intor Product Volume ➡ title isbn ◄ string author 🔸 ratings \Rightarrow title 🛪 uri ---- price Essav 🗝 sales 🗲 Literary critics r doi 🛠 Person topic Human Politics Book . Biography

Albert Camus: La chute

Writer

Methods

OM & FCA

subject -

Literature

Autobiography

Bertrand Russell: My life

🕩 authòr

DVD

CD

These are not bugs, these are features.

Problem

We must learn to live with them and master them.

Ontology matching tutorial (v17): CLA-2016 (Moskow, Russia) - Euzenat and Shvaiko

Applications

12 / 42

10 / 42

Conclusion

Problem	Applications	Methods

Correspondences and alignments

Definition (Correspondence)

Given two ontologies o and o', a **correspondence** between o and o' is a 3-uple: $\langle e, e', r \rangle$ such that:

• e and e' are entities of o and o', for instance, classes, XML elements;

OM & FCA

r is a relation, for instance, equivalence (=), more general (⊒), disjointness (⊥).

Definition (Alignment)

Given two ontologies o and o', an **alignment** (A) between o and o':

- \blacktriangleright is a set of correspondences between o and o'
- with some additional metadata (multiplicity: 1-1, 1-*, method, date, ...)

Ontology matching tutorial (v17):	CLA-2016 (Moskow,	, Russia) – Euzenat and Shvaiko	

```
14 / 42
```

Conclusion

Terminology: a summary

- Matching is the process of finding relationships or correspondences between entities of different ontologies.
- Alignment is a set of correspondences between two or more (in case of multiple matching) ontologies. The alignment is the output of the matching process.
- Correspondence is the relation supposed to hold according to a particular matching algorithm or individual, between entities of different ontologies.
 - Mapping is the oriented version of an alignment.

Ontology matching tutorial (v17): CLA-2016 (Moskow, Russia) - Euzenat and Shvaiko

15 / 42

Problem	Applications	Methods	OM & FCA	Conclusions
The ma	tching process			

Problem	Applications	Methods	OM & FCA	Conclusions
Why should	we deal with	this?		

Applications of ontology matching:

- Catalogue integration
- Schema and data integration
- Query answering
- Peer-to-peer information sharing
- Web service composition
- Agent communication
- Data transformation
- Ontology evolution
- Data interlinking

Problem	Applications	Methods	OM & FCA	Conclusions
Applicatio	ons: catalog i	ntegration		

Ontology matching tutorial (v17): CLA-2016 (Moskow, Russia) – Euzenat and Shvaiko	
---	--

Ontology matching tutorial (v17): CLA-2016 (Moskow, Russia) - Euzenat and Shvaiko

20 / 42

Problem	Applications	Methods	OM & FCA	Conclusions
Applications	s requirements			

Application	instances	run time	automatic	correct	complete	operation
Ontology evolution	\checkmark			\checkmark		transformation
Schema integration						merging
Catalog integration						data translation
Data integration						query answering
Linked data						data interlinking
P2P information sharing						query answering
Web service composition						data mediation
Multi agent communication						data translation
Query answering						query reformulation

21 / 42

19 / 42

Generate

Generator

Transformation

thereby determine an alignment

a processor (for merging, transforming, etc.)

Matching can be achieved at run time or at design time.

Ontology matching tutorial (v17): CLA-2016 (Moskow, Russia) – Euzenat and Shvaiko	23 / 42

Problem	Applications	Methods	OM & FCA	Conclusions
Name simi	larity			

Problem	Applications	Methods	OM & FCA	Conclusions
On wha	t basis can we	match?		
Conte	nt: relying on what lame, comments, alte tc. internal structure: con ixternal structure: re nathematics ixtension: statistics, emantics (models): ixt: the relations of	t is inside the or ernate names, nar nstraints on relation lations between er data analysis, data reasoning techniqu	ntology nes of related entities ons, typing ntities: data mining, d a mining, machine lea ues	s: NLP, IR, discrete arning
Conte	xt: the relations of innotated resources:	the ontology w	th the outside	
▶ ٦	he web			

- External ontologies: dbpedia, etc.
- External resources: wordnet, etc.

Ontology matching tutorial (v17): CLA-2016 (Moskow, Russia) - Euzenat and Shvaiko

25 / 42

Problem	Applications	Methods	OM & FCA	Conclusions
Extensio	onal techniques			

lem	Applications	Methods	OM & FCA	Con	

Basic methods: extensional

 $\epsilon: C \to E$

 ${\it E}$ can be a set of instances, a set of documents which are indexed by concepts, a set of items, e.g., people, which use these concepts. Two cases:

- ► *E* is common to both ontologies;
- *E* depends on the ontology. This can be reduced to the former case by identification or record linkage techniques.

Techniques:

- statistical and machine learning techniques infer and compare the characteristics of populations;
- set-theoretic techniques compare the extensions;

Ontology matching tutorial (v17): CLA-2016 (Moskow, Russia) - Euzenat and Shvaiko

29 / 42

Problem	Applications	Methods	OM & FCA	Conclusions
Ontology	/ matching an	d FCA		

Ontology matching:

- From concepts, individuals and features of two sources
- ► Find equivalent concepts, features (and individuals)

Formal concept analysis:

- ► Form individuals and features
- ► Find concepts

Problem	Applications	Methods	OM & FCA	Conclusions
What is the	same/what is	different		

- ▶ two sides (with no correspondences) instead of one
- ► the goal is not to create concepts

Ontology matching	tutorial (v17): CLA-2016 (Mosl	kow, Russia) – Euzenat and	Shvaiko	32 / 42	Ontology matching	; tutorial (v17): CLA-2016 (Mosł	ow, Russia) – Euzenat and	Shvaiko
D 11			0.1.1.551					
Problem	Applications	Methods	OM & FCA	Conclusions	Problem	Applications	Methods	OM & FCA
Rough i	dea				Rough	idea		
	all		all			all ←		──→ all

C1 <

E1

B2

G2 H2

D2 E2 F2

 $\stackrel{\square}{\longrightarrow}$

B1

 \perp

G1 D1

F1

Encoding OM into FCA

- Really need to have common instances:
 - data interlinking (see tomorrow talk)
 - any other technique (which is equivalent)
- what can be the features:
 - classes (in both ontologies)
 - ► properties/relations

The problem is that the result will not be much different from cardinality analysis (concepts will be pairs of classes for which cardinality is 100%).

Ontology matching	tutorial (v17): CLA-2016 (Mosko	ow, Russia) – Euzenat and S	Shvaiko	35 / 42
Problem	Applications	Methods	OM & FCA	Conclusions
6				
Summar	ſУ			

- Heterogeneity of ontologies is in the nature of the semantic web;
- Ontology matching is part of the solution;
- It can be based on many different techniques;
- There are already numerous systems around;
- A relatively solid research field has emerged (tools, formats, evaluation, etc.) and it keeps making progress;
- But there remain serious challenges ahead.

Problem	Applications	Methods	0	M & FCA	Conclusions
FCA-Merge	[Stumme and	Mädche,	2001]	

- 1. instance extraction (\rightarrow create common instances);
- 2. compute lattice (FCA);
- 3. interactive merge of the ontologies (comparing classes covering concept extent and deciding to merge them).

Ontology matching tutorial (v17): CLA-2016 (Moskow, Russia) - Euzenat and Shvaiko

36 / 42

Problem	Applications	Methods	OM & FCA	Conclusions
Challenges				

- ► Large-scale and efficient matching,
- Matching with background knowledge,
- Matcher selection, combination and tuning,
- ► User involvement,
- Social and collaborative matching,
- ► Uncertainty in matching,
- Reasoning with alignments,
- ► Alignment management.

and, of course, many others...

Acknowledgments

Applications

We thank all the participants of the Heterogeneity workpackage of the Knowledge Web network of excellence

Conclusions

40 / 42

Problem

In particular, we are grateful to Than-Le Bach, Jesus Barrasa, Paolo Bouquet, Jan De Bo, Jos De Bruijn, Rose Dieng-Kuntz, Enrico Franconi, Raúl García Castro, Manfred Hauswirth, Pascal Hitzler, Mustafa Jarrar, Markus Krötzsch, Ruben Lara, Malgorzata Mochol, Amedeo Napoli, Luciano Serafini, François Sharffe, Giorgos Stamou, Heiner Stuckenschmidt, York Sure, Vojtěch Svátek, Valentina Tamma, Sergio Tessaris, Paolo Traverso, Raphaël Troncy, Sven van Acker, Frank van Harmelen, and Ilya Zaihrayeu.

Methods

And more specifically to Marc Ehrig, Fausto Giunchiglia, Loredana Laera, Diana Maynard, Deborah McGuinness, Petko Valchev, Mikalai Yatskevich, and Antoine Zimmermann for their support and insightful comments

Part of this work was carried out while Pavel Shvaiko was with the University of Trento. Ontology matching tutorial (v17): CLA-2016 (Moskow, Russia) – Euzenat and Shvaiko

Problem	Applications	Methods	OM & FCA	Conclusions
		Thank you		
		, name you		
	for your	attention and	interest!	
	, et geen			
	Jerome	.Euzenat@ir	nria.fr	
	Pavel.	Shvaiko@inf	fotn.it	
	http://www	.ontologyma	atching.org	
Ontology matching t	utorial (v17): CLA-2016 (Mosl	ow. Russia) – Euzenat and S	hvaiko	42 / 42

Jérôme Euze	enat, Pavel Shvaiko	
Untology n	natching	
1. Applica	tions	
2. The ma	atching problem	
3. Method	lology	Jerome Euzenat Pavel Shvaiko
4. Classifie	cation	0.1.1.
5. Basic si	imilarity measures	Untology
6. Global	matching methods	Matching
7. Strateg	ies	Matching
8. System	S	Second Edition
9. Evaluat	ion	
10. Represe	entation	
11. User in	volvement	
12. Process	sing	≦∑ Spring

Methods

Applications

OM & FCA

Conclusions