
CLA 2016
Proceedings of the Thirteenth International Conference on
Concept Lattices and Their Applications

CLA Conference Series
cla.inf.upol.cz

http://cla.inf.upol.cz


National Research University Higher School of Economics, Russia

ISBN 978-5-600-01454-1



National Research University Higher School of Economics, Russia

The Thirteenth International Conference on

Concept Lattices and Their Applications

Moscow, Russia

July 18–22, 2016

Edited by

Marianne Huchard

Sergei O. Kuznetsov



CLA 2016

c© Marianne Huchard, Sergei O. Kuznetsov, Editors

This work is subject to copyright. All rights reserved. Reproduction or publica-
tion of this material, even partial, is allowed only with the editors’ permission.

Technical Editor:

Dmitry I. Ignatov, dignatov@hse.ru

Cover design:

Daniil Bondarenko, daniil@bondarenko.su

Page count: xiv+377

Impression: 200

Edition: 1st

First published: 2016

Published and printed by:

National Research University Higher School of Economics, Russia

mailto:dignatov@hse.ru
mailto:daniil@bondarenko.su


Organization

CLA 2016 was organized by the National Research University Higher School of
Economics.

Steering Committee
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Jan Outrata Palacký University, Olomouc, Czech Republic

Program Chairs

Marianne Huchard LIRMM, Université de Montpellier, France
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Radim Belohlavek Palacký University, Olomouc, Czech Republic
Anne Berry LIMOS, University Blaise Pascal, Clermont-

Ferrand, France
Karell Bertet Laboratory L3I, University of La Rochelle, France
François Brucker Ecole Centrale Marseille, France
Ana Burusco Universidad Publica De Navarra, Spain



Aleksey Buzmakov Aleksey V. Buzmakov, National Research Univer-
sity Higher School of Economics, Perm, Russia

Peggy Cellier IRISA/INSA Rennes, France
Pablo Cordero Universidad de Málaga, Spain
Jean Diatta Université de la Réunion, France
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Jesús Medina Moreno University of Cádiz, Spain
Engelbert Mephu Nguifo LIMOS, University Blaise Pascal, Clermont-

Ferrand, France
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Preface

The 13th International Conference on “Concept Lattices and Applications (CLA
2016)” was held at National Research University Higher School of Economics,
Moscow, Russia from July 18 until July 22, 2016. The CLA conference, organized
since 2002, aims to provide to everyone interested in Formal Concept Analysis
and more generally in Concept Lattices or Galois Lattices, an advanced view
on some of the last research trends and applications in this field. It also aims
to bring together students, professors, researchers and engineers, involved in all
aspects of the study of concept lattices, from theory to implementations and
practical applications. As the diversity of the selected papers shows, there is a
wide range of research directions, around data and knowledge processing, in-
cluding data mining, knowledge discovery, knowledge representation, reasoning,
pattern recognition, together with logic, algebra and lattice theory.
The program of the conference includes four keynote talks given by the fol-
lowing distinguished researchers: Lev D. Beklemishev (Mathematical Institute
of Russian Academy of Science, Moscow), Jérôme Euzenat (INRIA Grenoble
Rhône-Alpes), Bernhard Ganter (TU-Dresden), Boris G. Mirkin (National Re-
search University Higher School of Economics, Moscow). This volume includes
the selected papers and the abstracts of the invited talks. This year, 46 papers
were submitted, from which 28 papers were accepted as regular papers. We would
like to thank here the contributing authors for their valuable work, the members
of the program committee and the external reviewers who analyzed the papers
with care. All of them participated to the continuing quality and importance of
CLA, highlighting its key role in the field.
Then we would also like to thank the steering committee of CLA for giving us
the occasion of leading this edition of CLA, the conference participants for their
participation and support, and people in charge of the organization, especially
Larisa I. Antropova, Ekaterina L. Chernyak, Dmitry I. Ignatov, Olga V. Maksi-
menkova, whose help was very precious in many occasions and that contributed
to the success of the event. We would like to thank our sponsors, namely National
Research University Higher School of Economics, ExactPro company, Russian
Foundation for Basic Research. Finally, we also do not forget that the conference
was managed (quite easily) with the Easychair system, for many tasks including
paper submission, selection, and reviewing.

July 2016 Marianne Huchard
Sergei O. Kuznetsov

Program Chairs of CLA 2016





Strictly Positive Fragments of Modal and
Description Logic

Lev D. Beklemishev

Mathematical Institute of Russian Academy of Science, Moscow, Russia

Abstract. In this talk we will advocate the use of weak systems of
modal logic called strictly positive. These can be seen as fragments of
polymodal logic consisting of implications of the form A → B, where
A and B are formulas built-up from T (truth) and the variables using
just conjunction and the diamond modalities. The interest towards such
fragments independently emerged around 2010 in two different areas: in
description logic and in the area of proof-theoretic applications of modal
logic.
From the point of view of description logic, strictly positive fragments
correspond to the OWL 2 EL profile of the OWL web ontology language,
for which various properties of ontologies can be decided in polynomial
time. In the area of proof-theoretic applications, these fragments emerged
under the name reflection calculi, as they proved to be a convenient
tool to study the independent reflection principles in arithmetic and to
calculate proof-theoretic ordinals of formal systems.
Thus, in two different areas strictly positive languages and logics proved
to combine both efficiency and simplicity, and sufficient expressive power.
In this talk we discuss general problems around weak systems of this kind
and describe some of their applications.

Keywords: Modal Logic, Description Logic





Data Interlinking with Formal Concept Analysis
and Link Keys

Jérôme Euzenat

INRIA & Univ. Grenoble Alpes, Grenoble, France

Abstract. Data interlinking, the problem of linking pairs of nodes in
RDF graphs corresponding to the same resource, is an important task
for linked open data. We introduced the notion of link keys as a way
to identify such node pairs [1]. Link keys generalise in several ways keys
in relational algebra. Thus, we consider how they could be extracted
from data with Formal Concept Analysis. We show that an appropriate
encoding makes the notion of candidate link keys correspond to formal
concepts [2]. However candidate link keys are not yet link keys as they
need to be selected through appropriate measures. We discuss how the
measurement and concept extraction processes may be interleaved. If
time permits we will also discuss extensions of this model to residual
link keys and mutually dependent link keys1.

Keywords: Linked Data, Formal Concept Analysis

References

1. Atencia, M., David, J., Euzenat, J.: Data interlinking through robust linkkey extrac-
tion. In: Proc. 21st European Conference on Artificial Intelligence (ECAI), Praha
(CZ). (2014) 15–20

2. Atencia, M., David, J., Euzenat, J.: What can FCA do for database linkkey extrac-
tion? In: Proc. 3rd ECAI workshop on What can FCA do for Artificial Intelligence?
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1 This work has been developed in collaboration with Manuel Atencia, Jérôme David
and Amedeo Napoli.





Things to Do in Formal Concept Analysis

Bernhard Ganter

TU–Dresden, Germany

Abstract. After one third of a century, Formal Concept Analysis still
exists. Some of the younger researchers in the field were not even born
when Rudolf Wille’s seminal paper “Restructuring lattice theory: an ap-
proach based on hierarchies of concepts” was published in 1982. In our
talk we shall discuss the present status of the field, its strengths and
weaknesses, and sketch some possibilities for its future. We discuss sev-
eral potential projects which we find promising, some in the theoretical
foundations, some for applications, and others concerning the necessary
philosophical foundations. Our view will be very subjective and hopefully
controversial. We hope to induce a discussion which makes the research
potential of the field apparent, and which can inspire new research ac-
tivities.

Keywords: Formal Concept Analysis

References

1. Ganter, B., Obiedkov, S.A.: Conceptual Exploration. Springer (2016)
2. Ganter, B., Wille, R.: Formal Concept Analysis – Mathematical Foundations.

Springer (1999)





Approximate Clusters, Biclusters and n-Clusters
in the Analysis of Binary and General Data

Matrices

Boris G. Mirkin

National Research University Higher School of Economics, Moscow, Russia

Abstract. Approximate cluster structures are those of formal concepts
and n-concepts with added numerical intensity weights. The talk presents
theoretical results and computational methods for approximate cluster-
ing and n-clustering as extensions of the algebraic-geometrical properties
of numerical matrices (SVD and the like) to the situations where one or
most of elements of the solutions to be found are expressed by binary
vectors. The theory embraces such methods as k-means, consensus clus-
tering, network clustering, biclusters and triclusters and provides natural
data analysis criteria, effective algorithms and interpretation tools.

Keywords: Approximate clusters, biclusters, n-clusters, Formal Con-
cept Analysis

References

1. Mirkin, B.G., Rostovtsev, P.S.: Method for revealing associated feature subsets,. In
Mirkin, B., ed.: Models for Summarization of SocioEconomic Data (Metody Agre-
girovania Sotsial’no-Economitcheskoi Informatsii), Novosibirsk: Institute of Eco-
nomics Press (1978) 107–112 (in Russian).

2. Ignatov, D.I., Gnatyshak, D.V., Kuznetsov, S.O., Mirkin, B.G.: Triadic formal
concept analysis and triclustering: searching for optimal patterns. Machine Learning
101(1-3) (2015) 271–302





LatViz: A New Practical Tool for Performing
Interactive Exploration over Concept Lattices

Mehwish Alam1, Thi Nhu Nguyen Le2, and Amedeo Napoli2

1. Laboratoire d’Informatique de Paris-Nord, Université Paris 13, Paris, France
2. LORIA (CNRS – Inria Nancy Grand Est – Université de Lorraine)

BP 239, Vandoeuvre-lès-Nancy, F-54506, France
{alam@lipn.univ-paris13.fr}{thi-nhu-nguyen.le,amedeo.napoli@loria.fr}

Abstract. With the increase in Web of Data (WOD) many new chal-
lenges regarding exploration, interaction, analysis and discovery have
surfaced. One of the basic building blocks of data analysis is classifi-
cation. Many studies have been conducted concerning Formal Concept
Analysis (FCA) and its variants over WOD. But one fundamental ques-
tion is, after these concept lattices are obtained on top of WOD, how
the user can interactively explore and analyze this data through concept
lattices. To achieve this goal, we introduce a new tool called as LatViz,
which allows the construction of concept lattices and their navigation.
LatViz proposes some remarkable improvements over existing tools and
introduces various new functionalities such as interaction with expert,
visualization of Pattern Structures, AOC posets, concept annotations,
filtering concept lattice based on several criteria and finally, an intuitive
visualization of implications. This way the user can effectively perform
an interactive exploration over a concept lattice which is a basis for a
strong user interaction with WOD for data analysis.

Keywords: Lattice Visualization, Interactive Exploration, Web of Data, For-
mal Concept Analysis.

1 Introduction

In the last decade, there has been a huge shift from the Web of Documents to the
Web of Data (WOD). Web of Documents represents data in the form of HTML
pages which linked with other HTML pages through hyperlinks. This web of doc-
uments has evolved into WOD where all the information contained is represented
in the form of entity and relations allowing the semantics to be embedded in the
representation of the this data. This data are in the form of a (node-arc) labeled
graph belonging to several domains such as newspapers, publications, biomedi-
cal data etc. The growth in the publication of data sources in WOD has made it
an important source of data, which has led towards many challenges pertaining
to effective utilization of this data. WOD mainly represents data in the form of
Resource Description Framework (RDF)1. There are several ways such as data

1 http://www.w3.org/RDF/

c© Marianne Huchard, Sergei O. Kuznetsov (Eds.): CLA 2016, pp. 9–20,
ISBN 978-5-600-01454-1, National Research University Higher School of Economics,
2016.



dumps and SPARQL queries to access this data, which can be utilized for many
purposes, one of which is visualization and interactive exploration for data anal-
ysis purposes. Several visualization tools have been developed for this purpose,
one of which is LODLive2 [1], where user can choose data-sets such as DBpedia
and Freebase and specify an entity as a starting point for browsing the node-arc
labeled graph. Another tool based on graphical display is RelFinder [2], where
given several entities the tool automatically finds the paths connecting these
entities. The major drawback of LODLive is that after two hops the number of
nodes increase and it is hard to visualize the data. Moreover, these tools are
good for getting an insight into what RDF graph contains but they are not built
for the purpose of knowledge discovery.

In order to provide the user with the ability to perform data analysis and
knowledge discovery over such kind of data, there is a need to perform classi-
fication, where the obtained classes are further made available to the user for
exploration and subjective interpretation. In the current study we use Formal
Concept Analysis as the basis for classification. Several studies have already been
conducted using FCA and its variants over RDF graphs or its generalization to
knowledge graphs. Out of these studies so far RV-Xplorer [3] is the only tool that
actually allows interactive exploration of clustered RDF data [4]. The purpose of
this paper is to enhance the functionalities discussed in the previous two studies.
In this study we introduce a new tool LatViz which increases the interpretabil-
ity of a concept lattice by remarkably improving the user interaction with the
concept lattice as compared to existing tools. Various new functionalities have
been introduced such as the visualization of Pattern Structures and AOC-posets,
concept annotation, filtering concept lattice and pattern concept lattice based
on several criteria and finally, an intuitive visualization of implications. This
way the user can effectively perform an interactive exploration over a concept
lattice which in turn gives a basis for a strong user interaction with WOD for
knowledge discovery purposes. In this paper, we detail the important interaction
operations implemented in LatViz. In the rest of this paper we refer to “user”
as an “expert” as (s)he needs to have some basic knowledge about the lattice
structure.

The paper is structured as follows: Section 2 introduces a motivating example,
Section 3 introduces the background required for understanding the rest of the
paper while Section 4 introduces some of the important functionalities of LatViz.
Then in Section 5, we discuss some of the related tools already developed and
finally Section 6 details the future perspectives of the current work.

2 Motivating Example

Let us consider that an expert is searching for papers published by a particular
team in conferences or journals related to his/her field of research. In order to
locate the papers of his/her interest (s)he has to search for specific keywords

2 http://en.lodlive.it/

10 Mehwish Alam et al.



or authors in the local portal. For getting the view of which kind of papers
are contained (s)he has to run a broad query and then narrow down his/her
query to obtain papers on specific keywords or authors or group of keywords or
authors. The expert will end up running several queries to get what (s)he wants.
Moreover, if the expert wants to know the collaborations of the team with other
members of the research community outside the team, as well as the diversity
and the specialization of the team members, this cannot be directly obtained by
simple querying. To obtain such kind of knowledge there is a need to introduce
a support for data analysis. Based on this scenario, we show how the expert can
be guided thanks to an adapted visualization tool to obtain such information of
interest with the help of concept lattices.

3 Preliminaries

3.1 Pattern Structures

In this section we provide a brief introduction to pattern structures [5]. A pattern
structure is a triple pG, pD,Űq, δq, where G is the set of objects, pD,Űq is a
meet-semilattice of descriptions D equipped with a similarity measure

Ű
, and

δ : GÑ D maps an object to its description. More intuitively, a pattern structure
is a set of objects with their corresponding descriptions, where similarity between
descriptions is computed thanks to

Ű
. This similarity operator

Ű
is idempotent,

commutative and associative. The derivation operators can be defined as:

Al :“
ę

gPA
δpgq for A Ď G

dl :“ tg P G|d Ď δpgqu for d P D
Each element in D is referred to as a pattern. The subsumption order over these
patterns is given as: c Ď d ô c [ d “ c. The operator p.ql makes a Galois
connection. Then, a pattern concept of a pattern structure pG, pD,Űq, δq is a
pair pA, dq where A Ď G and d P D such that Al “ d and A “ dl, where A
is called the concept extent and d is called the concept intent. Pattern concept
lattices are defined in the same way as concept lattices in standard FCA.

Interval Pattern Structures. Interval Pattern Structures were first introduced
in [6] for dealing with numerical data instead of binary data. Consider two
descriptions δpg1q “ xrl1i , r1i sy and δpg2q “ xrl2i , r2i sy, with i P r1..ns where n
is the number of intervals used for the description of entities. The similarity
operation [ and the associated subsumption relation Ď between descriptions
are defined as the convex hull of two descriptions as follows: δpg1q [ δpg2q “
xrminpl1i , l2i q,maxpr1i , r2i qsy Following the definition of a pattern concept dis-
cussed previously a interval pattern concept lattice can be built. Pattern struc-
tures have also been introduced to deal with graphical data [5].
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3.2 Web of Data and its Classification

Web of Data (WOD) is represented in the form of entity and relationships. A
standard representation of WOD represents data in the form of RDF (Resource
Description Framework) triples written as xsubject, predicate, objecty. Here, sub-
ject can be a URI or a blank node, predicate can be a URI and object can be a
URI, a blank node or a literal. Several RDF triples connect together to form an
RDF graph. Table 1 shows an example of RDF triple store from DBLP where
each row represents one triple. The subject is the title of the paper, predicates
are the relations such as dc:subject and dc:creator (interpreted as “has key-
word” and “ has author” respectively) and the objects are the keywords and the
authors. The triple t1 is read as “paper s1 has keyword Pattern Structures”.

tid Subject Predicate Object

t1 s1 dc:subject Pattern Structures

t2 s1 dc:creator author1
t3 s2 dc:subject Formal Concept Analysis

t4 s2 dc:creator author2
t5 s1 rdf:type Publication

t6 o21 rdf:type Author
...

...
...

...

Table 1: RDF triples about papers with their authors and keywords from DBLP.

In order to allow interactive data exploration over RDF data, an initial set
of restrictions is posed by the expert by defining the task requirement based on
which a SPARQL query is created by the expert to obtain the specific data. Then
the most important step for interactive data exploration is to perform classifi-
cation of RDF data. Finally, the expert is allowed to interact with the obtained
classification. In the rest of this paper, we further improve the functionalities
of the existing tools by introducing several new interactive operations in a new
tool called LatViz.

4 LatViz for Interactive Exploration of Concept Lattices

4.1 User Interface

The display of LatViz resembles Conexp3, which provides basic functionalities
for building a concept lattice. LatViz implements two algorithms for building a
concept lattice from a binary context, one of which is introduced in [7]. Another,
efficient algorithm for building a concept lattice is AddIntent [8]. Demo of LatViz
is available on-line through this link: http://latviz.loria.fr/latviz/.

The concept lattice for the scenario in section 2 was created by mapping the
RDF data to a formal context K “ pG,M, Iq. Based on Table 1, the subjects
of the triples were considered as the set of objects G, the objects in the RDF
triples i.e., keywords and authors were considered as the set of attributes M .
In this example, the RDF triples were created from the publications of the

3 http://conexp.sourceforge.net/
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Knowledge Discovery (KDD) team in LORIA. The number of objects in the
context are 343 and attributes are 1516. Figure 1 shows a complete concept
lattice built using LatViz. The information about a concept can be displayed
by selecting the concept. Very often huge concept lattices are obtained based
on the context size. LatViz provides several interactive operations allowing for
reduction of exploration space of the expert. To-date this is the most interactive
tool having many unique functionalities such as handling numeric data with
the help of interval pattern structures, AOC-posets, filtering concept lattice and
implications which provides support for data analysis. Other functionalities such
as annotating the lattice, level-wise display of a concept lattice etc. are discussed
in many contexts but are not yet directly implemented in the commonly used
tools. In the following we detail each of these functionalities for data analysis.

Fig. 1: Complete lattice built from the papers of KDD-Team in LORIA Nancy.

4.2 AOC-Posets

AOC-poset is a partially ordered set of the attribute and object concepts, first
introduced in [9, 10]. If pG,M, Iq is a formal context then according to the defi-
nition in [7], an object concept is defined as pg2, g1q such that g P G, i.e. pg2, g1q
is the “lower” concept whose extent includes g. Dually, an attribute concept is
defined as pm1,m2q where m P M , i.e. pm1,m2q is the “highest” concept whose
intent includes m. The object and attribute concept are referred to as intro-
ducers in [11]. Once an attribute is introduced in a concept it is inherited from
top to bottom while, dually, an introduced object is “inherited” from bottom to
top. During this study, we implement the Hermes Algorithm introduced in [11]
for building AOC-Poset from binary context. AOC-posets have been successfully
applied to several domain one of which is to classify linguistic data [9]. In the
current study we compute AOC Posets of RDF data. Figure 2 shows the AOC
Posets of the concept lattice in Figure 1, where object and attribute concepts
are shown in green while the other concepts are translucent and the pink color
shows the selected concept.
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Fig. 2: AOC-Posets.

4.3 Displaying Concept Lattice Level-wise

AOC-Posets actually reduce exploration space but still a huge number of con-
cepts remain to be observed. LatViz allows the creation of concept lattice level-
wise by interaction. When an expert clicks on the top concept, LatViz computes
and displays the first level. After that the expert can select the concept for con-
tinuing the exploration, then LatViz computes the next level for that concept.
In Figure 3, the top image shows the first level of the concept lattice built by
selecting the top concept. Then the expert can view the contents of each concept
on mouseover. In the running example, expert locates the concept with all the
papers of Amedeo Napoli (i.e., K#2), which shows that the total number of doc-
uments written by Amedeo Napoli are 152. On selecting this concept, the next
level of the lattice originating from the selected concept is computed (shown in
the bottom image in Figure 3).

4.4 Display Sub/Super Concepts of a Concept

In case of huge concept lattices sometimes it is hard to keep track of the ordering
relations between the concepts. LatViz allows the expert to only highlight sub-
/super concepts of a concept. For example, if the expert wants to display all the
publications along with the collaborations of the author Amedeo Napoli, (s)he
can highlight the associated sub-lattice of the attribute concept of “Amedeo
Napoli”. Figure 4 shows the highlighted sub-lattice in brown. An expert can
highlight the super-concepts connected to a concept. If the expert is looking for
all the papers having some keywords common with the paper Knowledge Orga-
nization and Information Retrieval Using Galois Lattices having one or more of
the keywords in the intent of the concept then (s)he can highlight the sub-lattice
of super concepts associated to it (see Figure 5).
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Fig. 3: Top image shows the first level of the concept lattice, the bottom image shows
the second level built by interaction.

Fig. 4: The sub-lattice highlighted
for the author “Amedeo Napoli”.

Fig. 5: Highlighting the super
lattice of a concept.

4.5 Display/Hide the Sub-lattice

This functionality was partially implemented in RV-Xplorer [3] to reduce the
interaction space of the expert. Here the expert can only show the part of the
concept lattice in which (s)he is interested. The expert can locate the interesting
concept by navigation, containing some intent or extent. If an intent is interest-
ing and the expert marks the concept as interesting then only the sub-concepts
of this concept are shown to the expert as the intents are inherited from top to
bottom. Dually, if an extent is interesting for the expert then all the super con-
cepts are shown to the expert as the extent is inherited bottom-top. Previously,
the expert highlighted the sub-lattice of the concept containing all the papers
of Amedeo Napoli, now if the expert is interested in only the papers of Amedeo
Napoli on Knowledge Representation then (s)he can navigate downwards and
only see this part of concept lattice by marking it interesting (see Figure 6).
Similarly, we previously highlighted all the super concepts of the concept hav-
ing the paper entitled Knowledge Organization and Information Retrieval Using
Galois Lattices in the extent, Figure 7 only shows the associated sub-lattice to
have a clearer view (see Figure 7).
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Fig. 6: Showing only sub-lattice
of the interesting concept.

Fig. 7: Showing only super-lattice of the
interesting concept.

4.6 Interval Pattern Structures

In the running scenario, we extracted three attributes for the papers i.e., year
of publications, rank of the conference in which the paper was published and
finally the number of pages. The ranks of the conferences were considered based
on COmputing Research and Education (CORE) rankings4. The ranks were A*,
A, B, C and other which were coded as 1, 2, 3, 4 and 5 respectively. The final
concept lattice generated for the last five years of publications of Knowledge
Discovery Team is shown in Figure 8.

4.7 Lattice Filtering Criteria

There are two categories of filtering provided by LatViz; one is for the concept
lattice created with the binary data and the other one is provided for the pattern
concept lattice built with the help of interval pattern structures.

Filtering Concept Lattice. After a concept lattice is built by applying FCA,
expert is allowed to set several filtering criteria such as stability, lift, extent
size, intent size and finally specific object or attribute names. Let us consider
that in the running example, the expert is looking for the papers published
by Amedeo Napoli on the topic of pattern structures and FCA. A filter on the
number of attributes in the intent is set to 3. The filtered concept lattice obtained
over the complete lattice in Figure 1 is shown in Figure 9. It further shows the
authors with who Amedeo Napoli has worked i.e., Sergei O. Kuznetsov and
Mehdi Kaytoue. This part of concept lattice shows the community of authors
working with Amedeo Napoli on the topic of pattern structures.

4 http://portal.core.edu.au/conf-ranks/
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Filtering Pattern Concept Lattice. Interval Pattern Concept Lattices can also
be filtered by specifying the number of attributes to be considered, the upper
and the lower limits for the intervals in the intent of each attribute along with
stability, lift and extent size. Let us consider the pattern concept lattice in Fig-
ure 8, it can be seen that the concept lattice is hard to interpret. To make it
more readable based on what an expert wants, (s)he is allowed to specify filters.
For example, if the expert is looking for a paper published in a conference of a
rank 1-4 in the year 2012 - 2015 and has the number of pages not less than 2
and no more than 42 then the respective filters can be set for the values of all
three attributes. The filtered pattern concept lattice will then only contain the
part of lattice needed by the user. Figure 8 shows the concept containing group
of papers published from 2014-2015 in conferences with rank 2 having number
of pages 2-42.

Fig. 8: Interval pattern concept lattice for publications.

4.8 Attribute Implications

One of the many proposed visualization techniques for implications includes
table-based views. It keeps each column for rule ID, LHS and RHS of the rule,
support and confidence measures. These views were used because of the sim-
plicity of storage. However, while expert interaction it is not very convenient
to obtain interesting rules at a simple glance as the number of rules can be too
many. Another way of visualizing association rules are Matrix Views, where rows
represent the LHS and columns represent the RHS of the rules. Support and con-
fidence are displayed by different colors in the intersection of the LHS and RHS.
In case of a formal context, the number of objects/attributes can be very big
leading to problems in displaying the matrix. By carefully taking into account
the above drawbacks, we finally settle on visualizing implications with the help
of scatter plots, where the x-axis shows the increasing support and the y-axis
shows the increasing lift (as we are considering implications the confidence of
the rule is always 100%). Such kind of display helps the expert to single-out the
rules (s)he wants to visualize based on the values of support and lift. Figure 11
shows implications of the running example, x-axis keeps the support in percent-
age and y-axis keeps lift. The number on top of the circle shows the number of
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rules existing in the same point in the plot. On mouse over, expert can view the
implications.

Fig. 9: Filtered concept lattice
obtained from binary context.

Fig. 10: Filtered Pattern Concept Lat-
tice.

Fig. 11: Attribute implications for the running example.

5 Related Tools

In [4], the authors focus mainly on interactive data exploration over RDF data for
interactive knowledge discovery. It clusters RDF triples based on RDF Schema
and then allows interactive exploration with the help of RV-Xplorer (Rdf View
eXplorer) [3]. It is a tool for visualizing views over RDF graphs mainly for identi-
fying interesting parts of data and allow data analysis. It has also been extended
for clustering SPARQL query answers. To-date there have been many other tools
developed for reducing the effort of expert in observing and interpreting a con-
cept lattice. Many of the tools have been developed for more specific purposes.
CREDO [12] and FooCA [13] are the Web Clustering Engines [14] which take
the answers from queries posed against search engines and create a concept lat-
tice which is then displayed to the expert for interaction. CREDO allows only
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limited interaction, however, FooCA allows the expert to edit the context and
iteratively build the concept lattice. CEM [15] is an email manager which allows
quick search through the e-mails and usually deals with smaller concept lattices.
Camelis [16] is a system based on FCA for the organization of documents al-
lowing several navigation operations. Another set of tools such as Sewelis [17]
and Sparklis [18] allows navigation/interaction over knowledge graphs. Many
other tools such as Galicia5, ConExp and ToscanaJ6 are developed for academic
purposes. LatViz takes the basic functionalities of ConExp and takes it to the
another level by providing visualization for many algorithms introduced over
time to increase the readability. Moreover, it re-uses the source-code for build-
ing concept lattice with the help of the algorithm in [7] from ToscanaJ [19]. It
can not only be applied to WOD but it has been extended for interpreting any
kind of data.

6 Discussion and Future Improvements

LatViz is a tool built for allowing expert interaction for data analysis purposes.
It provides many new functionalities for reducing the exploration space of the ex-
pert and enable him to interpret the results. As a future perspective, we also want
to implement other variations of pattern structures such as Pattern Structures
introduced for structured set of attributes discussed in [20] and Heterogeneous
Pattern Structures [21]. We also want to extend the implementation of impli-
cations to association rules. Finally, we also want to take into account matrix
factorization.
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Abstract. In this paper, we consider two methods for computing lower
cover of elements in closure systems for which we know an implica-
tional basis: intersecting meet-irreducible elements or computing min-
imal transversals of sets of minimal generators. We provide experimen-
tal results on the runtimes for single computations of lower covers and
depth-first searches.

1 Introduction

Closed sets are essential objects in many fields such as data mining or database
theory. Most of the time, one is interested in computing all or parts of the closure
system for a given closure operator [6, 8]. However, we are sometimes faced with
the problem of finding a specific closed set that respects some property and
computing too much of the rest of the closure system is a waste of time. An
example of this is the problem of finding a maximal frequent closed set. As
frequency is an anti-monotone property, it suffices to start with the least closed
set and perform a depth-first search by repeatedly computing upper covers of
sets until we cannot find frequent sets anymore. Given a closure operator and a
closed set, it is easy to compute the closed sets immediately above it. Problems
start to arise when we are looking for specific closed sets respecting a property
that is not anti-monotone. For example, when computing the Duquenne-Guigues
basis B for some closure operator c, a pseudo-closed set P is I-closed but not
c-closed for I = B \ {P → c(P )}. The non-anti-monotonicity of the c-closedness
prevents us from using depth-first searches from the bottom.

What we are interested in is the problem of performing depth-first searches
starting from the maximal element in closure systems for which we know an
implicational basis. This amounts to computing lower covers of closed sets using
the implications, a problem shown to be NP-hard [1]. In this work, we compare
two algorithms - one based on meet-irreducibles, the other on minimal generators
- that solve this problem. Section 2 reviews basic definitions and properties of
lower covers that the algorithms use. Sections 3 and 4 respectively describe the
methods using meet-irreducible elements and minimal generators. In Section 5,
we present experimental results on the runtimes for both algorithms.

c© Marianne Huchard, Sergei O. Kuznetsov (Eds.): CLA 2016, pp. 21–32,
ISBN 978-5-600-01454-1, National Research University Higher School of Economics,
2016.



2 Preliminaries

2.1 Basic Definitions

Let us use E to denote a set of elements.

Definition 1 A closure operator c : 2E 7→ 2E is an extensive (X ⊆ c(X)),
increasing (X ⊆ Y ⇒ c(X) ⊆ c(Y )) and idempotent (c(c(X)) = c(X)) function.

A set S ∈ 2E such that S = c(S) is said to be closed. The intersection of
two closed sets is closed. The set of all sets closed for a given closure operator c
ordered by inclusion forms a lattice that will here be denoted by Φc.

Definition 2 An implication on E is a pair (A,B) ∈ 2E × 2E, most commonly
written A→ B.

Definition 3 Let I be a set of implications. We denote by I(·) the closure
operator, sometimes called logical closure, that maps a set X to its smallest
superset Y such that

∀A→ B ∈ I, A ⊆ Y ⇒ B ⊆ Y

The logical closure is a closure operator. As such, for an implication set I, we
will use ΦI to denote the lattice of implication-closed sets ordered by inclusion.

Definition 4 A minimal generator G of X ∈ 2E for a closure operator c is an
inclusion-minimal set such that c(G) = X.

In the remainder of this paper, we will use the term minimal generator,
without any more details, to talk about the minimal generators for the logical
closure. The set of minimal generators of a set S for an implication set I will be
denoted GenI(S).

Definition 5 Let L = (E,≤) be a lattice. A meet-irreducible element is an
element e ⊆ E that has a single upper cover, i.e. {x ∈ E | x > e} has a single
inclusion-minimal element. We use M(L) to denote the set of meet-irreducible
elements of the lattice L.

Any element of the lattice L is the infimum of a set of meet-irreducible
elements.

Definition 6 Let H = (E , V ) be a hypergraph. A minimal transversal of E is a
set S ⊆ V such that ∀X ∈ E, X ∩ S 6= ∅.

We use Tr(E) to denote the set of minimal transversals of a set of hyperedges
E .
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2.2 Lower Covers

If we want to perform a depth-first search from the top in a lattice ΦI for which
we know I, we have to be able to compute the lower covers of a set S ∈ ΦI . We
present here two methods that can be used to compute them.

Proposition 1 For any S ∈ ΦI , the lower covers of S are the inclusion-maximal
elements of {S ∩M | M ∈M(ΦI) and S 6⊆M}.

Proof Every element of ΦI is the infimum of a subset of M(ΦI). Additionally,
ΦI being a closure system, the infimum of two sets is their intersection. As such,
for any M ∈M(ΦI), S∩M ⊆ S is an I-closed set. S∩M being strictly contained
in S, if it is inclusion-maximal then it is a lower cover of S. �

Using Proposition 1 to compute lower covers requires that we first know the
meet-irreducible elements of the lattice. In most case, they must be explicitly
computed beforehand. Algorithm 1, presented in Section 3.1, does this.

Proposition 2 For any S ∈ ΦI , the lower covers of S are the sets S \ T with
T ∈ Tr(GenI(S)).

Proof Let T be a minimal transversal of GenI(S). For any e ∈ S \ T , (S \ T )∪
{e} = S \ (T \ {e}) contains a minimal generator of S because of the minimality
of T . Therefore, there is no closed set between S and S \ T and S \ T is a lower
cover of S. �

Using Proposition 2 to compute the lower covers of S would require that we
compute the minimal generators S first, then their minimal transversals. The
algorithms we use for these problems are described in Section 4.

3 Computing with Meet-irreducible Elements

3.1 Computing Meet-irreducible Elements from an Implication
Base

We use Wild’s algorithm [9] to compute the set of meet-irreducible elements of
the lattice ΦI for which we know an implication base I. It is based on the fact
that a set S ∈ ΦI is meet-irreducible if and only if it is maximal among closed
sets that do not contain some element e. Let us call max(e, I) the set of maximal
elements of ΦI that do not contain e and max′(e, I \ {I}) and max′′(e, I \ {I})
the subsets of max(e, I \ {I}) for which I = A→ B respectively holds and does
not hold. We then have

max(e, I) ⊆ max′(e, I \ {I})
⋃

a∈A
max′′(e, I \ {I}) ∗max(a, I \ {I})

where X ∗ Y = {x ∩ y | x ∈ X, y ∈ Y }.
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Algorithm 1 uses this property to compute the meet-irreducible elements of
ΦI from I = {A1 → B1, ..., An → Bn} by computing the meet irreducibles of
every lattice ΦIi such that Ii = {A1 → B1, ..., Ai → Bi} with 0 ≤ i ≤ n.

Algorithm 1: Meet-irreducibles

1 Meet-Irreducibles (E, I)
Input : Implication set I = {A1 → B1, ..., An → Bn} on E
Output: M(ΦI)

2 foreach e ∈ E do
3 max(e) = {E \ {e}}
4 end
5 foreach i ∈ 1..n do
6 foreach e ∈ E do
7 max′(e) = {Z ∈ max(e) | Ai 6⊆ Z or Bi ⊆ Z}
8 max′′(e) = max(e) \max′(e)
9 foreach a ∈ Ai do

10 foreach X ∈ max′′(e) and Y ∈ max(a) do
11 T (e) = T (e) ∪ {X ∩ Y }
12 end

13 end
14 max(e) = {Z ∈ T (e) | Z is inclusion-maximal}
15 end

16 end
17 M(ΦI) =

⋃
e∈Emax(e)

Algorithm 1 has a runtime exponential in the size of its output, which can
itself be exponential in the size of the implication base.

3.2 Intersecting Sets

Once the meet-irreducible elements of the lattice are known, we can compute
the lower covers of a set S by intersecting it with the meet-irreducible sets that
are not supersets of S and keeping the inclusion-maximal elements. Algorithm
2 runs in time polynomial in the size of M(ΦI).

4 Computing with Transversals of Minimal Generators

4.1 Computing Minimal Generators

We compute the minimal generators of an implication-closed set with Algorithms
3 and 4 proposed in [7].
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Algorithm 2: Intersection of meet-irreducible elements

Input : A set S and meet-irreducibles M(ΦI)
Output: The lower covers of S

1 C = ∅
2 foreach M ∈M(ΦI) do
3 C = C ∪ (S ∩M)
4 end
5 Return max(C)

Algorithm 3: First minimal generator

1 MinGen (P,L)
Input : Implications L on the set E and a subset P ⊆ E such that L(P ) = P
Output: A minimal generator Q of P

2 Q← P
3 foreach m ∈ P do
4 if L(Q \ {m}) = P then
5 Q← Q \ {m}
6 end

7 end

Algorithm 3, given a set P and an implication set L, computes a first minimal
generator of P . Algorithm 4 computes all the minimal generators of a set P for
an implication set L. It has time complexity O(|L| × |G| × |P| × (|G|+ |P|)).

4.2 Computing Minimal Transversals

The problem of computing minimal transversals is a classic that, while exten-
sively studied, still holds many interesting question [4, 5, 3]. It has been shown to
be solvable in quasi-polynomial total time. Here, we chose to compute minimal
transversals using the, arguably, most simple algorithm, Berge Multiplication [2].
Given two hypergraphs H1 and H2, their edgewise union is defined as :

H1 ∨H2 = {h1 ∪ h2 | h1 ∈ H1 and h2 ∈ H2}
We then have

Tr(H1 ∪H2 = min(Tr(H1) ∨ Tr(H2))

Which gives rise to Algorithm 5.

5 Experimental Results

We implemented both methods, used them on randomly generated implica-
tional bases and compared their runtimes. Implications were generated by using
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Algorithm 4: All minimal generators

Input : Implication set L on the attribute set E and an L-closed set P ⊆ E
Output: All minimal generators G of P

1 G ←MinGen(P,L)
2 foreach G ∈ G do
3 foreach L→ R ∈ L such that L ∪R ∪G ⊆ P do
4 S ← L ∪ (K \R)
5 flag ← true
6 foreach H ∈ G do
7 if H ⊆ S then
8 flag ← false
9 end

10 end
11 if flag then
12 G ← G ∪ {MinGen(S,L)}
13 end

14 end

15 end

Algorithm 5: All minimal transversals

Input : Hypergraph H
Output: Tr(H)

1 T = ∅
2 foreach E ∈ H do
3 T = min(T ∨ {{v} | v ∈ E})
4 end
5 Return T

26 Alexandre Bazin



NextClosure on formal contexts (O,A,R) randomly generated with 50 objects,
12 attributes and a probability d (called density) to have (o, a) ∈ R.

Two cases were considered:

– Single computations of lower covers
– Depth-first searches in lattices involving multiple computations of lower cov-

ers

For the first case, we simply computed the lower covers of A. For the second
case, we removed some implications as to introduce, in the lattice, sets that are
not intents of the formal contexts and we performed the depth-first searches
starting from A and going deeper everytime we encountered a non-intent.

5.1 Single Computations

We generated 1000 contexts with varying numbers of implications and computed
the lower covers of A using the two methods we presented. Figure 1 presents the
quadratic interpolation of the runtimes for each method relative to the number
of implications in the basis.

Fig. 1. Runtimes for both algorithms relative to the number of implications on a single
computation (Red = Meet-irreducibles, Blue = Minimal generators)
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In our experiments, the algorithm using meet-irreducible elements outper-
formed the one based on minimal generators 79% of the time. Computing the
meet-irreducible elements represents 98% of its runtime. The second method de-
votes 75% of its time to computing minimal generators and 25% on minimal
transversals.

5.2 Depth-first Searches

As with single computations, we randomly generated 1000 contexts with varying
numbers of implications and performed depth-first searches starting from A.

Runtimes Relative to the Size of the Basis Figure 2 presents the interpo-
lation of the runtimes for each methods relative to the number of implications
in the basis.

Fig. 2. Runtimes for both algorithms relative to the number of implications for depth-
first searches (Red = Meet-irreducibles, Blue = Minimal generators)

Once again, using meet-irreducibles is the most efficient method (it outper-
formed the minimal generators 72% of the time) and this trend accentuates with
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the size of the implicational basis. Computing the meet-irreducible elements rep-
resents 86% of the total runtime. The second methods devotes 69% of its runtime
to the computation of minimal generators and 31% on minimal transversals.

Runtimes Relative to the Depth Figure 3 presents the interpolation of the
runtimes for each methods relative to the depth of the search.

Fig. 3. Runtimes for both algorithms relative to the maximum depth of the search
(Red = Meet-irreducibles, Blue = Minimal generators)

We can notice that the algorithm using meet-irreducible elements is much
less affected by the depth of the search, most likely due to the fact that most of
the computation is done prior to the actual search. Interestingly, the algorithm
using minimal generators is least efficient for relatively shallow searches. We
believe this is due to the fact that deep searches imply that the lattice is mostly
composed of sets that have the property we are looking for. As we used closedness
relative to a formal context, this means that those lattices correspond to nearly
empty implicational bases.
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Runtimes with Increasing Bases We used both methods to perform depth-
first searches in a sequence of lattices corresponding to implicational bases ∅ ⊆
I1 ⊆ ... ⊆ In. Results are presented in Figure 4.

Fig. 4. Runtimes for both algorithms relative to a growing implicational basis (x-axis
= number of implications)(Red = meet-irreducibles, Blue = Minimal generators)

Once again, the runtime of the algorithm using minimal generators skyrockets
when the basis grows. The meet-irreducibles method presents much less variance.
It should be noted that the meet-irreducible elements are computed from scratch
for each basis when Algorithm 1 could be used to speed up the process by using
the meet-irreducible elements of the previous lattice to compute the new ones.

6 Discussion

Experimental results indicate that the most efficient way to compute lower covers
of implication-closed sets is to first compute the meet-irreducible elements of the
lattice and then intersect them. It outperforms the method based on computing
minimal transversals of minimal generators even when minimal generators have

30 Alexandre Bazin



to be computed only once. During deeper searches, minimal generators have to
be computed at each step and the difference is thus more pronounced.

While the algorithm we used for computing minimal transversals is not the
most efficient, the fact that this computation represents only a small portion
of the second method indicates that, even with the best algorithm, using meet-
irreducible elements would be best. Computing these meet-irreducible elements is
time-consuming but, once we have them, they are easy to intersect. We believe
there is still more room for improvement on the problem of computing meet-
irreducible elements from implicational bases.
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Abstract. In this paper, we generalize the classical duplication of in-
tervals in lattices. Namely, we deal with partial duplication instead of
complete convex subsets. We characterize those subsets that guarantee
the result to still be a lattice. Moreover, we show that semi-distributive
and extremal lattices can be encompassed by such construction where
classical duplication fails.

Introduction

The aim of this paper is to give a characterization of several classes of lattices
obtained by doubling suborder (not necessary convex) in lattices. This construc-
tion generalizes the one that uses convex duplication introduced by Day [1] and
followed by several results on the characterizations and algorithmic aspects of
these classes of lattices such as: Bounded, Upper Bounded and normal classes
of lattices. These results have been obtained by Day on his own [2, 3] or with
Nation and Tschantz [4], Bertet and Caspard [5–7] and Geyer [8].

In the opposite of constructing a lattice, decomposing a lattice using prop-
erties of duplication to small lattices has been also considered in the litera-
ture. Markowsky [9, 10] has shown that extremal lattices can be factorized using
prime/coprime property which correspond to the double arrow or perspective
relation as introduced in [11]. Janssen and Nourine [12] have given a procedure
to decompose a semidistributive lattice according to a simplicial elimination
scheme. Others decomposition related to subdirect product construction and
congruence can be found in [13–15].

In this paper we give a necessary and sufficient condition for duplications that
maintain the lattice structure. We also give other properties that guarantee some
combinatorial properties of lattices such as ∧-semidistributivity and extremality.
As a by-product of our results and existing ones, we obtain characterizations of
some classes of lattices.

1 Preliminaries

In this paper, all considered lattices are finite. For classic definitions of lattices,
we refer the reader to the celebrated monograph of Birkhoff [16]. Still, we adress
some specific definitions that are of special interest for this documenr. Let (X,6)
be a lattice (denoted L) with ∨ and ∧ the usual join and meet operations. An
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element j in X is called join-irreducible in L if x = z ∨ t implies x = z or x = t.
The set of all join-irreducible elements is denoted by J(L). The set M(L) of all
meet-irreducible elements is defined dually. The height h(L) of a lattice L is the
length of the longest chain from ⊥ to > (the least and greatest elements of L).
Given an element x in X, the set ↑ (x,L) is the subset of X containing every
element y such that x 6 y. Set ↓ (x,L) is defined dually.

Given two elements x and y in any lattice L, we use relations ↙, ↗ and ↙↗
defined in [11] as follows,

x↙ y if x is minimal in L− ↓ (y,L),

x↗ y if y is maximal in L− ↑ (x,L),

x↙↗ y if x↙ y and x↗ y.

Note that whenever x ↙ y, x needs to be a join-irreducible element. Similarly,
if x↗ y, y needs to be a meet-irreducible element.

A lattice is said meet-semidistributive, if for all x, y, z ∈ L, x ∧ y = x ∧ z
implies x∧y = x∧ (y∨z). It is said semidistributive if it is meet-semidistributive
and join-semidistributive. We may use ↙↗L to denote the set of pairs (j,m) in L
such that j ↙↗ m. The subscript may be omitted when the context is clear.

2 Doubling construction

We study the possibilities of copying a part of a lattice so that it remains in
certain classes of well-known lattices.

The general framework is the following. Let L be a lattice on some set X
with partial order 6. Let C be any subset of X that will be copied. We call C ′

the copy of C (meaning there is a bijection ϕ from C to C ′). The convex closure
of C in L is the set H(C) = {y : ∃x, z ∈ C with x 6 y 6 z}. We may now
consider the partial order (X ∪C ′,4) where the relation 4 is defined as follows
for any pair (x, y) of elements of X ∪ C ′:

x 4 y if





x ∈ X, y ∈ X and x 6 y
x ∈ X −H(C), y ∈ C ′ and x 6 ϕ−1(y)

x ∈ C ′, y ∈ X and ϕ−1(x) 6 y
x ∈ C ′, y ∈ C ′ and ϕ−1(x) 6 ϕ−1(y).

Note that if x is in H(C), y is in C and x 6 y, we do not have x 4 ϕ(y). It
is routine to check that 4 defines a partial order on X ∪ C ′. We shall denote
this partial order L[C]. If C is the empty set, then this process does not alter L
(L[∅] = L). We shall distinguish two specific subsets of C, namely the minimal
elements L = {l1, l2, . . . , ln} and the maximal elements U = {u1, u2, . . . , um}.
Figure 1 depicts an example of a copy with two minimal and two maximal
elements in C.

In order to guarantee that the resulting partial order remains a lattice, we
need to enforce two properties about C. The first one says that if the join of two
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Fig. 1. Depiction of a copy with U = {11, 12} and L = {2, 3}.

copied elements is in the convex closure of C, then it must be copied. The second
says that if an element x in H(C) covers an element which is not in H(C), then
x must be copied.

∀(x, y) ∈ C2, x ∨ y ∈ H(C)⇒ x ∨ y ∈ C, (P1)

∀x ∈ H(C),∀y ∈ X −H(C), x covers y ⇒ x ∈ C. (P2)

Remark 1. When U and L are singletons, Property (P1) says that (C,6) is a
join-sublattice of L.

We shall first prove that properties (P1) and (P2) are necessary and sufficient
conditions for the resulting partial order to be a lattice.

Proposition 1. Given a lattice L = (X,6) and a subset C of X, L[C] is a
lattice if and only if (P1) and (P2) are satisfied.

Proof. We first show that (P1) and (P2) are necessary. Suppose that L[C] is a
lattice. We shall prove both properties separately.

– (P1). Let x and y be two elements of C such that their join z in L is in
H(C). There is some element u in U such that z 6 u. By hypothesis, L[C]
is a lattice, so there is a join of ϕ(x) and ϕ(y) in L[C] let us call it t′. By the
definition of 4, we have ϕ(x) 4 ϕ(u) and ϕ(y) 4 ϕ(u). This ensures that t′

is between ϕ(x) and ϕ(u). But those elements can only be in C ′ and there
must be an element t in C such that t′ = ϕ(t). This element t is then larger
than both x and y so that z 6 t and by definition of 4, z 4 t. But we also
have ϕ(x) 4 z and ϕ(y) 4 z so that t 4 z. Finally, t = z and thus the join
of x and y is in C.
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– (P2). Let x be an element of H(C) and y be an element of X−H(C) which
is covered by x in L. Since x is in H(C), there are elements l and u in L and
U such that l 6 x 6 u. In turn, ϕ(l) 4 x. We also know that y 4 x, thus
the join of ϕ(l) and y in L[C] is less than or equal to x. For a contradiction,
suppose that x is not in C. Then x covers y in L[C] so that the join of y and
ϕ(l) in L[C] must be exactly x. Now y 4 ϕ(u) and ϕ(l) 4 ϕ(u) so the join
of y and ϕ(l) must be below ϕ(u). This is a contradiction since x 64 ϕ(u).

Let us now prove that (P1) and (P2) are sufficient conditions for L[C] to be a
lattice. For this, it suffices to prove that any pair of elements have a least upper
bound. From the definition of 4, one may check that for any x in X ∪ C ′ we
have

↑ (x,L[C]) =





↑ (x,L) if x ∈ H(C)

↑ (x,L) ∪ ϕ(↑ (x,L)) if x ∈ X −H(C)

↑ (ϕ−1(x),L) ∪ ϕ(↑ (ϕ−1(x),L)) if x ∈ C ′,

where ϕ(A) denotes all elements that can be written as ϕ(a) for some a in A. In
all three cases, there exists an element a in X such that ↑ (x,L[C]) is exactly
↑ (a,L) or ↑ (a,L) ∪ ϕ(↑ (a,L)).

Now, notice that for any two subsets of X, A and B, the intersection of A
and ϕ(B) is always empty. From this and the distributivity of set operations, we
may derive that for any pair (x, y) of elements in X ∪C ′, there are two elements
a and b in X such that

↑ (x,L[C])∩ ↑ (y,L[C]) =





↑ (a,L)∩ ↑ (b,L)

or

(↑ (a,L)∩ ↑ (b,L)) ∪ ϕ(↑ (a,L)∩ ↑ (b,L)).

In the first case, ↑ (a,L)∩ ↑ (b,L) is a subset of X and since L is a lattice,
we know there is a least element. For the second case, let c be the join of a and
b in L. We distinguish three subcases.

– If c is in C, then ϕ(c) is definitely less than any element of both ↑ (a,L)∩ ↑ (b,L)
and ϕ(↑ (a,L)∩ ↑ (b,L)). Therefore, ϕ(c) is the least upper bound of a and
b.

– If c is not in H(C), then c is a least element of ↑ (a,L)∩ ↑ (b,L). Consider
any element x of ϕ(↑ (a,L)∩ ↑ (b,L)). Then there ϕ−1(x) is an element of
C which is greater than a and b. Therefore it is also bigger than c. By the
definition of 4, x is greater than c in L[C]. Element c is then the least upper
bound of a and b.

– If c is in H(C) − C, then a and b cannot be both elements of C by (P1).
Property (P2) basically tells us that for any chain from an element out of
H(C) to some element in H(C), there is an element of C. As a consequence,
there is a′ (respectively b′) in C such that a 6 a′ 6 c (respectively b 6 b′ 6 c).
But then the join of a′ and b′ must be c and since c is not in C, this leads
to a contradiction of (P1) so that this third subcase can never occur.
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Thus any pair of elements in L[C] has a least upper bound. Since there is also a
bottom element in L[C], we conclude that L[C] is a lattice. ut

As a useful side result, we get that (P1) and (P2) imply that the copy of any
join-irreducible element in L is a join-irreducible element of L[C].

Proposition 2. Given a lattice L, and a subset C satisfying, (P1) and (P2),
then for any element j in J(L) ∩ C, its copy ϕ(j) is a join-irreducible element
of L[C].

Proof. Let j be such an element and j∗ its unique predecessor in L. For a contra-
diction, suppose that ϕ(j) is not a join-irreducible element in L[C]. This implies
that j∗ is in H(C) but has not been copied. Consider two different elements a
and b covered by ϕ(j). In particular, ϕ(j) is the join of a and b in L[C]. Further-
more, a and b are less than j in L[C]. Whether they are in C ′ or in X, this means
they are also less than j∗. But j∗ is not comparable to ϕ(j) the join of a and b,
which is a contradiction since Proposition 1 ensures that L[C] is a lattice. ut

We may first notice that the copying process creates only m new and pairwise
distinct meet-irreducible elements.

Remark 2. Given a lattice L and a subset C satisfying (P1) and (P2),

M(L[C]) = M(L) ∪ {ϕ(u1), ϕ(u2), . . . , ϕ(um)}.

Join-irreducible elements can be of four types. Any join-irreducible element
of L which is not copied remains a join-irreducible element in L[C]. By Propo-
sition 2, any join-irreducible element of L which is copied has its image as a
join-irreducible element of L[C]. In addition, any element l in L becomes a
join-irreducible element in L[C]. And finally, some elements of C ′ might be join-
irreducible in L[C] even though their pre-image by ϕ is not join-irreducible in
L. This paragraph is summed up in the following remark.

Remark 3. Given a lattice L and a subset C satisfying (P1) and (P2),

J(L[C]) = (J(L)− C) ∪ ϕ(J(L) ∩ C) ∪ {l1, l2, . . . , ln} ∪R,

where R denotes the join-irreducible elements of C ′ which are not the copy of a
join-irreducible element.

3 Preserving combinatorial properties

In this paper we want to keep control on the number of join-irreducible elements
in order to guarantee that the lattice L[C] satisfies several combinatorial prop-
erties. To this end, we would like the sizes of J(L[C]) and J(L) to differ by only
one. Remark 3 ensures that |J(L[C])|−|J(L)| = |R|+n. Since n is at least 1, we
need to enforce that R is empty and L is a singleton. Having R as an empty set
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means that any join-irreducible element of L[C] in C ′ is the image of a former
join-irreducible of L in C. We thus states the additional property,

(
∀j ∈ J(L[C]) ∩ C ′, ϕ−1(j) ∈ J(L)

L = {l}

)
. (P0)

Remark 4. Given a lattice L and a subset C satisfying (P0), (P1) and (P2),

|J(L[C])| = |J(L)|+ 1.

In addition we shall consider three properties that will allow us to circum-
scribe the type of lattice that we want to obtain.

L = {⊥} (⊥)

U is a singleton, (U)

∀x ∈ C, ∀y ∈ X,ϕ(x)↙ y in L[C]⇒ x↙ y in L. (↙)

Each of these properties allows us to control some combinatorial parameter
of L[C]. Namely, (⊥) controls the height of the lattice, (U) controls the number
of its meet-irreducible elements and (↙) controls the number of pairs related
through relation ↙↗. These are formalized in the following theorem.

Theorem 1. Given L a lattice and C a subset satisfying (P0), (P1) and (P2),
we have the following implications:

(i) if (⊥), then h(L[C]) = h(L) + 1,
(ii) if (U), then |M(L[C])| = |M(L)|+ 1,

(iii) if (↙), then | ↙↗L[C] | = | ↙↗L |+ |U |.

Proof. Fact (i) is trivial and (ii) is obtained by considering Remark 2. Let us
focus on (iii). By Property (P0), we know that L is a singleton. Let l denote its
single element.

Claim 1.1. For any u in U , l↙↗ ϕ(u).

The only predecessor of l in L[C] is ϕ(l) and for any u in U , the only successor
of ϕ(u) in L[C] is u itself. Furthermore l 4 u, ϕ(l) 4 ϕ(u) and l 64 ϕ(u). This
concludes the proof of Claim 1.1.

Claim 1.2. Reciprocally, for any meet-irreducible element m of L[C], if l ↙↗ m,
then there is u in U such that m = ϕ(u).

A stronger statement is that when l ↙ m, then there is u in U such that
m = ϕ(u).

We prove the stronger statement for a later use. Let m be an element of
M(L[C]) − ϕ(U), thus m is in X. We shall prove that l ↙ m cannot occur
in L[C]. For a contradiction, suppose that l ↙ m in L[C]. This means that
ϕ(l) 4 m and by the definition of 4, we get that l 6 m in L and in turn that
ϕ(l) 4 m which is a contradiction. This concludes the proof of Claim 1.2.
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Claim 1.3. Similarily, for any join-irreducible element j of L[C] and any u in U ,
if j ↙↗ ϕ(u), then j = l.

Once again, a stronger statement is obtained when ↙↗ is replaced by ↙.

We also prove the stronger statement. Let u be some element of U and
suppose for a contradiction that ϕ(u) is in relation↙ with some join-irreducible
element j distinct from l. Then j 64 ϕ(u) and j 4 u. Thus j cannot be in C ′ (it
would be less than both u and ϕ(u) or not less than both of them). Therefore, j
is a join-irreducible element of L with a single predecessor j∗. In L[C], j has also
a single predecessor j∗ which is not in C ′. Since we assumed that j∗ 4 ϕ(u), it
cannot be in H(C) (they would be non-comparable). Since j has not been copied,
Property (P2) guarantees that j is not in H(C) either. But by the definition of
4, j must be either less than both u and ϕ(u) or not less than both of them.
This is a contradiction. This concludes the proof of Claim 1.3.

Claim 1.4. For any j in J(L) − C and m in M(L), j ↙↗ m in L if and only if
j ↙↗ m in L[C].

Let j be an element of J(L)−C then j is a join-irreducible element of L[C]
and its only predecessor in L[C] is the same as in L, say j∗. Let m be a meet-
irreducible from L. It remains a meet-irreducible element in L[C]. But its only
successor in L[C] can be the same as in L, say m∗ or its copy ϕ(m∗). In any case,
the comparability of j and m is the same in both L and L[C]. Same stands for j∗
and m. Now if the only successor of m is the same in L and L[C], j ↙↗ m in L if
and only if j ↙↗ m in L[C]. In the case where the only successor of m in L[C] is
ϕ(m∗), if j 4 ϕ(m∗), we also have j 6 m∗. Reciprocally, if j 6 m∗, we only need
to prove that j is not in H(C) to conclude that j 4 ϕ(m∗). Suppose that j is in
H(C). Since m∗ is in C, there is an element u in U such that m 4 ϕ(m∗) 6 ϕ(u).
This implies that m is not in H(C) (otherwise it would not be comparable with
ϕ(m∗)) so that j 66 m. If j ↙↗ m in L, it means that j∗ 6 m thus j∗ is not in
H(C) either. In the end, since j has not been copied, Property (P2) allows us to
say that j is not in H(C). So j ↙↗ m in L if and only if j ↙↗ m in L[C], ending
the proof of Claim 1.4.

Claim 1.5. For any j in J(L) ∩ C and m in M(L), j ↙↗ m in L if and only if
ϕ(j)↙↗ m in L[C].

We still have to study the case when the join-irreducible element is a copy
of a former join-irreducible element. Let j be in J(L) ∩ C and m be a meet-
irreducible element of L. We want to prove that ϕ(j) ↙↗ m in L[C] if and only
if j ↙↗ m in L. In this case, we know that the only predecessor of ϕ(j) is some
element between ϕ(l) and ϕ(j). This element can then be written ϕ(x) for some
x in C between l and j. Thus, x 6 j∗. By the definition of 4, ϕ(j) 64 m if
and only if j 66 m. Clearly, if j∗ 6 m, we have that ϕ(x) 4 m. Conversely, if
ϕ(x) 4 m, and ϕ(j) 64 m it means that ϕ(j) ↙ m. By Property (↙), we have
that j ↙ m, thus j∗ 6 m. Let m∗ be the only successor of m in L. In L[C]
the only successor of m is either m∗ or ϕ(m∗). In the latter case, if j 6 m∗,
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ϕ(j) 4 ϕ(m∗) and reciprocally. In the former case, we also have that ϕ(j) 4 m∗
if and only if j 6 m∗. Therefore ϕ(j) ↙↗ m in L[C] if and only if j ↙↗ m in L.
This concludes the proof of Claim 1.5

Summarising the previous results, we obtain that

↙↗L[C]={(l, ϕ(u)) : u ∈ U}
∪ {(j,m) ∈ J(L)×M(L) : j ↙↗ m in L and j /∈ C}
∪ {(ϕ(j),m) ∈ C ′ ×M(L) : j ∈ J(L) ∩ C and j ↙↗ m in L}.

In terms of cardinality, we get that | ↙↗L[C] | = | ↙↗L |+ |U |. ut

We may notice that Property (↙) is actually only needed for Claim 1.5.
Indeed, if this property is not satisfied, we may have new relations between the
image of a join-irreducible element and some old meet-irreducible element (see
Figure 2).

The proof of the third implication of Theorem 1 can be adapted to prove a
fourth implication. We prove separately for an easier reading.

Theorem 2. Given L a lattice and C a subset satisfying (P0), (P1) and (P2),
we have

(↙)⇒ | ↙L[C] | = | ↙L |+ |U |

Proof. We use the same ideas as in the proof of Theorem 1.

Claim 2.6. For any u in U , l↙ ϕ(u) where L = {l}.

This a direct consequence of Claim 1.1.

Claim 2.7. For any j in J(L) − C and m in M(L), j ↙ m in L if and only if
j ↙ m in L[C].

Let j be an element of J(L)−C then j is a join-irreducible element of L[C]
and its only predecessor in L[C] is the same as in L, say j∗. Let m be a meet-
irreducible from L. It remains a meet-irreducible element in L[C]. But its only
successor in L[C] can be the same as in L, say m∗ or its copy ϕ(m∗). In any
case, the comparability of j and m is the same in both L and L[C]. Same stands
for j∗ and m since j is not copied. Then j ↙ m in L if and only if j ↙ m in
L[C], ending the proof of Claim 2.7.

Claim 2.8. For any j in J(L) ∩ C and m in M(L), j ↙ m in L if and only if
ϕ(j)↙ m in L[C].

By Property (↙), we have for any j in J(L)∩C and m in M(L), ϕ(j)↙ m
in L[C] imply j ↙ m in L.

For the converse, let j be in J(L) ∩ C and m be a meet-irreducible element
of L such that j ↙ m in L. We want to prove that ϕ(j) ↙ m in L[C]. First,
by definition of 4, ϕ(j) is incomparable to m. If j∗ /∈ H(C) then j∗ = ϕ(j)∗
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by definition of 4, and then ϕ(j) ↙ m in L[C]. Now suppose that j∗ ∈ H(C).
In this case, we know that the only predecessor ϕ(j)∗ of ϕ(j) is some element
between ϕ(l) and ϕ(j). This element can then be written ϕ(x) = ϕ(j)∗ for some
x in C between l and j. Then x 6 j∗ and thus ϕ(x) 4 m. So ϕ(j)↙ m in L[C].

Summarising the previous results (and the strong versions of Claims 1.2 and 1.3),
we obtain that

↙L[C]={(l, ϕ(u)) : u ∈ U}
∪ {(j,m) ∈ J(L)×M(L) : j ↙ m in L and j /∈ C}
∪ {(ϕ(j),m) ∈ C ′ ×M(L) : j ∈ J(L) ∩ C and j ↙ m in L}.

In terms of cardinality, we get that | ↙L[C] | = | ↙L |+ |U |. ut

4

0

1

23

4

3 2

1

0

ϕ(2)

ϕ(0)

L L[C]

C = {0, 2}

Fig. 2. ϕ(2)↙ 3 in L[C] while we do not have 2↙ 3 in L.

Lattices characterizations given in the following theorem can be found in
several papers (see for example [10, 17, 18]).

Theorem 3. Let L be a finite lattice. Then L is

– meet-semidistributive if and only if | ↙↗ | = |J(L)| [18].
– semidistributive if and only if | ↙↗ | = |J(L)| = |M(L)| [18].
– meet-extremal if and only if h(L) = |M(L)| [10].
– extremal if and only if h(L) = |J(L)| = |M(L)| [10].
– distributive if and only if | ↙ | = |J(L)| = |M(L)| [17].

Remark 5. Notice that a lattice that is semidistributive and extremal does not
imply that is distributive (see Figure 3). In fact it is not graded. This explain
the property (↙).

As a corollary of Theorems 1 2 and 3, we obtain a wider range of possibilities
to build specific types of lattices by preserving some combinatorial characteriza-
tions.
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Corollary 1. Given a lattice L and a subset C verifying (P0), (P1) and (P2)
the following implications are true:

1. L is distributive, (↙), (⊥) and (U) imply that L[C] is distributive.
2. L is semidistributive, (↙), and (U) imply that L[C] is semidistributive
3. L is meet-semidistributive and (↙) imply that L[C] is meet-semidistributive
4. L is extremal, (⊥) and (U) imply that L[C] is extremal
5. L is meet-extremal and (⊥) imply that L[C] is meet-extremal

One challenging problem is the characterization of contexts where their con-
cepts lattices satisfy the considered properties. For doubling convex sets, there
are nice FCA characterization and algorithms that recognize bound, lower (up-
per) bounded, semidistributive and convex lattices [5–7, 1–4, 8].

Acknowledgment The authors are very grateful to the referee for their construc-
tive comments. This work has been funded by the french national research agency
(ANR Graphen, 2015-2018).
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Abstract. We propose a new FCA-based algorithm for consensus clus-
tering, FCA-Consensus. As the input the algorithm takes T partitions of
a certain set of objects obtained by k-means algorithm after its T differ-
ent executions. The resulting consensus partition is extracted from an an-
tichain of the concept lattice built on a formal context objects× classes,
where the classes are the set of all cluster labels from each initial k-
means partition. We compare the results of the proposed algorithm in
terms of ARI measure with the state-of-the-art algorithms on synthetic
datasets. Under certain conditions, the best ARI values are demonstrated
by FCA-Consensus.

Keywords: consensus clustering, k-means, Formal Concept Analysis,
ensemble clustering, lattice-based clustering

1 Introduction and related work

It seems, consensus clustering approach became popular on the international
scene after the paper of A. Strehl and J. Ghosh [1]. Since then consensus clus-
tering is used in such areas as bioinformatics, web-document clustering and cat-
egorical data analysis.

As the input the consensus clustering approach usually takes T partitions of
a certain set of objects obtained, for example, by k-means algorithm after its T
different executions with possibly different k. The resulting consensus partition
is build from the matrix objects × classes, where the classes are the set of all
cluster labels from each initial k-means partition. Thus, the main goal of consen-
sus clustering is to find (recover) an optimal partition, i.e. to guess the proper
number of resulting clusters and put the objects into each block of partition cor-
rectly. To evaluate the proposed approach researchers usually hypothesise that
if a particular consensus clustering approach is able to guess a proper k and
attain high accuracy on labeled datasets, then it can be used in pure unsuper-
vised setting. This task is worth consideration mainly due to two reasons: We
do not know a proper k in advance, and k-means is unstable due to randomness
of initialisation [2]. However, we can use right guesses of each of the ensemble
algorithms to build (recover) a proper partition.

c© Marianne Huchard, Sergei O. Kuznetsov (Eds.): CLA 2016, pp. 45–56,
ISBN 978-5-600-01454-1, National Research University Higher School of Economics,
2016.



In [3], consensus clustering algorithms are classified in three main groups:
probabilistic approaches [4,5]; direct approaches [1,6,7,8], and pairwise similarity-
based approaches [9,10]. In the last category of methods, the (i, j)-th entry aij of
the consensus matrix A = (aij) shows the number of partitions in which objects
gi and gj belong to the same cluster.

In the previous papers [11,12], a least-squares consensus clustering approach
was invoked from the paper [13], to equip it with a more recent clustering pro-
cedure for consensus clustering and compare the results on synthetic data of
Gaussian clusters with those by the more recent methods. Here, our main goal
is to propose a lattice-based consensus clustering algorithm by means of FCA
and show its competitive applicability. To the best of our knowledge, a variant
of FCA-based consensus approach was firstly proposed to cluster genes into dis-
joint sets [14]. For those, who are interested theoretical properties of different
consensus procedures and its relationship with FCA we could recommend [15].

The paper is organised in five sections. In Section 2, we refresh some def-
initions from FCA, introduce partitions and their lattice, and prove that any
partition lattice can be easily mapped to a concept lattice. In Section 3, we in-
troduce our modification of Close-by-One algorithm for consensus clustering. In
Section 4, we provide our experimental results with synthetic data both for indi-
vidual behaviour of FCA-Consensus and its comparison with the state-of-the-art
existing methods. Section 5 concludes the paper and outlines prospective ways
of research and developments.

2 Basic definitions

First, we recall several notions related to lattices and partitions.

Definition 1. A partition of a nonempty set A is a set of its subsets σ = {B |
B ⊆ A} such that

⋃
B∈σ

B = A and B ∩C = ∅ for all B,C ∈ σ. Every element of

σ is called block.

Definition 2. A partition lattice of set A is an ordered set (Part(A),∨,∧) where
Part(A) is a set of all possible partitions of A and for all partitions σ and ρ
supremum and infimum are defined as follows:

σ ∨ ρ = {Nρ(B) ∪
⋃

C∈Nρ(B)

Nσ(C)|B ∈ σ},

σ ∧ ρ = {B ∩ C | for all B ∈ σ and C ∈ ρ},where
Nρ(B) = {C | B ∈ σ,C ∈ ρ and B ∩ C 6= ∅} and Nσ(C) = {B | B ∈ σ,C ∈
ρ and B ∩ C 6= ∅}.

Definition 3. Let A be a set and let ρ, σ ∈ Part(A). The partition ρ is finer
than the partition σ if every block B of σ is a union of blocks of ρ, that is ρ ≤ σ.
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Equivalently one can use traditional connection between supremum, infimum
and partial order in the lattice: ρ ≤ σ iff ρ ∨ σ = σ (ρ ∧ σ = ρ).

Now, we recall some basic notions of Formal Concept Analysis (FCA) [16].
Let G and M be sets, called the set of objects and attributes, respectively, and
let I be a relation I ⊆ G ×M : for g ∈ G, m ∈ M , gIm holds iff the object
g has the attribute m. The triple K = (G,M, I) is called a (formal) context. If
A ⊆ G, B ⊆M are arbitrary subsets, then the Galois connection is given by the
following derivation operators:

A′ = {m ∈M | gIm for all g ∈ A},
B′ = {g ∈ G | gIm for all m ∈ B}. (1)

The pair (A,B), where A ⊆ G, B ⊆ M , A′ = B, and B′ = A is called a
(formal) concept (of the context K) with extent A and intent B (in this case we
have also A′′ = A and B′′ = B).

The concepts, ordered by (A1, B1) ≥ (A2, B2) ⇐⇒ A1 ⊇ A2 form a com-
plete lattice, called the concept lattice B(G,M, I).

Theorem 1. (Ganter&Wille [16]) For a given partially ordered set P = (P,≤)
the concept lattice of the formal context K = (J(P ),M(P ),≤) is isomorphic
to the Dedekind–MacNeille completion of P, where J(P) and M(P) are set of
join-irreducible and meet-irreducible elements of P.

Theorem 2. (this paper) For a given partition lattice L = (Part(A),∨,∧) there
exist a formal context K = (P2, A2, I), where P2 = {{a, b} | a, b ∈ A and a 6= b},
A2 = {σ | σ ∈ Part(A) and |σ| = 2} and {a, b}Iσ when a and b belong to the
same block of σ. The concept lattice B(P2, A2, I) is isomorphic to the initial
lattice (Part(A),∨,∧).

Proof. According to Theorem 1 the concept lattice of the context KDM =
(J(L),M(L),≤) is isomorphic to the Dedekind–McNeille completion of L. The
Dedekind–McNeille completion of a lattice is its isomorphic lattice by the defini-
tion (as a minimal completion which forms a lattice). So, we have to show that
contexts K and KDM (or their concept lattices) are isomorphic.

E.g., from [17] (Lemma 1, Chapter 4, Partition Lattices), we have that the
atoms of a partition lattice are those its partitions which have only one block
of two elements, the rest are singletons, and its coatoms are partitions into two
blocks.

It is evident that all the atoms are meet-irreducible and all the coatoms are
join-irreducible and that there are no other irreducible elements of the partition
lattice L.

Let σ and ρ be two partitions from L, σ ∈ J(L) and ρ ∈ M(L), and σ ≤ ρ.
It means that all blocks of σ are subsets of blocks of ρ and the non-trivial block
{i, j} ∈ σ is a subset of one of the blocks of ρ. Note that A2 coincides with the
coatom set. It directly implies that {i, j}Iρ iff an atom σ with block {i, j} is
finer than a coatom ρ.�
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In addition we can show the correspondence between elements of L = (Part(A),∨,∧)
and formal concepts of B(P2, A2, I). Every (A,B) ∈ B(P2, A2, I) corresponds to
σ =

∧
B and every pair {i, j} from A is in one of σ blocks, where σ ∈ Part(A).

Every (A,B) ∈ BDM (J(L),M(L),≤) corresponds to σ =
∧
B =

∨
A.

Example 1. In Fig. 1, one can see the diagram of a concept lattice isomorphic
to partition lattice of 4-element set.

Fig. 1. The line diagram of a concept lattice isomorphic to the partition lattice of
4-element set (reduced labeling).

3 FCA-Consensus: close by object

To work in FCA terms we need to introduce a (formal) partition context that
corresponds to the matrix X from the previous subsection. Let us consider such
a context KR = (G,tMt, I ⊆ G×tMt), where G is a set of objects, t = 1, . . . , T
, and each Mt consists of labels of all clusters in the t-th k-means partition from
the ensemble. For example, gImt1 means that object g has been clustered to the
first cluster by t-th clustering algorithm in the ensemble.

Our FCA-Consensus algorithm looks for S, an antichain of concepts of KR,
such that for every (A,B) and (C,D) the condition A ∩C = ∅ is fulfilled. Here,
the concept extent A corresponds to one of the resulting clusters, and its intent
contains all labels of the ensemble members that voted for the objects from A
being in one cluster. The input cluster sizes may vary, but it is a reasonable
consensus hypothesis that at least dT/2e should vote for a set of objects to be
in cluster.
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One can prove a theorem below, where by true partition we mean the original
partition into clusters to be recovered.

Theorem 3. In the concept lattice of a partition context KR = (G,tMt, I ⊆
G×tMt), there is the antichain of concepts S such that all extents of its concepts
Ai coincide with Si from σ, the true partition, if and only if S′′i = Si where
i = 1, . . . , |σ|.
Proof. The proof is trivial by noting the fact that blocks of partitions are non-
intersected and each block should be closed to form a concept extent.�

In fact, it happens if all ensemble algorithms has voted for all objects from
Si being in one concept (cluster). However, this is rather strong requirement and
we should experimentally study good candidates for such an antichain.

The algorithm below works as Close by One (CbO) [18] adding objects one
by one and checking a new canonicity conditions. Here it is modified in the
following way: we need to stop adding objects to a particular concept in our
candidate antichain S until |Y | ≥ dT/2e, where Y is the intent of this current
concept. Moreover, the covered objects at a particular step should not be added
with any concept to the antichain S further.

Algorithm 1: Main((G,M, I), T )
Input: a partition context (G,M, I) and the number of ensemble clusterers T
Output: S
1: C = ∅
2: for all g ∈ G do
3: if g 6∈ C then
4: gpp = g′′

5: gp = g′

6: S.enqueue(gpp, gp)
7: C = C ∪ gpp
8: end if
9: end for
10: return Process((G,M, I), k,S)

Thus, the resulting antichain S may not cover all objects but we can add
each non-covered object g to a concept (A,B) ∈ S with maximal size of the
intersection, |B∩g′|. Traditionally, the algorithm consists of two parts, a wrapper
procedure, Main, and a recursive procedure, Process.

4 Experimental results

All evaluations are done on synthetic datasets that have been generated using
Matlab. Each of the datasets consists of 300 five-dimensional objects compris-
ing three randomly generated spherical Gaussian clusters. The variance of each
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Algorithm 2: Process((G,M, I), T,S)

1: T = S
2: Cover = ∅ While T 6= ∅
3: T.dequeue(A,B)
4: if A ∩ Cover = ∅ then
5: Cover = Cover ∪A
6: P.enqueue(A,B)
7: for all g ∈ min(G \ Cover) do
8: X = A ∪ {g}
9: Y = X ′

10: if |Y | ≥ dT/2e then
11: Z = Y ′

12: if {h|h ∈ Z \X, h < g} = ∅ then
13: P.dequeue(A,B)
14: P.enqueue(Z, Y )
15: Cover = Cover ∪ Z
16: end if
17: end if
18: end for
19: end if
20: if S = P then
21: return P
22: end if
23: S = P
24: return Process((G,M, I), T,P)
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cluster lies in 0.1 − 0.3 and its center components are independently generated
from the Gaussian distribution N (0, 0.7).
Let us denote thus generated partition as λ with kλ clusters. The profile of par-
titions R = {ρ1, ρ2, . . . , ρT } for consensus algorithms is constructed as a result
of T runs of k-means clustering algorithm starting from random k centers.

We carry out the experiments in four settings:

1. Investigation of influence of the number of clusters kλ ∈ {2, 3, 5, 9} under
various numbers of minimal votes (Fig. 2),
a) two clusters case kλ = 2, k ∈ {2, 3, 4, 5},
b) three clusters case kλ = 3, k ∈ {2, 3},
c) five clusters case kλ = 5, k ∈ {2, 5},
d) nine clusters case kλ = 9, k ∈ {2, 3, 4, 5, 6, 7, 8, 9};

2. Investigation of the numbers of clusters of ensemble clusterers with fixed
number of true clusters kλ = 5 (Fig. 3),
a) k = 2,
b) k ∈ {2, 3, 4, 5},
c) k ∈ {5},
d) k ∈ {5, 6, 7, 8, 9}
e) k = 9;

3. Investigation of the number of objects N ∈ {100, 300, 500, 1000} (Fig. 4);
4. Comparison with other state-of-the-art algorithms (Fig. 5–8),

a) two clusters case kλ = 2, k ∈ {2, 3, 4, 5},
b) three clusters case kλ = 3, k ∈ {2, 3},
c) five clusters case kλ = 5, k ∈ {2, 5},
d) nine clusters case kλ = 9, k ∈ {2, 3, 4, 5, 6, 7, 8, 9}.

Each experiment encompasses 10 runs for every of 10 generated datasets.
Such meta-parameters as the dimension number p = 3, the number of partitions
(clusterers) in the ensemble T = 100, and the parameters of Gaussian distribu-
tion have been fixed for each experiment. After applying consensus algorithms,
Adjusted Rand Index (ARI) [3] for the obtained consensus partition σ and the
generated partition λ is computed as ARI(σ, λ).

Given two partitions ρa = {Ra1 , . . . , Raka} and ρb = {Rb1, . . . , Rbkb}, where
Na
h = |Rah| is the cardinality of Rah, Nhm = |Rah

⋂
Rbm|, N is the number of

objects, Ca =
∑
h

(
Na
h

2

)
=
∑
h

Nah (N
a
h−1)
2 .

ARI(ρa, ρb) =

∑
hm

(
Nhm

2

)
− CaCb

/(
N

2

)

1
2 (Ca + Cb)− CaCb

/(
N

2

) (2)

This criterion expresses similarity of two partitions; its values vary from 0 to
1, where 1 means identical partitions, and 0 means totally different ones.
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4.1 Comparing consensus algorithms

The lattice-based consensus results have been compared with the results of the
following algorithms (Fig. 5–8):

– AddRemAdd ([19,11])
– Voting Scheme (Dimitriadou, Weingessel and Hornik, 2002) [6]
– cVote (Ayad, 2010) [7]
– Condorcet and Borda Consensus (Dominguez, Carrie and Pujol, 2008) [8]
– Meta-CLustering Algorithm (Strehl and Ghosh, 2002) [1]
– Hyper Graph Partitioning Algorithm [1]
– Cluster-based Similarity Partitioning Algorithm [1]

0 10% 20% 30% 40% 50% 60% 70%

0.3

0.4
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0.6

0.7

0.8

0.9

Minimal voting threshold

A
R
I

Two cluters
Three clusters
Five clusters
Nine clusters

Fig. 2. Influence of minimal voting threshold to ARI for different number of true
clusters

To provide the reader with more details we show the values of ARI graphically
for each dataset out of ten used. The summarised conclusions are given in the
next section.

5 Conclusion

Through experimentation we have draw the following conclusions:

– Optimal voting threshold in terms of minimal intent size for the resulting
antichain of concepts is not constant; moreover, it is not usually a majority
of votes of ensemble members (see Fig. 2).

– A rather expected conclusion: FCA-based consensus clustering method works
better if set the number of blocks for the ensemble clusterers to be equal to
the size of the original (true) partition (see Fig. 3).
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Fig. 3. Influence of minimal voting threshold to ARI for different numbers of clusters
of the ensemble clusterers (each point is averaged over 10 datasets)
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Fig. 4. Influence of different numbers of objects to ARI
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– ARI depends on the number of objects: The higher the number, the lower
ARI (see Fig. 4).

– For two (and almost for all three) true clusters our method beats the other
compared algorithms and in some cases consensus clustering task is solved
with 100% accuracy (see Fig. 5–6).

– For larger number of clusters, our method is positioned as the median among
the compared methods (see Fig. 7–8).

Thus, the first step on synthetic datasets has been done and we need to
test the approach on real datasets. The used version of CbO can be modified for
usage on the space of all partition labels for the cases when we have more objects
than those labels. The algorithm complexity and time-efficiency should carefully
studied and compared with those of the existing algorithms. An interesting venue
is to use partition lattices as a search space to find an optimal partition. For
example, one can build a pattern structure [20] over partitions similar to one
in [21] and analyse the correlation of stability indicies [22] of the partitions as
pattern concepts with ARI measure. By so doing it is possible to understand
what are the good regions in the lattice for searching an optimal partition that
can be built from existing ones via partition union and intersection operations.
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Abstract We investigate different simple approaches to generate random
formal contexts. To this end, we consider for each approach the empirical
correlation between the number of intents and pseudo-intents. We compare
the results of these experiments with corresponding observations on
real-world use-cases. This comparison yields huge differences between
artificially generated and real-world data sets, indicating that using
randomly generated formal contexts for applications such as benchmarking
may not necessarily be meaningful. In doing so, we additionally show
that the previously observed phenomenon of the “Stegosaurus” does not
express a real correlation between intents and pseudo-intents, but is an
artifact of the way random contexts are generated.

Keywords: Formal Concept Analysis, Pseudo-Intents, Closure Systems

1 Introduction

In the early times of Formal Concept Analysis [1], the study of lattices represented
as the concept lattice of a particular formal context K was one of the main driving
motivations. For this one has to solve the computational task of determining all
formal concepts of K, one of the first algorithmic challenges in the field of FCA.
Since then, many algorithms have been developed to solve this task.

With the rise of a multitude of algorithms it became increasingly important
to be able to compare these algorithms. One of the first comparisons was done in
2002 by Kuznetsov [2]. The data sets used in this comparison were all “randomly
generated”, a notion that up to today is not completely understood. Consequently,
[2] regrets that there is no deeply investigated algorithm for generating random
contexts.

From its original motivation, Formal Concept Analysis has since then evolved
into an active research area with many connections to fields outside the scope of
this original approach. Nevertheless, the study of properties of lattices in terms

c© Marianne Huchard, Sergei O. Kuznetsov (Eds.): CLA 2016, pp. 57–69,
ISBN 978-5-600-01454-1, National Research University Higher School of Economics,
2016.



of corresponding formal contexts is still one of the main lines of research. One
of the earliest observations in this direction was that every concept lattice can
be understood as the lattice of all closed sets of the valid implications of the
underlying formal context. This observation did not only open up connections to
fields like data-base theory, data-mining, and logic. It also fostered research on
finding efficient algorithms for extracting small bases of implications of a given
formal context. One of those bases, called the canonical base, stands out as base
of minimal size for which an explicit construction is known. Recall that for a
formal context K = (G,M, I) the canonical base L(K) is the set of implications
defined by

L(K) := {P → P ′′ | P is pseudo intent of K},

where pseudo intents of K are subsets of M such that P 6= P ′′ and for all
pseudo intents Q ( P it is true that Q′′ ⊆ P . This recursive definition of pseudo
intents makes theoretical investigations of the canonical base rather difficult.
Indeed, Babin and Kuznetsov [3] showed that recognizing pseudo-intents is
coNP-complete.

Although there are bases whose computation may be more worthwhile in
practice, the canonical base is still of major interest for both research and
applications. In 2011, Bazhanov and Obiedkov [4] made a performance comparison
of the known algorithms to compute canonical bases. For this they used seven
distinct real world contexts. More recently is a parallel approach by Borchmann
and Kriegel [5]. To evaluate their algorithm they used random contexts as well as
real-world contexts from the fcarepository.com (which disappeared recently).

It emerges that evaluating the performance of algorithms for computing the
set of formal concepts as well as computing the canonical base heavily depends
on the choice of the available data sets. Because obtaining real-world data sets
may be a challenging endeavor, one often resolve to use artificially-generated
“random contexts” instead. However, a thorough theory of randomly generated
formal contexts is missing, and even experimental studies are hard to find. This
is where this work tries to step in. In particular, it aims to shed some light on a
phenomenon we shall call the Stegosaurus-phenomenon, a surprising empirically
observed correlation between the number of pseudo intents and the number of
formal concepts of formal contexts. We shall show that the phenomenon depends
strongly on the method used for generating random contexts. Other random
context generators show similar, but substantially different phenomena.

Finally, we want to compare our approaches of randomly generating formal
contexts with two data sets constructed from real world data, namely from
BibSonomy and form the Internet Movie Database. Not surprisingly, the correla-
tion between the number of intents and pseudo-intents in these data sets differs
considerably to those observed in the randomly generated contexts. This reminds
of an obvious but too rarely stated meme from the early days of formal concept
analysis: don’t invent data!
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Figure 1. Experimentally observed correlation between the number of intents and
pseudo-intents of randomly generated formal contexts on twelve attributes (left), plot
of all formal contexts on five attributes (right).

2 Related Work

The original observation of a correlation between the number of intents and
pseudo-intents first appeared in [6]. This work was originally not concerned with
investigating this relationship, but with representing closure operators on sets
by means of formal contexts of minimal size. However, during the experiments
on the efficiency of this approach, a correlation between the number of intents
and the number of pseudo-intents of randomly generated formal contexts was
discovered. The original phenomenon is shown in Figure 1 and has subsequently
been called the Stegosaurus (because, with some fantasy, the shape of Figure 1
resembles the one of this well-known dinosaur).

Further investigation was conducted in a talk at the in Formal Concept
Analysis Workshop in 2011. There not only the experimental setup was discussed
in more detail, but also questions were raised that are connected to the experiment.
Most importantly, it was asked whether the phenomenon really exists, or whether
it was just a programming error or an artifact of the experimental setup. Indeed,
using a reimplementation4, the second author was later able to independently
verify the outcome of the experiment.

Another question raised in this investigation was whether the way the formal
contexts were generated has an impact on the outcome of the experiment. The
problem here is that although in the original experiment the formal contexts were
generated in a uniformly random manner, the underlying closure systems were
not. This is because closure systems can have multiple representations by means
of formal contexts, and the number of those contextual representations may differ
widely between different closure systems. Therefore, uniformly choosing a formal
contexts does not mean to choose a closure system in a uniform way.

A first attempt to remove the shortcomings of the way random formal contexts
are generated was conducted by Ganter [7]. In this work an approach was

4 https://github.com/tomhanika/fcatran
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investigated to correctly generate closure systems on a finite set with a uniform
random distribution. However, while the proposed algorithm was conceptually
simple, it turned out that it is not useful for our experiment. Indeed, it has been
shown that the proposed algorithm is only practical for closure systems on sets
of up to 7 elements, whereas the original experiment needs a size of at least 9 or
10 to exhibit the characteristic pattern of Figure 1. This is also the reason why
an earlier computation of all reduced formal contexts on five attributes, shown
in Figure 1, was not helpful to investigate the phenomenon.

3 Experiments

The purpose of this section is to present different experimental approaches to
enhance our understanding of the Stegosaurus phenomenon. For this purpose,
we shall first recall the original experiment that first exhibited the Stegosaurus.
After this, we shall discuss an alternative approach of randomly generating
formal contexts that fixes the number of attributes per object. Then we shall
consider another method proposed [8]. Finally, we compare our findings against
experiments on real world data.

All computations presented in this section were conducted using conexp-clj5.

3.1 Original Experiment

The original experiment that first unveiled the Stegosaurus-phenomenon randomly
generated formal contexts as follows. For a given number of attributes N and
some p ∈ [0, 1], first the number of objects is randomly chosen between 1 and 2N .
Then for each pair (g,m) of an object g and an attribute m, a biased coin with
probability p was used to determine whether g has attribute m.

Applying this algorithm to generate 1000 formal contexts with N = 10 leads
to the picture in Figure 2. The result does not change qualitatively by repetition.
The provided generating algorithm seems biased towards creating contexts that
lie on some idiosyncratic curve. This curve exhibits multiple spikes (in the given
picture at least 4 can be identified) and a general skew to the left. Contexts
beneath that curve are hit infrequently, above that curve even less. The behavior
at the right end of the plot is expected, since when almost every subset ofM is an
intent, the number of pseudo intents must be low: the number of pseudo-intents
of a formal context K = (G,M, I) is at most 2|M | minus the number of intents
of K. On the other hand, the behavior in the rest of the picture is not as easily
explained and still eludes proper understanding.

We also plotted a histogram in Figure 2 which contains a bin for every
occurring number of pseudo intents. By the height of the erected rectangle above
each bin we can observe the frequency of appearance of a formal context with
that particular number of pseudo intents. The distribution shown in Figure 2 has
an expected spike at zero: while generating a random formal context with a high

5 https://github.com/exot/conexp-clj
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Figure 2. Experimentally observed correlation: Between the number of intents and
pseudo-intents (left) and the distribution of the number of contexts having a given
number of pseudo intents (right), for 1000 randomly generated formal contexts with
ten attributes

probability of crosses, the chances of hitting the ten object-vectors spanning a
contra-nominal-scale context is high. Apart from that, there is an cumulation
of contexts for approximately 40 and 70 pseudo intents. For some reason the
algorithm favors context with those pseudo intent numbers. This could also mean
that the same context is generated for multiple times.

These unexpected results lead to many more questions to generate a deeper
understanding of the connection between the number of formal concepts and
pseudo intents.

One of these questions is what happens if a lot of contexts are generated that
way. To address this question, we created five million random contexts using
the introduced method. This led to the result shown in Figure 3. In contrast
to Figure 2 we see a filled picture. Almost all combinations below the characteristic
curve have been realized by at least one context. Only a small seam of not realized
combinations is left at the bottom. At a second glance we observe that the whole
characteristic curve seems shifted up by approximately ten to twenty pseudo
intents. Even more interestingly, a fifth spike can be imagined at about 800
concepts. Furthermore, even in this figure there are still some random context
hoovering even above the spikes. This leads to the conjecture that there are
contexts with even larger canonical bases that cannot be computed feasibly by
the applied method.

In Figure 3 we also plotted the according histogram like we did in Figure 2.
The distribution of contexts is of course shifted up since more contexts are
generated. But it still resembles the one in Figure 2. In particular, for contexts
with about 50 pseudo-intents, a plateau can be observed.

Another question is how far the number of attributes we have chosen for
our experiments has an influence on the shape of the Stegosaurus. Since in
the first discovery of the Stegosaurus was made with a context that has eleven
attributes, the question about the influence of N on the phenomenon is natural.
To investigate this question, we computed, still using the same method, several

Some Experimental Results on Randomly Generating Formal Contexts 61



0 20 40 60 80 100 120 140
# of pseudo intents

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

#
 o

f c
on

te
xt

s

Figure 3. Experimentally observed correlation: Between the number of intents and
pseudo-intents (left) and the distribution of the number of contexts having a given
number of pseudo intents (right), for five million randomly generated formal contexts
with ten attributes, using experiment in Section 3.1.

Figure 4. The influence of increasing m for the original experiment.

formal contexts with up to seventeen attributes. As can be see in Figure 4, the
characteristic Stegosaurus curve is present in all of them. However, we also can
see an increase in spikes.

Therefore, we conjecture that the occurrence of the Stegosaurus phenomenon
seems independent from the value of N .

3.2 Increasing the number of pseudo-intents

As described in the previous section, in the original experimental setup the
number of pseudo-intents of randomly generated formal contexts increases with
the number of iterations. A natural question is whether we can find an upper
bound on the number of pseudo-intents a formal context can have given that
the number of intents is fixed. For this purpose, we investigate an alternative
approach of generating formal contexts that is described in this section.

Let us say that a formal context K = (G,M, I) has fixed row-density if the
number of attributes for each object g ∈ G is the same. In other words, for
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all g, h ∈ G we have |g′| = |h′|. It is clear how to obtain such formal contexts:
let k, n ∈ N with 0 ≤ k < n. Let M = {1, . . . , n} and choose G ⊆

(
M
k

)
. Then

the formal context (G,M, I), where (S, i) ∈ I if and only if i ∈ S, has fixed
row-density. Let us call a formal context K with fixed row-density object maximal
if K is object clarified and no new object can be added to K such that the
formal context is still object clarified and has fixed row-density. In other words,
K is object maximal with fixed row-density if and only if K is isomorphic to
Kn,k := (

(
M
k

)
,M,3), where M = {1, . . . , n}.

Formal contexts with fixed row-density have been used by Kuznetsov in
his performance comparison of concept lattice generating algorithms [2]. The
following observation had already been hinted at (so we suppose) in [9], when
it was claimed that constructing formal contexts with as much as

( |M |
b|M |/2c

)

pseudo-intents is easy.

Proposition 1. Let k < n− 1. The number of pseudo intents of Kn,k is
(
n
k+1

)
.

Proof. Let M = {1, . . . , n}. For all P ⊆ M with |P | = k + 1 we see that
P ( P ′′ = M . For all proper subsets Q ( P it is clear that Q is an intent of Kn,k,
as it can be represented as an intersection of subsets of M of size k. Therefore,
the subsets of M of cardinality k+ 1 are in fact pseudo-intents of Kn,k, and there
are

(
n
k+1

)
many of them. Because each k + 1-elemental subset P ⊆M satisfies

P ′′ = M , we also have that there are no other pseudo-intents in Kn,k.

In fact, for any attribute set M , object maximal formal contexts with fixed
row-density are the contexts with the largest canonical base we discovered in
our experiments so far. The results of applying this algorithm for N = 10 for
various k can be seen in Figure 5. We observe the highest peak in the plot for
k = 4, as Proposition 1 implies. For k = 1 we notice the ten possible formal
contexts are plotted in between one to ten concepts, as expected, with up to 45
pseudo intents. In contrast to that, we find the ten possible contexts in the k = 9
case stringed along the axis for contexts with one pseudo intent, as expected for
contexts resembling a contra-nominal scale.

An overlay of all those plots is shown in Figure 6, together with an overlay
for N = 11 which, despite the thin and high spikes, both are reminiscent
of Figure 2.We observe multiple sharp spikes, seven in the case of N = 10 and
eight in the case of N = 11. The top of each spike is the object maximal formal
context with fixed row-density for the corresponding k. For every k we observe a
hump in the graph before the spike starts. The reasons for that hump as well as
for the dale afterwards are unclear.

The curiosity about the Stegosaurus-phenomenon increases even more after
overlaying Figure 6 with Figure 3. In contrast to the observation so far, now some
spikes seem to “grow” out of dales in the original Stegosaurus plot. In particular,
the question if the upper bound in the original Stegosaurus plot states some
inherent correlation between the number of pseudo intents and the number of
intents can be safely negated at this point.
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Figure 5. 100,000 random fixed row-density contexts for |M | = 10, plotted for k = 1
(upper left) up to k = 9 (down right).

Figure 6. 100,000 random fixed row-density context for m = 10 (left) and m = 11
(right) for various k (best looked at in color).
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3.3 SCGaz-Contexts

In 2013, Rimsa et al. [8] contributed a synthetic formal context generator named
SCGaz6. The goal for this generator was to create random object irreducable
formal contexts with a chosen density that have no full or empty rows and
columns. The authors employ four different algorithms for each phase of the
generation process, i.e., reaching minimum density, regular filling, coping with
problems near the maximum density, and brute force. Since the interactions of
these algorithms is rather involved and not possible to describe in short, we refer
the reader to [8].

When this tool is invoked with a fixed number of attributes, a number (or
an interval) of objects must be provided, as well as a density. In cases when
the provided density does not fit with the other parameters, the density is
interchanged with 0.5. For example, the request to generate a context with 32
objects, 5 attributes and density 0.9 is impossible, since there is only one object
clarified context with those parameters, an object maximal formal context with
fixed row-density, which has a density of 0.5.

This particularity in the usage of SCGaz made it tiring to generate a large
number of random formal contexts, since a correct density had to be pre-calculated.
We did so and generated a set of 3.5 Million contexts for a set of ten attributes,
varying number of objects, and three different densities per object-attribute-
number combination. The result is shown in Figure 7.

The first thing to observe is again a spike structure. However, the previously
observed skew as in Figure 2 is gone, and the upper bound of the plot is
significantly higher than in Figure 2. Furthermore, there seems to be a unnatural
gap in the plot. This missing piece is an artifact of our parameter generation for
invoking SCGaz, in particular the density bound calculations. We verified this
by generating a small number of contexts using random densities which led to
contexts resembling the same behavior as in Figure 7, but without the missing
piece. However, in favor of the more filled plot we decided to include Figure 7
instead of the smaller sample.

Comparing the results from SCGaz with the one obtained in Section 3.2, we
observe that some spikes stemming from context with fixed row-density emerge
from dales in the SCGaz plot and others adapt closely to the SCGaz spikes.
Nevertheless, all spikes we have seen in Section 3.2 outnumber the ones from
SCGaz by the number of pseudo intents.

3.4 Real-World Contexts

The purpose of this section is to compare our observations about artificially
generated formal contexts with results from experiments based on real-world data
sets. The actual experiment is the same as before: we compute for a collection
of formal contexts the number of intents and pseudo-intents and plot the result.
However, in contrast to our previous experiments, we do not generate the formal

6 https://github.com/rimsa/SCGaz
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Figure 7. 3.5 Million random contexts generated by SCGaz, using ten attributes and
varying density and number of objecst (left) and the same overlain by Figure 6 (right).

contexts using a designated procedure, but use some readily available data sets
for this.

The first data sets stems from the BibSonomy project7. BibSonomy is a social
publication sharing system that allows a user to tag publications with arbitrary
tags. Using the publicly available anonymized data sets [10] of BibSonomy8, we
created 2835 contexts as follows. For every user u we defined a set of attributes
Mu consisting of the twelve most frequently used tags of the user. The set of
objects per user is the set of all the publications stored in BibSonomy. The
incidence relation then is the obvious relation between publications and their
tags.

The results are depicted in Figure 8. Note that even if the cardinality of the
attribute set is twelve, the plot is shown only for up to 1024 intents, because no
contexts with more than 1024 intents are contained in the data set.

The majority of the contexts seem to lie near a linear function of the number
of concepts. Hence, it looks like the left part of the Stegosaurus phenomenon.
Even a first spike can be accounted for with about 60 pseudo intents.

The distribution of contexts, however, behaves very differently. Of course, the
first spike for contexts with no pseudo-intents is missing, as the contra-nominal
scale is not common in real world data. Furthermore, we can find that there is
no wide dale in the graph, like it is observed in Figure 2.

For our second real world data set we chose to use the Internet Movie
Database9. We created 57582 formal contexts using the following approach. For
every actor (context) we took the set of his movies (objects) and the related
star-votes. Every movie can be rated from one to ten, and the ten bins of votes
were considered as attributes. Every rate-bin that has at least 10% of the total
amount of votes was considered as being present for an object. The resulting
graphs are shown in Figure 9.

7 http://bibsonomy.org
8 http://www.kde.cs.uni-kassel.de/bibsonomy/dumps/
9 http://www.imdb.com
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Figure 8. 2835 contexts created using the public BibSonomy data set.

Figure 9. Formal contexts created using the Internet Movie Database.

We observe a quite different behavior to that of the classical Stegosaurus
as well as to that of the BibSonomy data set. These contexts fill the area for
infrequent contexts of the experiment in Section 3.1. Their canonical bases are
mostly below 50 pseudo intents and the number of formal concepts goes up to
400 for a majority, and contexts around 1000 concepts are hit three times.

3.5 Discussion of the Experiments

Throughout our experiments, we observed that the Stegosaurus phenomenon
seems to be more associated with the actual algorithm of constructing the formal
contexts than with any unknown correlation between the number of pseudo
intents and the number of formal concepts. Also, the upper bound which was
suggested by the phenomenon appears vacuous for a deeper understanding of the
correlation in question.

In particular, the experiments concerning formal contexts with fixed row-
density nourished our understanding what actually can be the reason for the
original phenomenon. Since the algorithm in Section 3.1 uses a constant proba-
bility for generating crosses, the row density in a context does not vary much.
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Indeed, with N attributes and a cross probability of p, the expected number of
attributes per object is pN . Therefore, in most cases, the algorithm generates
an “approximation” of a context with fixed row-density. If one imagines Figure 6
without the thin spikes, the result resembles a lot the one of Figure 2.

At this point we cannot explain the result of the SCGaz context generator
with respect to our experimental setup. However, in Figure 7 we see in the overlay
plot that the dales are artificial since spikes are running right through them.

The final investigation using real world data sets leads to the question if all
discussed random context generators miss the point of creating contexts that
behave like real world data, making them unsuitable for real-world benchmarking.
For the BibSonomy data set one could still argue that Figure 8 resembles the
very left part of Figure 2 and Figure 7. However, in the case of the IMDB data
set, strange capping of the number of pseudo intents can be observed that does
not appear in any of our approaches of randomly generating formal contexts.

4 Conclusions and Outlook

At his first discovery, the Stegosaurus phenomenon raised a lot of questions.
Is it a programming error, is it a systematic error, is it a hint to enhance the
understanding of canonical bases? At this point, we feel confident to state that it
is “just” a systematic bias in generating the contexts. Therefore, benchmarking
FCA-algorithms using random contexts created by the original algorithm seems
unreasonable. The SCGaz generator can be tuned to generate more diverse sam-
ples. However, this tuning needs some effort and there is still some unaccounted
bias. In any way, the question what a truly “random context” is and how it can
be sampled remains open.

Recalling the results of the real world data sets, one can conclude that the
idea of randomly generating test data for algorithms needs some reconsideration.
Like simple random generated graphs in general do not resemble a social network
graph, randomly generated contexts might not reproduce real world contexts.
In the case of randomly generating social graphs, the method of preferential
attachment led to better results [11]. Hence, random context generators trying
to sample formal contexts with the characteristics of some class of real world
contexts would be an improvement in the realm of random contexts.

Still, new algorithmic ideas need to be tested. Therefore, a set of specialized
random context generators, as proposed by Kuznetsov [2], producing contexts of
a particular class would be an improvement. On the other hand, a standard set
of formal contexts to test against should be compiled as well. To this end, the
authors have obtained the abandoned domain fcarepository.com to revive the
idea of a central repository of formal contexts in the next months.
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École Centrale Marseille,
LIF, Laboratoire d’Informatique Fondamentale de Marseille,

CNRS UMR 7279,
Marseille, France,

francois.brucker@lif.univ-mrs.fr, pascal.prea@lif.univ-mrs.fr

Abstract. In this paper we present a method (linear in the size of the
formal context) to solve the seriation problem for formal contexts. We
show that any maximal solution can be represented by a PQ-Tree. More-
over, the set of PQ-Trees can be seen as a distributive lattice. This lattice
yields a consensus method which deals with the multiple solutions.

Keywords: seriation, PQ-Trees, Consecutive One’s Property, lattice,
consensus.

1 Introduction

The classical problem of seriation in Archeology [9] is the following: we are given
a set of objects (different kinds of necklace, bracelet, dishes. . . ) and a set of sites
(tombs, houses,. . . ). Each object has been used during an interval of time, and
each site contains objects. The problem is to order the sites along time. More
generally, the seriation problem consists in finding a linear order which underlies
a data set, and this problem arises in genetics [2, 6], hypertext browsing [3],
philology [4], data visualization [7, 10], musicology [8], . . . ; the order can be time,
altitude, dispersion along a river, influence of an author, or even an unknown
reason.

Formally speaking, a seriation problem instance can be represented by a
formal context (G,M, I) where, for the classical problem in archeology, G is the
set of sites, M the set of objects and I the relation which states if an object m
has been found in site g.

In exact seriation, there exists a linear order (said compatible) such that A is
an interval for any formal concept (A,B). The problem is to find one (or all the)
compatible orders. Since the intersection of two intervals is also an interval, it is
sufficient to check the inf-irreducible elements of the associated concept lattice,
i.e. the columns of the formal context matrix. In this case, the formal context
matrixM is said to have the Consecutive One’s Property (C1P); that is the lines
ofM can be reordered in such a way that on every column ofM, the 1s appear
in consecutive order. Note tat the C1P is not a symmetrical property. Indeed,

c© Marianne Huchard, Sergei O. Kuznetsov (Eds.): CLA 2016, pp. 71–82,
ISBN 978-5-600-01454-1, National Research University Higher School of Economics,
2016.



e.g. for the classical problem in archeology, the objects organize the sites into a
linear order (the time), but the converse is false.

An optimal algorithm to find all the compatible orders was introduced in
1976 [5], based on a special data structure: PQ-Trees.

In approximate seriation, the data is not accurate (e.g. a site may not contain
an object that was used when it was built); and the formal context matrix M
does not have the C1P. We suppose (for extra reasons) that there exists a linear
order which underlies the data set and the problem is to find one (or several)
such order. There are two basic approaches for approximate seriation: (i) Min-
imally modify M so that it has the C1P (this yields to an NP-Hard problem);
(ii) Find a maximal submatrix which has the C1P. In the formal concept frame-
work, this approach consists in finding a sub-lattice of the formal concept lattice.

The aim of this paper is, following approach (ii), to present an efficient algo-
rithm for approximate seriation, also based on PQ-Trees. This paper is organized
as follows: in Section 2, we present the PQ-Tree structure and a first algorithm
which follows approach (ii). In Section 3, we show that the set of PQ-Trees can
be organized as a lattice, which generalizes the semilattice of hierarchies; and
we give a second algorithm which constructs a consensus between the possibly
multiple solutions of the algorithm given in Section 2. In Section 4, we present
a possible workflow of our method on an archeological data set. Actually, this
workflow makes several runs of the algorithm of Section 3. The inputs of these
runs strongly depends on the data and thus has to be decided by the user.

2 PQ-Trees

Given a finite set X, a PQ-tree T on X is a tree that represents a set of permuta-
tions on X denoted by ST . The leaves of T are the elements of X, and the nodes
of T are of two types : the P-nodes and the Q-nodes. We represent P-nodes by
ellipses, and Q-nodes by rectangles.

On a P-node, one can apply any permutation of its children (equivalently, its
children are not ordered). The children of a Q-node are ordered, and the only
permutation we can apply on them is to reverse the order. For instance, the PQ-
Tree of Figure 1 represents the set of permutations {(0,1,2,3,4,5), (0,1,3,2,4,5),
(0,2,1,3,4,5), (0,2,3,1,4,5), (0,3,1,2,4,5), (0,3,2,1,4,5), (5,4,1,2,3,0), (5,4,1,3,2,0),
(5,4,2,1,3,0), (5,4,2,3,1,0), (5,4,3,1,2,0), (5,4,3,2,1)}.

Let M be a formal context matrix. An order σ on the lines of M is com-
patible if, when the lines of M are sorted along σ, on each column of M, the
1’s are consecutive. If M has the Consecutive One’s Property (i.e. if there ex-
ist compatible orders), the set of all compatible orders can be represented by a
(unique) PQ-Tree. For instance, the cross-table of Figure 2 has the C1P and its
compatible orders are represented by the PQ-Tree of Figure 1.
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Fig. 1. A PQ-Tree

0 1 2

0 ×
1 × ×
2 × ×
3 × ×
4 × ×
5 ×

Fig. 2. Example of cross table (left) and its associated lattice (right).

Given a Formal Context M satisfying the C1P, the associated PQ-Tree is
a condensed representation of the associated concept lattice: if we add to M
columns which are nonempty intersections or non-disjoint unions of already ex-
isting columns, the associated PQ-Tree remains unchanged. This is why we will
use PQ-Trees as a representative of concept lattices to solve seriation problems.

Generally, a formal context does not have the C1P, as that associated with
the cross table of Figure 3. We can remark that, although this example was built
by adding columns to the example of Figure 2, it is not easy to construct the
concept lattice of Figure 2 directly from the one of Figure 3.

0 1 2 3 4

0 × ×
1 × × ×
2 × ×
3 × × ×
4 × × × ×
5 ×

Fig. 3. Extension of the Cross Table 2 (left) and its associated lattice (right).
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A first way to solve the approximate seriation problem consists in finding a
maximal set of columns M ′ such that M|M ′ has the C1P and exhibit the com-
patible orders. There exist several maximal sets of attributes having C1P; for
instance, the cross-table of Figure 3 admits {0, 1, 2, 4} (see Figure 4) or {1, 3, 4}
(see Figure 6). Remark that the concept lattices of Figures 4 and 6 are sub-
lattices of the one of Figure 3. In addition, for each concept (A,B), A is an
interval for any compatible order.

This is made possible by the incremental nature of the Booth and Lueker
algorithm, which considers one column of the matrix at each step. In addition,
starting with this maximal set M ′, it is easy to find the associated concepts: their
extensions are the columns and the 2-intersections of columns (the intersection
of three intervals is the intersection of two of them).

The Booth and Lueker algorithm [5] relies on a function Update Tree(T,A),
where T is a PQ-Tree on X and A a subset of X. Update Tree returns a PQ-
Tree T ′ where ST ′ is the set of all permutations σ of ST such that, when X is
sorted along σ, A is an interval of X (if there is no such permutations, T ′ is
None); for instance, with the PQ-Tree of Figure 1 and the set {1, 3, 4} (column
4 of Figure 3), Update Tree returns the PQ-Tree of Figure 4. Update Tree
runs in O(n), where n is the size of the column (i.e. the number of lines of the
matrix). Given an n ×m {0, 1}-matrix M, the algorithm of Booth and Lueker

Fig. 4. PQ-Tree built from columns 0, 1, 2 and 4 of Cross-Table of Figure 3 (left) and
the associated concept lattice (right).

starts with the PQ-Tree Un which represents all permutations on {1, . . . n} (Un
has n leaves and one internal node (its root) which is a P-node) and apply Up-
date Tree for all columns ofM. By this way, it determines ifM has the C1P
in O(nm). Fo instance, applying this algorithm on the cross table of Figure 2,
the algorithm runs as on Figure 5.

More generally, given a subset S of 2X , we can apply the algorithm of Booth
and Lueker on S and obtain a PQ-Tree T = BL(S) such that, for any permuta-
tion σ represented by T (and only for them), when X is sorted along σ, all the
elements of S are intervals.

So, given a column order ζ, Algorithm Maximal-C1P-Construction gives
a solution to the approximate seriation problem in linear time. For the formal
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Fig. 5. The intermediate steps of the algorithm of Booth and Lueker, when applied on
the cross table of Figure 2: the algorithm starts with the universal tree U6 (left) and
treats the set {0, 1, 2, 3} (i.e. it forces {0, 1, 2, 3} to be an interval); it then gets the
PQ-Tree in the middle. Then it treats the set {1, 2, 3, 4} and gets the PQ-Tree on the
right. By treating the set {4, 5}, it gets the PQ-Tree of Figure 1.

context of Figure 3, if we consider the columns in increasing order, this algorithm
returns the PQ-Tree of Figure 4 and rejects the column 3, which is not compatible
with the 3 first columns.

Algorithm Maximal-C1P-Construction(M, ζ)
Input A n×m {0, 1}-matrix M .

A permutation ζ on the columns of M .
Output A Maximal set C of columns of M such that M|C has C1P;

A PQ-Tree T representing the compatible permutations.
begin

T ← Un ;
C ← ∅ ;
ForAll columns c of M taken along ζ Do

T ′ ← Update Tree(T, c) ;
If T ′ 6= None Then

T ← T ′ ;
C ← C ∪ {c} ;

return T,C ;
end

Fig. 6. PQ-Tree built from columns 1, 3 and 4 of Cross-Table of Figure 3 (left) and
the associated concept lattice (right).
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If the matrix has not the C1P, there are many solutions depending on the
order ζ. For instance, if we consider the columns of the formal context of Figure 3
in reverse order, we keep the columns 4, 3, 1 and obtain the PQ-Tree of Figure 6.

We can see that the maximal sets of compatible columns do not have all
the same number of elements. Since Maximal-C1P-Construction is very
efficient, it is possible to try many orders on the columns and then take the
greatest obtained set. The problem is that there may exist many such sets. We
will see in next Section that it is possible to go over that by using the lattice
structure of PQ-Trees.

3 The Lattice Structure of PQ-Trees

We will show here that the PQ-Trees on a set X can be organized as a dis-
tributive lattice. This will allow us to build a consensus (by taking the join)
of several PQ-Trees given by Algorithm Maximal C1P Construction. For
instance, the PQ-Tree of Figure 7 is the join of the PQ-Trees of Figures 4 and 6.

We denote by TX the set of all PQ-Trees on a finite set X. Given two elements
T1 and T2 of TX , we say that T1 ≤ T2 if ST1

⊆ ST2
. We will show that (TX ,≤)

is a distributive lattice, which generalizes the semilattice of hierarchies (a hier-
archy can be seen as a PQ-Tree with only P-Nodes). This will allow us to define
a consensus between the different solutions of Maximal-C1P-Construction.

Given a PQ-Tree T on X, the Interval Set of T (denoted by Int(T )) is the set
of all nonempty subsets S of X such that, for every permutation σ compatible
with T , when X is sorted along σ, S is an interval, i.e. Int(T ) is the greatest
subset P of 2X \ {∅} such that BL(P ) = T . Equivalently, S ∈ Int(T ) ⇐⇒
Update Tree(T, S) = T .

Let α be a node, we denote by X(α) the set of the leaves under α. If α

is a Q-node with sons (in this order) β1, . . . βp, we denote by X̂(α) the set

{⋃j
k=iX(βk), 1 ≤ i < j ≤ p} (remark that X̂(α) is a set of sets). We have:

Property 1 Int(T ) = {X(α), α node of T} ∪ ⋃

α Q-node

of T

X̂(α).

Proof. Let I(T ) = {X(α), α node of T} ∪ ⋃

α Q-node

of T

X̂(α). Clearly, for every

permutation represented by T , all subsets of X in I(T ) are intervals. So I(T ) ⊂
Int(T ).

Conversely, let S be a subset of X not in I(T ). We are in one of the following
cases:

1. ∃ node α s.t. X(α) ∩ S 6= ∅, X(α) 6⊂ S, S 6⊂ X(α).
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2. ∃ P-node α, with sons β1, β2, ..., βp, p > 2 s.t. X(β1) ⊂ S, X(β2) ⊂ S,
X(βp) 6⊂ S (actually, if not in case 1, X(βp) ∩ S = ∅).

3. ∃ Q-node α, with sons β1, β2, ..., βp, p > 2 s.t. ∃i < j < k with X(βi) ⊂ S,
X(βk) ⊂ S and X(βj) 6⊂ S.

Suppose that there exists an ordering σ = (x1, x2, . . . xn) of X, compatible with
T , such that S is a proper interval xi, . . . xj of X. In Case 1, we can suppose that
X(α) = {xk, . . . xl}, with i < k ≤ j < l. By reversing X(α), we get a compatible
ordering of X for which S is not an interval. In Case 2, we can suppose that
X(β1) = {xk, . . . xk′}, X(β3) = {xl, . . . xl′} and X(β3) = {xm, . . . xm′}, with
i ≤ k ≤ k′ < l ≤ l′ ≤ j < m ≤ m′. By “exchanging” β2 and β3, we get a
compatible permutation for which X is not an interval.

In Case 3, let x ∈ X(βi), y ∈ X(βj) \ S and x ∈ X(βk). For any compatible
ordering of X, x < y < z, and thus X is not an interval. ut

Clearly:

Property 2 T1 ≤ T2 ⇐⇒ Int(T2) ⊆ Int(T1).

Theorem 1 (TX ,≤) is a distributive lattice.

Proof. By Property 2: T1∧T2 = BL(Int(T1)∪Int(T2)) and T1∨T2 = BL(Int(T1)∩
Int(T2)).

In addition, if T1, T2 and T3 are PQ-Trees, Int(T1) ∪ (Int(T2) ∩ Int(T3)) =
(Int(T1)∩Int(T2))∪(Int(T1)∩Int(T3)), i.e. T1∧(T2∨T3) = (T1∧T2)∨(T1∧T3);
so (TX ,≤) is a distributive lattice. ut

In addition, by Property 1, T1 ∨ T2 and T1 ∧ T2 can be computed in O(n3).
Remark that, to compute T1∧T2, we can use the sets {X(βi)∪X(βi+1), 1 ≤ i <
p} instead of X̂(α) for all Q-nodes α with sons β1, . . . βp. Thus T1 ∧ T2 can be
computed in O(n2).

The largest element of (TX ,≤) is the universal tree U|X| which represents
all the permutations on X and the smallest one is None which represents no
permutation.

The join of the PQ-Trees of Figure 4 and 6 is represented on Figure 7. The
PQ-Trees of Figure 4 and 6 represent respectively 4 and 8 permutations. Their
join represents 16 permutations, which is very close to the theoretical minimum
of 12, especially when compared to the 720 possible permutations on {0, . . . , 5}.
In addition, we can see that, for all the permutations represented by this PQ-
Tree, the set {1, 2, 3, 4} is ordered in (2, 1, 3, 4), (2, 3, 1, 4), (4, 1, 3, 2) or (4, 3, 1, 2),
as for the two PQ-Trees of Figure 4 and 6.

Conversely, the meet of the two PQ-Trees of Figure 4 and 6 is None, since
these two PQ-Trees are compatible with maximal sets of columns. This situation
will occur with any two PQ-Trees obtained with Maximal-C1P-Construction:
they are built from maximal sets of columns of M and thus the permutation
sets that they represent are already minimal.
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Fig. 7. The join of the PQ-Trees of Figure 4 and 6

We can now improve our algorithm by taking, from the best solutions ob-
tained by Maximal-C1P-Construction a consensus made of the join of these
solutions. More precisely:

Algorithm Approximate Seriation(M,κ)
Input A n×m {0, 1}-matrix M .

A positive integer κ < m
A positive integer Nb Trials

Output A PQ-Tree T representing the compatible permutations.
The set C of columns which have been taken into account.

begin
E ← ∅ ;
C ← ∅ ;
For i← 1 To Nb Trials Do

ζ ← random permutation on {1, . . . ,m ;
(T,C)← Maximal-C1P-Construction(M, ζ) ;
If Card(C) ≥ κ Then

E ← E ∪ {T} ;
C ← C ∪ C ;

//E = {Ti1 , Ti2 , . . . , Tip}
return Ti1 ∨ Ti2 ∨ . . . ∨ Tip , C;

end

This algorithm runs in O(Nb Trials×n ·m+p ·n3), where p is the number of
column sets of size ≥ κ having the C1P. The result is a consensus of all “good”
PQ-Trees, where “good” means that the PQ-Tree is built on at least κ columns
of the matrix. The value of κ must be determined by the user and depends on
the data. In next Section, we will apply our algorithm on a real data set and
we will see how to choose κ. Moreover, we will see that the use of the algorithm
may need other actions of the user.
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4 Experimentations

We have experimented our method on a recent archeological data set which
is shown in Table 1. This example shows an application where the seriation
problem consists in finding trends in the data. In the original paper, the author
uses principal component analysis to do that. Our method allows to achieve
similar results for binary data, with PQ-Trees replacing principal axes.

The first step is to find maximal sets M ′ of columns such that the table
induced by M ′ has the C1P. To do that, we have made 200 millions trials of
Maximal-C1P-Construction with random order of the columns.1 We found
1563 maximal sets, of size going from 5 to 11. Their distribution is shown in
Table 2.

Table 1. Cross table from Alberti[1]. The columns are indexed by object types and
the lines by the huts of the Punta Milazzese (Aeolian Archipelago, Italy) settlement.
We have indicated the presence/absence of objects in the different huts.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0 × × × × × × × × × × × ×
1 × × × × × × × × × × × × × × × × × ×
2 × × × × × × × × × × × × × × × × × × ×
3 × × × × × × × × × × × × × ×
4 × × × × × × × × × × × ×
5 × × × × × × × × ×
6 × × × × × × × × × × × × × × × ×
7 × × × × × × × × × × × × × × × × × × × × ×
8 × × × × × × × × × × × × × × × × × × × × × ×
9 × × × × × × × × × × × × × × × ×
10 × × × × × × × × × × × ×
11 × × × × × × × × × × × × × × × × × ×
12 × × × × × × × × ×
13 × × × × × × × × × × × × ×
14 × × ×
15 × × × × × × × ×
16 × × × ×
17 × × × × × × × ×
18 × × × × × × × × × × × × ×

Table 2. Size and number of maximal sets of columns from Table 1 having the C1P.

Number of columns 5 6 7 8 9 10 11

Number of maximal sets 1 28 294 505 514 209 12

At this step, we made a consensus between all the solutions with maximum
number of columns, i.e. we make Approximate Seriation run with κ = 11.
We obtained the PQ-Tree of Figure 8.

1 200 millions is very small when compared to the 31! possible orders of the column
set, but actually, we made 20 series of 10 millions of trials. For each of these 20 series,
no maximal set M ′ has been found after trial 50,000. In addition, the maximal sets
were the same for the 20 series. It is thus reasonable to suppose that we have found
all the maximal sets M ′.
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Fig. 8. Consensus PQ-Tree between the twelve maximal PQ-Trees built on 11 columns.

This PQ-Tree takes into account 22 columns, but it represents too many
permutations (informally speaking, the corresponding consensus is too “soft”).
In addition, since it corresponds to a consensus, we cannot build the associated
lattice, but all the possible concepts are intervals of the PQ-Tree.

We can remark that all the lines/huts are grouped together except lines 12,
14 and 16. So we put these lines appart from the others (technically, we filled
them with 0) and we determine the maximal sets of columns of the transformed
table which have the C1P (in exactly the same way that for the complete table).
We get the results of Table 3.

Table 3. Size and number of maximal sets of columns from Table 1 without lines 12,
14 and 16 having the C1P.

Number of columns 7 8 9 10 11 12 Total

Number of maximal sets 3 142 480 579 144 1 1349

The PQ-Tree built on the greatest maximal set of columns (the columns 2, 3,
4, 8, 10, 11, 14, 21, 22, 27, 28 and 30), and all lines except the lines 12, 14 and 16,
is shown on Figure 9. Since it is unique, it corresponds to a maximal sub-context
(having C1P) of Table 1, whose concept lattice is shown on Figure 10.

Fig. 9. The PQ-Tree built on 12 columns by putting appart lines 12, 14 and 16
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Fig. 10. Concept lattice from the PQ-Tree of Figure 9

This PQ-Tree takes into account only 12 columns, but it is possible to go
further that solution. Since their is only one maximal column set of size 12 hav-
ing C1P, we take the join of all PQ-Trees built on column sets of size ≥ 11 and
we get the PQ-Tree of Figure 11. This PQ-Tree represents a lot of permutations,
but we can see that lines 15 and 17 are appart from the others. So we put them
appart and we get the results of Table 4. The consensus of the PQ-Trees corre-

Table 4. Size and number of maximal sets of columns from Table 1 without lines 12,
14, 15, 16 and 17 having the C1P.

Number of columns 8 9 10 11 12 13 Total

Number of maximal sets 1 68 405 377 90 10 951

sponding with sets of size 13 is the one of Figure 12. This PQ-Tree takes into
account 22 columns (the columns 0, 1, 2, 3, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18,
19, 21, 25, 26, 27, 28 and 29) and represents 2,985,984,000 permutations, which
is 167,000 times less that the PQ-Tree of Figure 8.
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Fig. 11. Consensus PQ-Tree between the maximal PQ-Trees built on more than11
columns with lines 12, 14 and 16 appart.

Fig. 12. Consensus PQ-Tree between the PQ-Trees built on 13 columns with lines 12,
14, 15, 16 and 17 appart.

We have seen that one can associate, with each formal context, maximal
(in lines and columns) sub-contexts satisfying the C1P, that we could name
Seriation Formal Concepts. The intersection of two seriation formal concepts C1
and C2 is a seriation formal concept (its PQ-Tree is the meet of the two PQ-Trees
associated with C1 and C2). So, with any formal context, we can associate the
semi-lattice of its seriation formal concepts. At the present time, we are able to
determine all the seriation formal concepts containing a given set of lines. We
are working on an algorithm which computes all the seriation formal concepts
and generates the seriation formal lattice.

5 Conclusion

We have presented in this paper an interactive framework to solve the approx-
imate seriation problem for formal contexts. More precisely, this framework
uses some runs (3 for our example) of Approximate Seriation, which is in
O(Nb Trials×n ·m+p ·n3). We have used a very high value for Nb Trials (up
to 200 Millions, but 50,000 trials would have yield the same result). Moreover,
since only the large column sets having the C1P are interesting for us, a small
number of trials would have been sufficient (≈ 1000 in our case).

As usual in approximation problems, we are dealing with several criteria
which are important to determine the quality of the resulting PQ-Tree:
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– The number of columns taken into account (the largest possible).
– The number of removed lines (the smallest possible).
– The number of represented permutations (the smallest possible)
– The possibility to build a concept lattice from the solution.

If a formal context admits an exact solution to the seriation problem, then
its underlying structure can be represented by a PQ-Tree. If it is not the case, we
can build a consensus PQ-Tree which is a solution to the approximate seriation
problem but at the present time, we are not able to build an associated concept
lattice. Moreover, from this work appears the new notion of seriation formal
concepts and semilattices.
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Publishers (1980).

5. Booth K.S., Lueker G.S.: Testing for the Consecutive Ones Property, Interval
Graphs and Graph Planarity Using PQ-Tree Algorithm. Journal of Computer and
System Sciences 13, 335–379 (1976).

6. Caraux G., Pinloche S.: PermutMatrix: a Graphical Environment to Arrange Gene
Expression Profiles in Optimal Linear Order. Bioinformatics 21, 1280–1281 (2005).

7. Chen C.H., Hwu H.G., Jang W.J., Kao C.H., Tien Y.J., Tzeng S., Wu H.M.: Matrix
Visualisation and Information Mining. COMPSTAT’2004, Prague (2004).

8. Halperin, D.: Musical Chronology by Seriation. Computer and the Humanities 28,
13–18 (1994).

9. Petrie, W.M.F.: Sequences in Prehistoric Remains. Journal of the Anthropological
Institute of Great Britain and Ireland 29, 295–301 (1899).

10. Strehl, A., Ghosh, J.: Relationship-Based Clustering and Visualization for High-
Dimensional Data Mining. INFORMS Journal on Computing 15, 208–230 (2003).

The Approximate Seriation Problem in Formal Context Analysis 83





On Scaling of Fuzzy FCA to Pattern Structures

Aleksey Buzmakov1 and Amedeo Napoli2

1 National Research University Higher School of Economics, Perm, Russia
2 LORIA (CNRS – Inria – University of Lorraine), Vandœuvre-lès-Nancy, France

avbuzmakov@hse.ru, amedeo.napoli@loria.fr

Abstract. FCA is a mathematical formalism having many applications
in data mining and knowledge discovery. Originally it deals with binary
data tables. However, there is a number of extensions that enrich stan-
dard FCA. In this paper we consider two important extensions: fuzzy
FCA and pattern structures, and discuss the relation between them. In
particular we introduce a scaling procedure that enables representing a
fuzzy context as a pattern structure. Studying the relation between dif-
ferent extensions of FCA is of high importance, since it allows migrating
methods from one extension to another. Moreover, it allows for more
simple implementation of different extensions within a software.

Keywords: fuzzy FCA, pattern structures, scaling

1 Introduction

In this paper we deal with Formal Concept Analysis (FCA) and its extensions.
FCA is a mathematical formalism having many applications in data mining and
knowledge discovery. It starts from a binary table, a so-called formal context
(G,M, I), where G is the set of objects, M is the set of attributes, and I ⊆ G×M
is a relation between G and M , and proceeds to a lattice of formal concepts [1].
Fuzzy FCA is an extension of standard FCA that allows for fuzzy sets of objects
and attributes in order to express uncertainty.

Pattern structures is another extension of FCA that allows processing com-
plex data, e.g., graph or sequence datasets. It is a quite general framework and
the question if fuzzy FCA can be represented within Pattern Structures and vice
versa is still open. In this paper we make a step in this direction and study the
connections between pattern structures and fuzzy FCA.

We show how a fuzzy context can be scaled to a “Minimum Pattern Struc-
ture” (MnPS), a special kind of pattern structures, that is close to interval
pattern structures when considering numerical data. A scaling is needed, since
pattern structures deal with crisp sets of objects and, thus, fuzzy extents cannot
be expressed within the formalism of pattern structures. For such a kind of scal-
ing we add new objects to the fuzzy context that express objects with uncertain
membership in fuzzy sets, allowing expressing fuzzy sets of objects in the for-
malism of pattern structures. The resulting context is processed by MnPS. This
kind of scaling is applicable to fuzzy FCA based on residuated lattices, a special
kind of lattices expressing uncertain membership degrees in fuzzy sets.
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ISBN 978-5-600-01454-1, National Research University Higher School of Economics,
2016.



Table 1: A toy dataset of transactions for a supermaket and the related similarity
matrix.

(a) A dataset with 5 transactions.

i1 i2 i3 i4 i5 i6 i7
t1 x x x x x
t2 x x x x x
t3 x x x x
t4 x x x
t5 x x x x

(b) Similarity matrix.

t1 t2 t3 t4 t5
t1 1.000 0.714 0.857 0.429 0.429
t2 0.714 1.000 0.571 0.429 0.429
t3 0.857 0.571 1.000 0.286 0.714
t4 0.429 0.429 0.286 1.000 0.000
t5 0.429 0.429 0.714 0.000 1.000

The rest of the paper is organized as follows. Section 2 describes a running
example. Later, in Section 3 we introduce main definitions of fuzzy FCA and
pattern structures. The main contribution of this paper is located in Section 4,
where we introduce and discuss the scaling procedure of fuzzy FCA to pattern
structures. Finally, at the end of the paper we discuss some related works.

2 Running Example

Let us consider a toy dataset of transactions within a supermarket. It is shown
in Table 1a. Every row corresponds to a basket bought by a customer and every
attribute corresponds to an item that can be bought in the supermarket. A cross
in a cell (i, j) means that in the basket i there is the item j.

For making the example concrete, let us consider a clustering task. When
dealing with clustering one typically needs a similarity or a distance measure.
Such distance and similarity measures for the purpose of this example could be

the fraction of different items shared by two baskets Dist(t1, t2) =
|t′1+t′2|
|M | and

Sim(t1, t2) = 1 − Dist(t1, t2), where operation ’+’ between sets is an exclusive
OR (a so-called XOR or the symmetric difference, i.e., A+B = (A\B)∪(B\A)).
The similarity measure for any pair of transactions is shown in Table 1b. For
example, similarity between t1 and t2 is equal 0.714. These baskets are different
in two items i4 and i5. Thus Dist(t1, t2) = 2

7 = 0.286, where 7 is the number of
items in the supermarket, and Sim(t1, t2) = 1− Dist(t1, t2) = 0.714.

3 Definitions

Formal Concept Analysis (FCA) is a formalism for dealing with data mining and
knowledge discovery tasks. It starts from a binary context (G,M, I), where G is
the set of objects, M is the set of attributes and I ⊆ G×M is a relation between
G and M . However, in real tasks such a binary encoding is too limited and several
extensions of FCA were introduced. One of them is fuzzy FCA [2] that changes
crisp sets into fuzzy sets. By doing so one is able to encode uncertainty. Another
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extension is pattern structures [3] dealing with crisp sets of objects but replacing
binary sets of attributes with arbitrary descriptions allowing processing of many
kinds of datasets, e.g., graph or sequential datasets. Below we discuss these two
generalizations and their relation.

3.1 Fuzzy FCA

Fuzzy FCA works with fuzzy logic instead of crisp-logic, used in standard FCA.
There are several generalizations of FCA to the fuzzy case [2]. Here the approach
of Belohlavek is considered [4]. In fuzzy logic formulas can be valid up to a certain
degree. It means that the formula can be completely valid, completely invalid,
or between these two states. This fuzziness in fuzzy FCA is represented by a
so-called residuated lattice, where the top of the lattice > corresponds to “com-
pletely valid” state of the logic and the bottom ⊥ corresponds to “completely
invalid” state.

Definition 1. A Residuated Lattice is an algebra L = 〈L,∨,∧,⊗, , 0, 1〉, where
〈L,∨,∧, 0, 1〉 is a complete lattice; 〈L,⊗, 1〉 is a commutative monoid, i.e. ⊗ is
commutative, associative, and ∀a(a⊗ 1 = 1⊗ a = a);  and ⊗ form an adjiont
pair, i.e., a⊗ b ≤ c⇔ a ≤ b c.

For the following, L refers to the set of elements of some residuated lattice
and L for the residuated lattice itself. Such a lattice naturally appears when
we want to introduce some degree of uncertainty. In the running example we
introduced a similarity measure for any two objects. The values of the similarity
can be considered as elements of the residuated lattice [0, 1], a linear order of
real numbers. The lattice operators x ∧ y and x ∨ y are given by min(x, y) and
max(x, y) correspondingly. The operations ⊗ and  are “fuzzy conjunction”
and “fuzzy implication”.

An important residuated lattice based on a linearly ordered set is Göodel
residuated lattice, which is used in examples of this paper. In Göodel residuated
lattices the fuzzzy implication is defied as following:

a b =

{
> a ≤ b
b a > b

(1)

In the crisp logic the implication > → ⊥ is not valid, i.e., > → ⊥ = ⊥,
while other three possible implications are valid, i.e., > → > = >, ⊥ → > = >,
and ⊥ → ⊥ = >. The formula (1) generalizes this behavior. If the premise is
less certain than the conclusion, then the implication is valid (>), otherwise the
validity of the implication is equal to the certainty of the conclusion.

In Definition 1 it is required that the fuzzy implication is adjoint (related)
with an ⊗-operation. For Göodel residuated lattices the fuzzy implication is
adjoint with a⊗ b = min(a, b). Indeed, b c ≥ c according to (1). If a⊗ b ≤ c,
i.e., min(a, b) ≤ c and min(a, b) = a, then a ≤ c ≤ b  c. If min(a, b) = b, then
b ≤ c and a ≤ 1 = b c. Accordingly one can check that a ≤ b c⇒ a⊗b ≤ c.
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⊗-operation is called fuzzy conjunction since it is a generalization of the crisp
conjunction that is valid only if both arguments are valid, i.e., >⊗> = >.

A fuzzy dataset is encoded by means of a fuzzy context as defined below.

Definition 2. A Fuzzy Relation between two sets X and Y is a function I :
X × Y → L, for some residuated lattice L.

Definition 3. A Fuzzy Context is a triple (X,Y, I) where X is a set of objects,
Y is a set of attributes, I is a fuzzy relation, I : X × Y → L.

Let us consider Table 1b as an example. It describes a fuzzy context where
the set of attributes and the set of objects are the same. The cells of this table
are similarity measures between objects. In this case the residuated lattice is
formed as a linear order on similarity values.

Let us now define what is a fuzzy set, the next building block of fuzzy FCA.

Definition 4. Given a crisp set X, a fuzzy set A is a function A : X → L,
mapping each element of the crisp set to an element of the residuated lattice. A
fuzzy set is denoted as {li∈L/xi∈X}, where

⋃
xi = X, and for simplicity elements

A(x ∈ X) = ⊥ are omitted.

For example, {1/t2 ,0.571 /t3} is a fuzzy set. Object t2 belongs to this set
entirely while object t3 belongs only partially. The other items do not belong to
this set, i.e., A(g) = ⊥. Given our similarity measure we know that 1 ≡ > and
0 ≡ ⊥.

In the fuzzy case of FCA one also defines Galois connections between a fuzzy
set of objects A : X → L and a fuzzy set of attributes B : Y → L.

Definition 5 (Derivation Operators). Given a fuzzy context (X,Y, I), a
fuzzy set of objects A : X → L, a fuzzy set of attributes B : Y → L, the
fuzzy membership for object x ∈ X and for attribute y ∈ Y in the corresponding
sets A↑ and B↓ are as follows:

A↑(y) =
∧

∀x∈X
(A(x) I(x, y))

B↓(x) =
∧

∀y∈Y
(B(y) I(x, y))

Let us illustrate the derivation operators. First let us introduce the fuzzy
set of interest A = {1.0/t1 ,1.0 /t2} (all other objects do not belong to this set,
i.e., they have “0” membership in that set). Then we would like to find A↑.
To compute A↑ we should compute A(x)  I(x, y) for every object x ∈ X
and for every attribute y ∈ Y (in the example we have a particular case where
X ≡ Y ). According to our set of interest A(x) is either 1 or 0. For the function
I(x, y), the first argument varies from row to row and the second argument varies
from column to column. The result of these operations is shown in Table 2. For
example, the result of computing A(t1)  I(t1, t2) is given in the first row
second column cell. The last row of that table shows the resulting fuzzy set of
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Table 2: Example of computations for {1.0/t1 ,1.0 /t2}↑.
y t1 t2 t3 t4 t5

(A(t1) = 1) I(t1, y) 1.000 0.714 0.857 0.429 0.429
(A(t2) = 1) I(t2, y) 0.714 1.000 0.571 0.429 0.429
(A(t3) = 0) I(t3, y) 1 1 1 1 1
(A(t4) = 0 I(t4, y) 1 1 1 1 1
(A(t5) = 0) I(t5, y) 1 1 1 1 1

{1.0/t1 ,1.0 /t2}↑ 0.714 0.714 0.571 0.429 0.429

Table 3: Example of computations for {1.0/t1 ,1.0 /t2}↑↓.
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↓

t1 1 1 1 1 1 1
t2 1 1 1 1 1 1
t3 1 0.571 1 0.286 1 0.286
t4 0.429 0.429 0.286 1 0 0
t5 0.429 0.429 1 0 1 0

the attributes (more precisely their membership degree). The value of the last
row can be computed by applying ∧ operator of the residuated lattice to the
whole column, and in the case of our example ∧ corresponds to the minimum.
As the result of A↑ we obtained

B = A↑ = {0.714/t1 ,0.714 /t2 ,0.571 /t3 ,0.429 /t4 ,0.429 /t5}.

Let us now apply the derivation operator to the set A↑. To find B↓ = A↑↓

we need to compute B(x)  I(x, y). The result of these operations is shown
in Table 3 and should be read in the same way as Table 2. The last column
corresponds to the result of B↓. Then we have:

{1.0/t1 ,1.0 /t2}↑↓ = {1.0/t1 ,1.0 /t2 ,0.286 /t3}

It can be checked that A↑↓↑ = B and A↑↓↑↓ = B↓ = A↑↓. These properties
of the derivation operators defines fuzzy concepts [2].

Definition 6. A fuzzy concept is a pair (A,B), where A is a fuzzy set of objects,
A : X → L and B is a fuzzy set of attributes B : Y → L, such that A↑ = B and
A = B↓.

In particular in the previous example we have found the concept:

(
{1.0/t1 ,1.0 /t2 ,0.286 /t3}, {0.714/t1 ,0.714 /t2 ,0.571 /t3 ,0.429 /t4 ,0.429 /t5}

)
. (2)
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This concept can be interpreted in the following way. Every object from the
extent is similar (with a certain degree of confidence) to an object from the
intent by at least the corresponding membership degree, e.g., object t1 is similar
to object t2 with confidence 1 (taken from the left membership degree of t1) by
at least 0.714 (taken form the right membership degree of t2), while object t3
is similar with t2 by at least 0.714 with confidence only 0.286. In particular if
on the extent side we consider objects with membership degree of 1 (>), e.g., t1
and t2 then we would find the similarity of all these objects to the rest of the
objects, thus, providing a good description for a cluster around these objects.

The set of fuzzy concepts is ordered such that (A,B) ≤ (X,Y ) iff A ⊆ X (or
dually B ⊇ Y ) forming a complete lattice, called fuzzy concept lattice.

3.2 Pattern Structures

A concept lattice L(G,M, I) is constructed from a (binary) formal context
(G,M, I) [1]. For non-binary data, such as sequences or graphs, lattices can
be constructed in the same way using pattern structures [3].

Definition 7. A pattern structure P is a triple (G, (D,u), δ), where G,D are
sets, called the set of objects and the set of descriptions, and δ : G→ D maps an
object to a description. Respectively, (D,u) is a meet-semilattice on D w.r.t. u,
called similarity operation such that δ(G) := {δ(g) | g ∈ G} generates a complete
subsemilattice (Dδ,u) of (D,u).

For illustration, let us represent standard FCA in terms of pattern structures.
The set of objects G is preserved, the semilattice of descriptions is (℘(M),∩),
where ℘(M) denotes the powerset of the set of attributes M , a description is
a subset of attributes and ∩ is the set-theoretic intersection. If x = {a, b, c}
and y = {a, c, d} then x u y = x ∩ y = {a, c}, and δ : G → ℘(M) is given by
δ(g) = {m ∈M | (g,m) ∈ I}.

Derivation operator for a pattern structure (G, (D,u), δ), relating sets of
objects and descriptions, is defined as follows:

A� :=
l

g∈A
δ(g), for A ⊆ G

d� := {g ∈ G | d v δ(g)}, for d ∈ D

Given a subset of objects A, A� returns the description which is common
to all objects in A. Given a description d, d� is the set of all objects whose
description subsumes d. The natural partial order (or subsumption order between
descriptions)v onD is defined w.r.t. the similarity operation u: c v d⇔ cud = c
(in this case we say that c is subsumed by d). In the case of standard FCA the
natural partial order corresponds to the set-theoretical inclusion order, i.e., for
two sets of attributes x and y, x v y ⇔ x ⊆ y.

Definition 8. A pattern concept of a pattern structure (G, (D,u), δ) is a pair
(A, d), where A ⊆ G and d ∈ D such that A� = d and d� = A; A is called the
pattern extent and d is called the pattern intent.
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As in standard FCA, a pattern concept corresponds to the maximal set of
objects A whose description subsumes the description d, where d is the maximal
common description of objects in A. The set of all pattern concepts is partially
ordered w.r.t. inclusion of extents or, dually, w.r.t. subsumption of pattern in-
tents within a concept lattice, these two anti-isomorphic orders form a lattice,
called pattern lattice.

Let us return to the example in Table 1b. Let us consider a special case of
pattern structures, a so-called Minimum Pattern Structure (MnPS), that is close
to interval pattern structures [5]. MnPS is based on the minimum of two numbers
as the similarity operation rather than on the convex hull of two intervals. We will
show that MnPS is well adapted for formalizing fuzzy FCA within the framework
of pattern structures.

In Table 1b we have the set G as both, a set of objects and a set of attributes.
Let us first consider only one attribute. Then the set of descriptions D is just
the interval [0, 1] of real numbers and the similarity operation between two de-
scriptions (numbers) is the minimum. When there are several attributes, the set
of descriptions is just an element of R|N |, where R is the set of real numbers and
N is the set of numerical attributes.

In particular, in our example the set of objects is G. The set D of descriptions
is R5, since we have 5 numerical attributes. The mapping function δ is given in
Table 1b, e.g., δ(t2) = 〈0.714, 1, 0.571, 0.429, 0.429〉. The similarity operation is
the component-wise minimum, e.g., the similarity between descriptions of t2 and
t3 is given by

{t2}� u {t3}� =

= 〈0.714, 1, 0.571, 0.429, 0.429〉 u 〈0.857, 0.571, 1, 0.286, 0.714〉 =

= 〈min(0.714, 0.857),min(1, 0.571),

min(0.571, 1),min(0.429, 0.286),min(0.429, 0.714)〉
= 〈0.714, 0.571, 0.571, 0.286, 0.429〉

4 From Fuzzy FCA to Pattern Structures with Scaling

Let us now discuss a possible connection between fuzzy FCA and pattern struc-
tures. A certain connection was already proposed in [6]. In particular, every
crisply closed subset of objects is an extent of an interval pattern structure.
Here, crisply closed subset of objects means that the fuzzy closure of this set
contains no additional objects g with a membership degree coinciding with the
top of the residuated lattice, i.e., A(g) = >.

Here, we discuss a loss-less scaling from a fuzzy formal context (X,Y, I) to
a pattern structure, that allows a more efficient processing than the loss-less
scaling to crisp formal context and highlights another connection between fuzzy
FCA and pattern structures.

Since pattern structures can deal with any kind of descriptions, they should
take into account fuzziness on the intent side. However, for the extent side it
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Table 4: Scaling of the fuzzy context from table Table 1b to a number-minimum
pattern structure.

t1 t2 t3 t4 t5
〈t1, 1.000〉 1.000 0.714 0.857 0.429 0.429
〈t1, 0.857〉 1.000 0.714 1.000 0.429 0.429
〈t1, 0.714〉 1.000 1.000 1.000 0.429 0.429
· · ·
〈t2, 1.000〉 0.714 1.000 0.571 0.429 0.429
· · ·
〈t2, 0.571〉 1.000 1.000 1.000 0.429 0.429
· · ·
〈t3, 1.000〉 0.857 0.571 1.000 0.286 0.714
· · ·

t1 t2 t3 t4 t5
· · ·
〈t3, 0.429〉 1.000 1.000 1.000 0.286 1.000
· · ·
〈t4, 1.000〉 0.429 0.429 0.286 1.000 0.000
· · ·
〈t4, 0.286〉 1.000 1.000 1.000 1.000 0.000
· · ·
〈t5, 1.000〉 0.429 0.429 0.714 0.000 1.000
· · ·
〈t5, 0.286〉 1.000 1.000 1.000 1.000 0.000

is not so straightforward, since pattern structures deal only with crisp sets of
objects. Accordingly, we should somehow “scale” object sets, in order to express
fuzzy sets of objects.

4.1 On expressing Fuzziness on the Extent Side of Pattern
Structures

A natural way is to scale the object set X from a fuzzy context (X,Y, I) by sub-
stituting it with the direct product of the crisp set of objects and the residuated
lattice (the degrees of confidence), X ×L. For every scaled object from this new
set, we should compute a description. Let us consider the scaled description for
the pair 〈x, l〉, where x ∈ X is an object and l ∈ L is the membership degree of
this object. The description of this element should correspond to the description
of the fuzzy set {l/x}, since 〈x, l〉 is “a model of” this fuzzy set.

The derivation operator {l/x}↑(y ∈ Y ) = {l/x}(x)  I(x, y) = l  I(x, y)
gives the description of the element 〈x, l〉 and allows computing the fuzzy relation
Ĩ between X × L and Y .

Let us return to our example. Let T be the set of transaction IDs. The scaled
fuzzy context is partially shown in Table 4. It consist of |T | · |L| = 5 · 7 =
35 objects, 5 attributes and the fuzzy relation between them. Every subset of
objects corresponds to a fuzzy set of objects by joining corresponding fuzzy
representation for every object. This is made precise in the next subsection.

4.2 Relation between fuzzy and pattern extents and intents

Let (X,Y, I) be a fuzzy context with a residuated lattice L and (G,D, δ) be
a pattern structure, where G is the scaled set of objects G = X × L. Let us
formally define the correspondence between fuzzy sets of objects and scaled sets
of objects.

Definition 9 (Object sets equivalence). A fuzzy object set A : X → L is
equivalent to a scaled object set N ⊆ G, denoted as A ∼ N , when

(∀〈x, l〉 ∈ G)(A(x) ≥ l⇔ 〈x, l〉 ∈ N)
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Then object sets are equivalent when all scaled objects with membership
degree smaller than or equal to A(x) (w.r.t. the residuated lattice) are present in
the scaled object set. For example, the fuzzy set {0.286/t1 ,0.429 /t4} is equivalent
to the scaled set {〈t1, 0.286〉, 〈t4, 0.429〉, 〈t4, 0.286〉}3, where 〈g, l〉 ∈ X × L is an
element of the direct product of the set of objects and the residuated lattice.

Given a scaled fuzzy context (X × L, Y, Ĩ) we can process it as a minimum
pattern structure (X ×L,D, δ), where D = L|Y | is a tuple of elements from the
residuated lattice L and the semilattice operation is given by the component-
wise infimum of L. In particular, we have discussed that for the numerical case,
the similarity operation is the component-wise minimum. Indeed, fuzziness on
the extent side is expressed by means of scaled object sets, and fuzziness on
the intent side is directly processed by the pattern structure. Let us discuss the
correspondence between fuzzy intents and patterns.

Definition 10. A fuzzy attribute set B : Y → L is equivalent to a pattern
d ∈ D, written as B ∼ d, iff (∀y ∈ Y )(B(y) = d(y)), where d(y) is the value of
the tuple d corresponding to the attribute y.

A fuzzy attribute set B is equivalent to a pattern d iff for any attribute y ∈ Y ,
the membership degree B(y) in the fuzzy set is equal to the value in the pattern
tuple in the position corresponding to the attribute y, e.g., the pattern 〈0.5, 0.7〉
corresponds to the fuzzy set {0.5/y1 ,0.7 /y2}.

It should be noticed that the definition of equality between fuzzy sets of
attributes and patterns is a bijection, while there are scaled sets of objects that
have no equivalent fuzzy set of objects. Indeed, there is no equivalent fuzzy
set to the scaled set {〈t1, 0.286〉, 〈t4, 0.429〉}, since according to Definition 9 all
〈x, l〉 such that A(x) ≥ l should be in this set. And since we have 〈t4, 0.429〉 in
this set, we should also have 〈t4, 0.286〉 in the set. We can notice here that in
our particular example the residuated lattice has only the element 0.286 that is
smaller than 0.429. By contrast, if we take the real interval [0, 1], then all points
smaller than 0.429 should be added to the scaled set.

Let us define equivalence classes of scaled sets of objects in order to have a
bijection between the equivalence classes and the fuzzy sets of objects.

Definition 11. A scaled object set N ⊆ G is complete iff a scaled object 〈x ∈
X, l ∈ L〉 belongs to N , then (∀l∗ ∈ L, l∗ ≤ l)〈x, l∗〉 ∈ N .

It can be checked that for any scaled object set N ⊆ G there is only one
minimal complete superset of N . Let us denote this complete set by φ(N).

For example, the set N = {〈t1, 0.286〉, 〈t4, 0.429〉} is not complete, since the
scaled object 〈t4, 0.286〉 is not in N .

By contrast, Nc = φ(N) = {〈t1, 0.286〉, 〈t4, 0.429〉, 〈t4, 0.286〉} is complete.
Moreover, it can be seen that this set is equivalent to {0.286/t1 ,0.429 /t4} according
to Definition 9. Furthermore, it can be checked, that any complete scaled set of
objects is equivalent to a fuzzy set and accordingly the function φ(·) defines the
required equivalence classes.

3 We notice that 〈t4, 0.429〉 and 〈t4, 0.286〉 are two different scaled objects.
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4.3 Isomorphism of fuzzy and pattern lattices

In this subsection we show that our scaling procedure is correct. And the result-
ing pattern lattice and the fuzzy lattice are isomorphic. Moreover, the extents
and intents of these lattices are connected by means of Definitions 9 and 10.
The first lemma (a standard property of residuated lattices) shows that fuzzy
implications are related if their premises are comparable.

Lemma 1 If there are l1, l2, l ∈ L such that l1 ≤ l2 then

l1  l ≥ l2  l

Proof. Let l2  l = r then according to Def. 1:

(∀f ∈ L, f ≤ r)(f ⊗ l2 ≤ l)⇔ (∀f ≤ r)(l2 ⊗ f ≤ l)
⇔ (∀f ≤ r)(f  l ≥ l2 ≥ l1)⇔ (∀f ≤ r)(l1  l ≥ f)⇒ l1  l ≥ r.

Let us now show that starting from two (fuzzy and scaled) equivalent sets of
objects the resulting descriptions are also equivalent.

Lemma 2 Given a fuzzy set of objects A : X → L and a scaled set of objects
N ⊆ G, such that A ∼ φ(N), we have A↑ ∼ N�.
Proof. Consider the value of the pattern tuple N� corresponding to an attribute
y: N�(y) =

(d
∀g∈N δ(g)

)
(y). The semilattice operation of the minimum pattern

structure corresponds to the infimum in the residuated lattice:

N�(y) =
∧

∀〈x,l〉∈N
Ĩ(〈x, l〉, y) =

∧

∀〈x,l〉∈N
l I(x, y) =

=
( ∧

∀x∈X
A(x) I(x, y)

)
∧
( ∧

∀〈x,l〉∈N :l<A(x)

l I(x, y)
)

=

=
Lemma 1

( ∧

∀x∈X
A(x) I(x, y)

)
= A↑(y).

Finally let us show, that starting from equivalent fuzzy set of attributes and
pattern, the sets of objects given by the derivation operators are also equivalent.

Lemma 3 Given a fuzzy set of attributes B : Y → L and a pattern d ∈ D, such
that B ∼ d, we have B↓ ∼ d�.
Proof. Let us study when object 〈x ∈ X, l ∈ L〉 can be included into d�.

〈x ∈ X, l ∈ L〉 ∈ d� ⇔ δ(〈x, l〉) w d⇔ (∀y ∈ Y )(δ(〈x, l〉)(y) ≥ d(y))

⇔ (∀y ∈ Y )(l I(x, y) ≥ d(y))

⇔ (∀y ∈ Y )(d(y)⊗ l ≤ I(x, y))⇔ (∀y ∈ Y )(l ⊗ d(y) ≤ I(x, y))

⇔ (∀y ∈ Y )(d(y) I(x, y) ≥ l)
⇔ (∀y ∈ Y )(B(y) I(x, y) ≥ l)
⇔ l ≤

∧

∀y∈Y
B(y) I(x, y)

⇔ l ≤ B↓(x)
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Thus an object 〈x, l〉 ∈ G is included in d� iff B↓(x) ≥ l which is the definition
of the equality of a fuzzy set of objects and a scaled set of objects.

Theorem 1 The fuzzy lattice Lf corresponding to the context (X,Y, I) and the
pattern lattice Lp corresponding to the pattern structure (G,D, δ), where G =
X × L, D = L|Y | with component-wise minimum as the semilattice operation,
and δ(〈x ∈ X, l ∈ L〉)(y) = l  I(x, y) are isomorphic. The extents and intents
of the corresponding concepts are equivalent.

Proof. Let us show, that for any concept in one lattice there is a concept in the
other lattice with equivalent extents and intents. Lemmas 2 and 3 are symmetric
w.r.t. the type of extents and intents. Accordingly, we can just denote by L1

and L2 fuzzy and pattern lattices and prove the theorem in both directions.
If we take an intent i1 from L1, we can always find an equivalent pattern p
(for simplicity, fuzzy set of attributes is also referred as a pattern). Applying
appropriate derivation operators to i1 and p we get equivalent sets of objects
according to Lemma 3. Both sets are closed and are extents of L1 and L2.
Applying derivation operators to the extents we get equivalent intents according
to Lemma 2. Thus, for any concept of L1 there is an equivalent concept in L2

and vice versa.

4.4 Application of the Theorem

Let us demonstrate how the theorem works in the running example. The proof
is based on search of concepts with equivalent extents and intents. Let us find
the scaled concept corresponding to the fuzzy concept (2). In the theorem we
start from the intent. It can be seen that

{0.714/t1 ,0.714 /t2 ,0.571 /t3 ,0.429 /t4 ,0.429 /t5} ∼ 〈0.714, 0.714, 0.571, 0.429, 0.429〉. (3)

For the moment we are not sure that the pattern on the right side is an intent.
Accordingly we apply derivation operators to the left and right hand sides and
according to Lemma 3 the resulting object sets should be equivalent. Indeed,

{1/t1 ,1 /t2 ,0.286/t3} ∼
∼ {〈t1, 1〉, 〈t1, 0.857〉, . . . , 〈t1, 0.286〉, 〈t2, 1〉, . . . 〈t2, 0.286〉, 〈t3, 0.286〉}.

On the left side we have the extent of the concept, while on the right side we
have a closed scaled set of objects, since the result of the derivation operator is
always closed. If we apply the derivation operators to these two sets of objects,
we have equivalent patterns according to Lemma 2. In fact we have exactly the
patterns from (3). Thus, we have found the scaled concept corresponding to
the fuzzy concept. Similarly, we can start from a scaled concept and find the
corresponding fuzzy concept.
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5 Discussion and Conclusion

In this paper we highlighted the relation between fuzzy FCA and pattern struc-
tures. Our result is related to the work of [6]. Indeed, the authors have shown
that extents of crisply closed fuzzy concepts are also closed in the interval pat-
tern structure. In our work, we used the Minimum Pattern Structure that can
be considered as a projection of the interval pattern structure. Indeed, let us
consider the following component-wise projection. If [a, b] is an interval, than
the projection ψ([a, b]) = [a,+ inf] changes the IPS to the MnPS. Accordingly
the set of extents of the MnPS is the subset of the extents of the IPS. However,
in our work we have shown, that the MnPS lattice is isomorphic to a fuzzy lat-
tice under the scaling. It can be seen, that if we do not apply the scaling we
generate exactly the lattice of the crisply generated fuzzy concepts. And this set
of concepts is the subset of the concepts of the corresponding IPS.

The introduced scaling procedure can be useful, first, for migrating results
between pattern structure community and fuzzy FCA community, and, second,
for efficient implementation of software dealing with both pattern structures and
fuzzy FCA at the same time.

Finally, we notice that such a work naturally raises (as it was already men-
tioned in [6]) the question of a “two-sided” pattern structure as a generalization
of both pattern structures and fuzzy FCA. Some suggestions going in this direc-
tions can be found in the work of Soldano et al. [7], where the authors discussed
projections applied to the extent side.
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Abstract. We continue our study of the characterization of existence of
adjunctions (isotone Galois connections) whose codomain is insufficiently
structured. This paper focuses on the fuzzy case in which we have a fuzzy
ordering ρA on A and a surjective mapping f : 〈A,≈A〉 → 〈B,≈B〉 com-
patible with respect to the fuzzy equivalences ≈A and ≈B . Specifically,
the problem is to find a fuzzy ordering ρB and a compatible mapping
g : 〈B,≈B〉 → 〈A,≈A〉 such that the pair (f, g) is a fuzzy adjunction.

1 Introduction

Adjunctions, also called isotone Galois connections, are often used in mathemat-
ics in order to relate two (apparently disparate) theories, allowing for mutual
cooperative advantages.

A number of papers are being published on the applications (both theoret-
ical and practical) of Galois connections and adjunctions. One can find mainly
theoretical papers [10,15,17,23], as well as general applications to computer sci-
ence, some of them dated more than thirty years ago [21] and, obviously, some
more recent works on specific applications, such as programming [16, 22], data
analysis [26], or logic [18,25].

The study of new properties of Galois connections found an important niche
in the theory of Formal Concept Analysis (FCA) and its generalizations, since
the derivation operators which are used to define the formal concepts actually
are a Galois connection. Just to name a few, Lumpe and Schmidt [20] consider
adjunctions and their concept posets in order to define a convenient notion of
morphism between pattern structures; Bělohlávek and Konečný [3] stress on the
“duality” between isotone and antitone Galois connections in showing a case
of mutual reducibility of the concept lattices generated by using each type of
connection; Denniston et al [8] show how new results on Galois connection are
applied to formal concept analysis, etc.
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It is certainly important to detect when an adjunction (or Galois connection)
exists between two structured sets, and this problem has been already studied
in the abstract setting of category theory. A different problem arises when either
the domain or the codomain is unstructured: the authors studied in a previous
work [14] the existence and construction of the right adjoint to a given mapping
f in the general framework in which a mapping f : A→ B from a (pre-)ordered
set A into an unstructured set B is considered, aiming at characterizing those
situations in which B can be (pre-)ordered and an isotone mapping g : B → A
can be built such that the pair (f, g) is an adjunction. The general approach
to this problem adopted in [14] was to consider the canonical decomposition
of f with respect to the kernel relation, and consider the three resulting cases
separately: the projection on the quotient, the isomorphism between the quotient
and the image, and the final inclusion of the image into the codomain. The
really important parts of the proof were the first and the last ones, since the
intermediate part is straightforward.

We consider this work as an extension of the previous problem to a fuzzy
framework, in which several papers on fuzzy Galois connections or fuzzy adjunc-
tions have been written since its introduction by Bělohlávek in [1]; consider for
instance [4, 9, 19, 27] for some recent generalizations. Some authors have intro-
duced alternative approaches guided by the intended applications: for instance,
Shi et al [24] introduced a definition of fuzzy adjunction for its use in fuzzy
mathematical morphology.

In this paper, on the one hand, we will consider mappings compatible with
fuzzy equivalences ≈A and ≈B defined on A and B respectively and, on the
other hand, we will just focus on the first part of the canonical decomposition.
This means that, up to isomorphism, we have a fuzzy ordering ρA on A and a
surjective mapping f : 〈A,≈A〉 → 〈B,≈B〉 compatible with respect to the fuzzy
equivalences ≈A and ≈B . Specifically, the problem is to characterize when there
exists a fuzzy ordering ρB and a compatible mapping g : 〈B,≈B〉 → 〈A,≈A〉
such that the pair (f, g) is a fuzzy adjunction.

2 Preliminaries

The most usual underlying structure for considering fuzzy extensions of Galois
connections is that of complete residuated lattice, L = (L,≤,>,⊥,⊗,→). As
usual, supremum and infimum will be denoted by ∨ and ∧ respectively. An L-
fuzzy set in the universe U is a mapping X : U → L where X(u) means the
degree in which u belongs to X. Given X and Y two L-fuzzy sets, X is said to
be included in Y , denoted as X ⊆ Y , if X(u) ≤ Y (u) for all u ∈ U .

An L-fuzzy binary relation on U is an L-fuzzy subset of U × U , that is
R : U × U → L, and it is said to be:

– Reflexive if R(a, a) = > for all a ∈ U .
– ⊗-Transitive if R(a, b)⊗R(b, c) ≤ R(a, c) for all a, b, c ∈ U .
– Symmetric if R(a, b) = R(b, a) for all a, b ∈ U .
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From now on, when no confusion arises, we will omit the prefix “L-”.

Definition 1. A fuzzy preordered set is a pair A = 〈A, ρA〉 in which ρA is a
reflexive and ⊗-transitive fuzzy relation on A.

Definition 2. Let A = 〈A, ρA〉 be a fuzzy preordered set. The extensions to the
fuzzy setting of the notions of upset and downset of an element a ∈ A are
defined by a↑, a↓ : A→ L where

a↓(u) = ρA(u, a) and a↑(u) = ρA(a, u) for all u ∈ A.

Definition 3. An element m ∈ A is a maximum for a fuzzy set X : A→ L if

1. X(m) = > and
2. X ⊆ m↓, i.e., X(u) ≤ ρA(u,m) for all u ∈ A.

The definition of minimum is similar.

Since the maximum (respectively, minimum) of a fuzzy set needs not be
unique, we will include special terminology for them: the crisp set of maxima,
respectively minima, for X will be denoted p-max(X), respectively p-min(X).

Definition 4. Let A = 〈A, ρA〉 and B = 〈B, ρB〉 be fuzzy preordered sets.

1. A mapping f : A→ B is said to be isotone if ρA(a1, a2) ≤ ρB(f(a1), f(a2))
for all a1, a2 ∈ A.

2. A mapping f : A → A is said to be inflationary if ρA(a, f(a)) = > for all
a ∈ A.
Similarly, f is deflationary if ρA(f(a), a) = > for all a ∈ A.

From now on, we will use the following notation: For a mapping f : A→ B and
a fuzzy subset Y of B, the fuzzy set f−1(Y ) is defined as f−1(Y )(a) = Y (f(a)),
for all a ∈ A.

The definition of fuzzy adjunction given in [11] was the expected extension
of that in the crisp case. Namely,

Definition 5. Let A = 〈A, ρA〉, B = 〈B, ρB〉 be fuzzy orders, and two mappings
f : A → B and g : B → A. The pair (f, g) forms a fuzzy adjunction between
A and B, denoted (f, g) : A � B if, for all a ∈ A and b ∈ B, the equality
ρA(a, g(b)) = ρB(f(a), b) holds.

As in the crisp case, there exist alternative definitions which are summarized
in the theorem below:

Theorem 1 (See [11]). Let A = 〈A, ρA〉, B = 〈B, ρB〉 be two fuzzy preordered
sets, respectively, and f : A→ B and g : B → A be two mappings. The following
statements are equivalent:

1. (f, g) : A� B.
2. f and g are isotone, g ◦ f is inflationary, and f ◦ g is deflationary.
3. f(a)↑ = g−1(a↑) for all a ∈ A.
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4. g(b)↓ = f−1(b↓) for all b ∈ B.

5. f is isotone and g(b) ∈ p-max f−1(b↓) for all b ∈ B.

6. g is isotone and f(a) ∈ p-min g−1(a↑) for all a ∈ A.

In the rest of this section, we introduce the preliminary definitions and results
needed to establish the new structure we will be working on.

Definition 6. A fuzzy relation ≈ on A is said to be a:

– Fuzzy equivalence relation if ≈ is a reflexive, ⊗-transitive and symmetric
fuzzy relation on A.

– Fuzzy equality if ≈ is a fuzzy equivalence relation satisfying that ≈(a, b) =
> implies a = b, for all a, b ∈ A.

We will use the infix notation for a fuzzy equivalence relation, that is, we will
write a1 ≈ a2 instead of ≈(a1, a2).

Definition 7. Given a fuzzy equivalence relation ≈ : A × A → L, the equiv-
alence class of an element a ∈ A is the fuzzy set [a]≈ : A → L defined by
[a]≈(u) = (a ≈ u) for all u ∈ A.

Remark 1. Note that [x]≈ = [y]≈ if and only if (x ≈ y) = >: on the one hand, if
[x]≈ = [y]≈, then (x ≈ y) = [x]≈(y) = [y]≈(y) = >, by reflexivity; conversely, if
(x ≈ y) = >, then [x]≈(u) = (x ≈ u) = (y ≈ x)⊗ (x ≈ u) ≤ (y ≈ u) = [y]≈(u),
for all u ∈ A; the other inequality follows similarly.

Definition 8 (See [6]). Given a fuzzy equivalence relation ≈A on A, a fuzzy
binary relation ρA : A×A→ L is said to be

– ≈A-reflexive if (a1 ≈A a2) ≤ ρA(a1, a2),

– ⊗-≈A-antisymmetric if ρA(a1, a2)⊗ ρA(a2, a1) ≤ (a1 ≈A a2),

for all a1, a2 ∈ A.

Definition 9. A triplet A = 〈A,≈A, ρA〉 in which ≈A is a fuzzy equivalence
relation and ρA is ≈A-reflexive, ⊗-≈A-antisymmetric and ⊗-transitive will be
called ⊗-≈A- fuzzy preordered set or fuzzy preorder with respect to ≈A.

Observe that a fuzzy preorder relation wrt ≈A is a fuzzy preorder relation
because > = (a ≈A a) ≤ ρA(a, a), therefore ρA(a, a) = >, for all a ∈ A.

Definition 10. Let ≈A and ≈B be fuzzy equivalence relations on the sets A and
B, respectively. A mapping f : A → B is said to be compatible with ≈A and
≈B if (a1 ≈A a2) ≤ (f(a1) ≈B f(a2)) for all a1, a2 ∈ A.

100 Inma P. Cabrera et al.



3 On fuzzy adjunctions wrt fuzzy equivalences

The main idea to extend the notion of fuzzy adjunction to take into account
fuzzy equivalences, namely, a fuzzy adjunction between A = 〈A,≈A, ρA〉 and
B = 〈B,≈B , ρB〉 is, of course, to require f and g to be compatible mappings
and include the necessary adjustments due to the use of fuzzy equivalences. A
reasonable possibility is the following:

Definition 11. Let A = 〈A,≈A, ρA〉 and B = 〈B,≈B , ρB〉 be two fuzzy pre-
ordered sets wrt ≈A and ≈B, respectively. Let f : A→ B and g : B → A be two
mappings which are compatible with ≈A and ≈B. The pair (f, g) is said to be a
fuzzy adjunction between A and B if the following conditions hold

(A1) (a1 ≈A a2)⊗ ρA(a2, g(b)) ≤ ρB(f(a1), b)
(A2) (b1 ≈B b2)⊗ ρB(f(a), b1) ≤ ρA(a,g(b2))

for all a, a1, a2 ∈ A and b, b1, b2 ∈ B.

Surprisingly, it turns out that Definitions 5 and 11 are very closely related,
in fact, they are equivalent up to compatibility of the mappings.

Theorem 2. Let A = 〈A,≈A, ρA〉 and B = 〈B,≈B , ρB〉 be two fuzzy preordered
sets wrt ≈A and ≈B, respectively. Let f : A→ B and g : B → A be two mappings
which are compatible with ≈A and ≈B, respectively.

Then, the pair (f, g) is a fuzzy adjunction between A and B if and only if
ρA(a, g(b)) = ρB(f(a), b) for all a ∈ A and b ∈ B.

Proof. Assume that for all a ∈ A and b ∈ B the equality ρA(a, g(b)) = ρB(f(a), b)
holds.

Let a1, a2 ∈ A and b ∈ B. Since f is a map which is compatible with ≈A and
≈B , then

(a1 ≈A a2)⊗ ρA(a2, g(b)) ≤ (f(a1) ≈B f(a2))⊗ ρA(a2, g(b)).

By the hypothesis, we obtain that

(f(a1) ≈B f(a2))⊗ ρA(a2, g(b)) ≤ (f(a1) ≈B f(a2))⊗ ρB(f(a2), b).

As ρB is ≈B-reflexive and transitive, we have that

(f(a1) ≈B f(a2))⊗ρB(f(a2), b) ≤ ρB(f(a1), f(a2))⊗ρB(f(a2), b) ≤ ρB(f(a1), b).

Therefore, (a1 ≈A a2)⊗ ρA(a2, g(b)) ≤ ρB(f(a1), b) for all a1, a2 ∈ A and b ∈ B.
Analogously, the condition (A2) holds.

Conversely, assume now that conditions (A1) and (A2) hold. Applying condi-
tion (A1), for a ∈ A and b ∈ B, we have that (a ≈A a)⊗ρA(a, g(b)) ≤ ρB(f(a), b).
Being ≈A reflexive, it is deduced that ρA(a, g(b)) ≤ ρB(f(a), b) for all a ∈ A and
b ∈ B. Analogously, ρB(f(a), b) ≤ ρA(a, g(b)) for all a ∈ A and b ∈ B. Therefore,
ρA(a, g(b)) = ρB(f(a), b) for all a ∈ A and b ∈ B. ut
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Corollary 1. If a pair (f, g) is a fuzzy adjunction between 〈A,≈A, ρA〉 and
〈B,≈B , ρB〉 then (f, g) is also a fuzzy adjunction between the two fuzzy pre-
ordered sets 〈A, ρA〉 and 〈B, ρB〉.

Conversely, if a pair (f, g) is a fuzzy adjunction between 〈A, ρA〉 and 〈B, ρB〉
then (f, g) is also a fuzzy adjunction between 〈A,=, ρA〉 and 〈B,=, ρB〉, being =
the standard crisp equality.

In the rest of this section, we extend the results in [12,13] to the framework
of fuzzy preordered sets wrt a fuzzy equivalence relation. The underlying idea
is similar, but now the mappings f and g need to be compatible with fuzzy
equivalence relations ≈A on A and ≈B on B, and this makes the development
to be much more involved that in the previous case.

To begin with, it is worth to mention that the equivalences in Theorem 1 are
valid when considering fuzzy equivalences: obviously, the mappings have to be
compatible.

Remark 2. Given two elements x1, x2 ∈ p-max(X), note that ρA(x1, x2) = > =
ρA(x2, x1): on the one hand, by x1 ∈ p-max(X), we have that X(x1) = > and
since x2 ∈ p-max(X), then X(u) ≤ ρA(u, x2) for all u ∈ A. Hence, > = X(x1) ≤
ρA(x1, x2) which implies that ρA(x1, x2) = >.

Likewise, by ⊗-≈A-antisymmetry, also (x1 ≈A x2) = > for x1, x2 ∈≈A-
max(X).

Theorem 3. Let A = 〈A,≈A, ρA〉 and B = 〈B,≈B , ρB〉 be two fuzzy preordered
sets. If the pair (f, g) is a fuzzy adjunction between A and B then

(
(f◦g◦f)(a) ≈B

f(a)
)

= > and
(
(g ◦ f ◦ g)(b) ≈A g(b)

)
= >, for all a ∈ A, b ∈ B.

Proof. Since f is isotone and g ◦ f is inflationary we have

> = ρA(a, gf(a)) ≤ ρB(f(a), fgf(a)),

therefore, ρB(f(a), fgf(a)) = >.
Moreover, ρB(fgf(a), f(a)) = ρA(gf(a), gf(a)) = >. Therefore, from the

⊗-≈B-antisymmetric property, we obtain (f ◦ g ◦ f)(a) ≈B f(a)) = >.
For the other composition, the proof is analogous. ut

Corollary 2. Let A = 〈A,≈A, ρA〉 and B = 〈B,≈B , ρB〉 be two fuzzy preordered
sets. If the pair (f, g) is a fuzzy adjunction between A and B then, for all a ∈
A, b ∈ B,

(i) ρB
(
(f ◦ g ◦ f)(a), f(a)

)
= ρB

(
f(a), (f ◦ g ◦ f)(a)

)
= >

(ii) ρA
(
(g ◦ f ◦ g)(b), g(b)

)
= ρA

(
g(b), (g ◦ f ◦ g)(b)

)
= > .

Corollary 3. Let A = 〈A,≈A, ρA〉 and B = 〈B,≈B , ρB〉 be two fuzzy preordered
sets. If the pair (f, g) is a fuzzy adjunction between A and B then, for all a1, a2 ∈
A and b1, b2 ∈ B, the following equalities hold:

(i)
(
f(a1) ≈B f(a2)

)
=
(
(g ◦ f)(a1) ≈A (g ◦ f)(a2)

)
.
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(ii)
(
g(b1) ≈A g(b2)

)
=
(
(f ◦ g)(b1) ≈B (f ◦ g)(b2)

)
.

Proof. We will prove just the first item, since the second one is similar.
Given a1, a2 ∈ A, since g is compatible, we have that

(
f(a1) ≈B f(a2)

)
≤(

(g ◦ f)(a1) ≈A (g ◦ f)(a2)
)
. On the other hand, since f is compatible, we have

that (
g(f(a1)) ≈A g(f(a2))

)
≤
(
f(g(f(a1))) ≈B f(g(f(a2)))

)
.

Now, by Theorem 3, we have that
(
f(a) ≈B f(g(f(a)))

)
= >, for all a ∈ A.

Finally, the ⊗-transitivity of ≈B leads to

(
f(g(f(a1))) ≈B f(g(f(a2)))

)

=
(
f(a1) ≈B f(g(f(a1)))

)
⊗
(
f(g(f(a1))) ≈B f(g(f(a2)))

)

≤
(
f(a1) ≈B f(g(f(a2)))

)

=
(
f(a1) ≈B f(g(f(a2)))

)
⊗
(
f(g(f(a2))) ≈B f(a2)

)

≤
(
f(a1) ≈B f(a2)

)

ut

4 Characterization and construction of the adjunction

Some more definitions are needed in order to solve the problem in the case of
surjective mappings.

Definition 12. Let A = 〈A,≈A, ρA〉 and B = 〈B,≈B , ρB〉 be two fuzzy pre-
ordered sets wrt ≈A and ≈B, respectively, and let f : A → B be a compatible
mapping. The fuzzy kernel relation ≡f : A×A→ L associated to f is defined
as follows for a1, a2 ∈ A,

(a1 ≡f a2) = (f(a1) ≈B f(a2)).

Trivially, the fuzzy kernel relation is a fuzzy equivalence relation. The equivalence
class of an element a ∈ A is a fuzzy set denoted by [a]f : A → L defined by
[a]f (u) = (f(a) ≈B f(u)) for all u ∈ A.

The following definitions recall the notion of Hoare ordering between crisp
subsets, and then introduces an alternative statement in the subsequent lemma:

Definition 13. Let A = 〈A,≈A, ρA〉 be a fuzzy preordered set wrt a fuzzy equiv-
alence relation ≈A. For C,D crisp subsets of A, consider the following notation

– (C vW D) =
∨

c∈C

∨

d∈D
ρA(c, d)

– (C vH D) =
∧

c∈C

∨

d∈D
ρA(c, d)

– (C vS D) =
∧

c∈C

∧

d∈D
ρA(c, d)
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Lemma 1. Let A = 〈A,≈A, ρA〉 be a fuzzy preordered set wrt a fuzzy equivalence
relation ≈A, X,Y ⊆ A such that p-max(X) 6= ∅ 6= p-max(Y ), then

(p-max(X) vW p-max(Y )) = (p-max(X) vH p-max(Y ))

= (p-max(X) vS p-max(Y )) = ρA(x, y)

for any x ∈ p-max(X) and y ∈ p-max(Y ).

Proof. Let us show that ρA(x, y) = ρA(x̄, ȳ), for any x, x̄ ∈ p-max(X) and
y, ȳ ∈ p-max(Y ): Indeed, using the transitive property of ρA and Remark 2 we
have that

ρA(x, y) ≥ ρA(x, x̄)⊗ ρA(x̄, y) = >⊗ ρA(x̄, y) ≥ ρA(x̄, ȳ)⊗ ρA(ȳ, y) = ρA(x̄, ȳ).

Analogously, ρA(x̄, ȳ) ≥ ρA(x, y). Therefore, ρA(x̄, ȳ) = ρA(x, y) for any x, x̄ ∈
p-max(X) and y, ȳ ∈ p-max(Y ). ut

Notice that, by Lemma 1, when both sets are non-empty, for any x ∈
p-max(X) and y ∈ p-max(Y ),

(
p-max(X) vH p-max(Y )

)
= ρA(x, y) and

this justifies the following notation.

Notation 1 Let A = 〈A,≈A, ρA〉 be a fuzzy preorder wrt a fuzzy equivalence re-
lation ≈A. Let X,Y be crisp subsets of A such that p-max(X) 6= ∅ 6= p-max(Y ),
then ρA(p-max(X),p-max(Y )) denotes

(
p-max(X) vH p-max(Y )

)
.

Remark 3. Let A = 〈A,≈A, ρA〉 be a fuzzy preorder wrt a fuzzy equivalence
relation ≈A and X,Y ⊆ A. Observe that for all x1, x2 ∈ p-max(X) and y1, y2 ∈
p-max(Y ), we have that (x1 ≈A y1) = (x2 ≈A y2):

Indeed, recall that (x1 ≈A x2) = > = (y1 ≈A y2), then (x1 ≈A y1) = (x2 ≈A
x1)⊗ (x1 ≈A y1) ≤ (x2 ≈A y1) = (x2 ≈A y1)⊗ (y1 ≈A y2) ≤ (x2 ≈A y2).

Therefore, we can use the notation

(
p-max(X) ≈A p-max(Y )

)
= (x ≈A y)

for any x ∈ p-max(X), y ∈ p-max(Y ).

Theorem 4 (Necessary conditions). Let A = 〈A,≈A, ρA〉, B = 〈B,≈B , ρB〉
be two fuzzy preorders and f : A → B, g : B → A two mappings which are com-
patible with the equivalence relations ≈A and ≈B. If (f, g) is a fuzzy adjunction
between A and B then

1. p-max([a]f ) is non-empty for all a ∈ A.

2. ρA(a1, a2) ≤ ρA(p-max([a1]f ),p-max([a2]f )), for all a1, a2 ∈ A.

3. (a1 ≡f a2) ≤ (p-max([a1]f ) ≈A p-max([a2]f )), for all a1, a2 ∈ A.

Proof.
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– Condition 1. We will show that g(f(a)) ∈ p-max([a]f ):
By Theorem 3, we have (f(a) ≈B f(g(f(a)))) = >.
On the other hand, using the ≈B-reflexivity and that (f, g) is a fuzzy ad-
junction, for all u ∈ A,

[a]f (u) = (f(u) ≈B f(a)) ≤ ρB(f(u), f(a)) = ρA(u, g(f(a))) = g(f(a)) ↓ (u)

– Condition 2. By Theorem 1, f and g are isotone maps, thus

ρA(a1, a2) ≤ ρA(g(f(a1)), g(f(a2)))

for all a1, a2 ∈ A. We have just shown that g(f(a)) ∈ p-max([a]f ) for all
a ∈ A, thus, from Lemma 1, we obtain that ρA(a1, a2) ≤ ρA(p-max([a1]f ),
p-max([a2]f )) for all a1, a2 ∈ A.

– Condition 3. Since g is compatible with ≈B and ≈A, then (a1 ≡f a2) =
(f(a1) ≈B f(a2)) ≤ (g(f(a1)) ≈A g(f(a2))). But, by Condition 1, g(f(ai)) ∈
p-max([ai]f ).

ut

Given A = 〈A,≈A, ρA〉 a fuzzy preordered set wrt ≈A and a surjective map-
ping f : A → B compatible with ≈A and ≈B , our first goal is to find sufficient
conditions to define a suitable fuzzy preordering wrt ≈B on B and a mapping
g : B → A compatible with ≈B and ≈A such that (f, g) is an adjoint pair.

Lemma 2. Let A = 〈A,≈A, ρA〉 be a fuzzy preorder and ≈B be a fuzzy equiva-
lence relation on B together with a surjective mapping f : A→ B compatible with
≈A and ≈B. Suppose that p-max([a]f ) 6= ∅ for all a ∈ A. Then, B = 〈B,≈B , ρB〉
is a fuzzy preorder wrt ≈B, where ρB is the fuzzy relation defined as follows

ρB(b1, b2) = ρA(p-max([a1]f ),p-max([a2]f ))

where ai ∈ f−1(bi) for each i ∈ {1, 2}.

Theorem 5 (Sufficient conditions). Let A = 〈A,≈A, ρA〉 be a fuzzy preorder
wrt ≈A and ≈B be a fuzzy equivalence relation on B together with a surjective
mapping f : A→ B compatible with ≈A and ≈B.

Suppose that the following conditions hold:

1. p-max([a]f ) is non-empty for all a ∈ A.
2. ρA(a1, a2) ≤ ρA(p-max([a1]f ),p-max([a2]f )), for all a1, a2 ∈ A.
3. (a1 ≡f a2) ≤ (p-max([a1]f ) ≈A (p-max([a2]f )), for all a1, a2 ∈ A.

Then, there exists a mapping g : B → A compatible with ≈A and ≈B such that
(f, g) is a fuzzy adjunction between the fuzzy preorders A and B = 〈B,≈B , ρB〉,
where ρB is the fuzzy relation introduced in Lemma 2.

Proof. Following Lemma 2, by Condition 1, there exists a fuzzy preordering ρB
defined as follows:

ρB(b1, b2) = ρA(p-max([a1]f ),p-max([a2]f ))
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where ai ∈ f−1(bi) for each i ∈ {1, 2}.
There is a number of suitable definitions of g : B → A, and all of them can be

specified as follows: given b ∈ B, we choose g(b) as an element xb ∈ p-max([x]f ),
where x is any element of f−1(b).

The existence of g is guaranteed by the axiom of choice, since f is surjective
and for all b ∈ B and for all x ∈ f−1(b), the set p-max([x]f ) is nonempty.
Moreover, g(b) does not depend on the preimage of b, because f(x) = f(y) = b
implies [x]f = [y]f .

The compatibility of g with ≈B and ≈A follows from Condition 3:

(b1 ≈B b2) = (f(a1) ≈B f(a2)) = (a1 ≡f a2) ≤ (c1 ≈A c2)

for all ai ∈ f−1(bi) and ci ∈ p-max([ai]f ), for i ∈ {1, 2}. In particular, (b1 ≈B
b2) ≤ (g(b1) ≈A g(b2)).

Now, due to Theorem 2, it suffices to prove that ρA(a, g(b)) = ρB(f(a), b),
for all a ∈ A, b ∈ B:

Firstly, by Lemma 1, ρB(f(a), b) = ρA(u, v) for all u ∈ p-max([a]f ) and
v ∈ p-max([z]f ) where z ∈ f−1(b). Since, by its definition, we have that g(b) ∈
p-max([z]f ), we obtain ρB(f(a), b) = ρA(u, g(b)). Thus, we have to prove just
that

ρA(u, g(b)) = ρA(a, g(b))

for all u ∈ p-max([a]f ).
Given u ∈ p-max([a]f ), we have (f(a) ≈B f(u)) = > and (f(a) ≈B f(x)) ≤

ρA(x, u), for all x ∈ A. In particular, (f(a) ≈B f(a)) ≤ ρA(a, u), and then, since
≈A is reflexive, we obtain ρA(a, u) = >. Therefore,

ρA(u, g(b)) = ρA(a, u)⊗ ρA(u, g(b)) ≤ ρA(a, g(b))

On the other hand, for any x ∈ f−1(b), we have that g(b) ∈ p-max([x]f ),
then (f(x) ≈B f(g(b))) = > which implies that [g(b)]f = [x]f , by Remark 1.
Applying Condition 2,

ρA(a, g(b)) ≤ ρA(p-max([a]f ),p-max([g(b)]f )) =

= ρA(p-max([a]f ),p-max([x]f )) = ρB(f(a), b).

ut

5 Conclusions

This work continues the research line initiated in [12–14] on the characterization
of existence of adjunctions (and Galois connections) for mappings with unstruc-
tured codomain.

We have found necessary and sufficient conditions under which, given a fuzzy
ordering ρA on A and a surjective mapping f : 〈A,≈A〉 → 〈B,≈B〉 compatible
with respect to the fuzzy equivalences ≈A and ≈B , there exists a fuzzy ordering
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ρB and a compatible mapping g : 〈B,≈B〉 → 〈A,≈A〉 such that the pair (f, g) is
a fuzzy adjunction.

As pieces of future work, on the one hand, the use of fuzzy equivalences can be
taken into account in order to weaken the notion of surjective function and obtain
an alternative proof based on this weaker notion. On the other hand, as stated
in the introduction, considering surjective mappings is just the first step in the
canonical decomposition of a general mapping f : 〈A,≈A〉 → 〈B,≈B〉, therefore
we will study how to extend the obtained ordering to the whole codomain in the
case that f is not surjective.

Finally, as a midterm goal, we would like to study possible links of our con-
structions with some recent efforts to develop a so-called theory of constructive
Galois connections [7] aimed at introducing adjunctions and Galois connections
within automated proof checkers.
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Abstract. Software Product Line Engineering (SPLE) is a software en-
gineering domain in which families of similar softwares (called products)
are built reusing common artifacts. This requires to analyze common-
alities and variabilities, for example to detect which parts are common
to several products and which parts differ from one product to another.
Such software characteristics that may be present or not in a product
are called features. Several approaches in the literature exist to organize
features and product configurations in terms of features. In this paper
we review those approaches and show that concept lattices are a relevant
structure to organize features and product configurations. We also ad-
dress scaling issues related to formal context computation in the domain
of SPLE.

Keywords: Software Product Lines, Feature Model, Formal Concept
Analysis, Concept Lattice

1 Introduction

Software Product Line Engineering (SPLE) focuses on the reuse of common
software pieces to reduce the building and maintenance cost of similar software
systems (called products). An important step of this methodology consists in
analyzing and modeling variability, i.e. mainly extracting "features", a feature
being a discriminating characteristic common to several products or specific to
a product. A product configuration is then a set of these features. Different for-
malisms are used in SPLE to organize features and product configurations. Some
of these formalisms focus on features, while others represent product configura-
tions. Some are canonical, while others are not, and depend on the designer point
of view.

In this paper, we review the main used formalisms and we show that concept
lattices might be a relevant (canonical) structure for representing variability,
while highlighting information on relationships between product configurations,
and between product configurations and features, that other formalisms hardly
represent. Besides explaining what is the contribution of concept lattices to vari-
ability representation, we propose a solution to address some scaling issues of
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ISBN 978-5-600-01454-1, National Research University Higher School of Economics,
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concept lattices in this domain. Actually, scaling issues can occur at two levels
when computing: (1) the formal context, and (2) the concept lattice. Here, we
focus on scaling issues related to formal context computation; we investigate im-
plicative systems on attributes as closure operators to build a feature closed sets
lattice without building the formal context. We show that implicative systems
are another representation of the variability that can be useful for designers.

The remaining of the paper is organized as follows. Section 2 presents the
various formalisms found in the literature to capture the variability of a software
product line. Section 3 shows that concept lattices are an interesting formalism
to analyse variability, and presents related work concerning the use of formal con-
cept analysis for product lines. Section 4 explains how using implicative systems
allows to face scaling issues related to formal context computation for variability
management.

2 Existing Formalisms for variability representation

To capture and describe the variability of a software product line, almost all ap-
proaches in the literature use feature-oriented representations [11, 12, 20]. Fea-
tures describe and discriminate the products. As an example, features for an
e-commerce website may include displaying a catalog, proposing to fill a basket
of products, or offering a payment_method. In our context, we consider a feature
set F . A product configuration (or simply a configuration) is a subset of F .

Feature models (FMs) are graphical representations that include a decorated
feature tree and a set of textual cross-tree constraints which complements in-
formation given in the tree. The vertices of the tree are the features (from F ),
while the edges (in F × F ) correspond to refinement or sub-feature (part of)
relationships in the domain. Edges can be decorated by a symbol meaning that
if the parent feature is selected, the child feature can be selected or not (op-
tional). Another symbol indicates that if the parent feature is selected, the child
feature is necessarily selected (mandatory). Groups of edges rooted in a feature
represent: xor-groups (if the parent feature is selected, exactly one feature has
to be selected in the group), and or-groups (if the parent feature is selected, at
least one feature has to be selected in the group). Fig. 1 shows a simple FM for
e-commerce websites.

Such a software necessarily includes a catalog for proposing products, and this
catalog is displayed using a grid or (exclusive) using a list. Optionnally, a basket
functionality is proposed. A payment_method may also be optionally proposed.
Two payment methods are proposed: credit_card or (inclusive) check. A cross-
tree constraint, written below the tree, indicates that if a basket is proposed, a
payment method is also proposed (and reciprocally).

A variability representation conveys ontological information (ontological se-
mantics): the edges of the feature tree and the groups correspond to domain
knowledge, e.g. the group grid, list indicates a semantic refinement of catalog;
the edge (e_commerce, catalog) indicates that catalog is a subpart of the website.
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Optional

Xor

Mandatory

Or

Double include
$

e_commerce

catalog payment_method basket

grid list credit_card check

payment_method↔ basket

Fig. 1: (Left) Basic feature model’s relationships and their corresponding edges;
(Right) A basic feature model for an e-commerce website

A variability representation also has a logical semantics: for example an al-
ternative representation of the FM is an equivalent propositional formula with
|F | variables and constraints defined using propositional connectives (∧,∨,→,↔
and ¬) [5, 8]. Automated analysis can then be performed using SAT-solvers, gen-
erally on the Conjunctive or Disjunctive Normal Forms (CNF or DNF). Fig. 2
shows the propositional formula equivalent to the FM of Fig. 1. The down side of
the propositional formula is that ontological semantics is lost, e.g. an implication
in the formula may represent a subpart relationship or a cross-tree constraint.

hierarchy :

xor-groups :
or-groups :
mandatory :
cross-tree :

(Ca→ Ec) ∧ (G→ Ca) ∧ (L→ Ca) ∧
(Pm→ Ec) ∧ (Cc→ Pm)∧(Ch→ Pm) ∧ (B → Ec) ∧
(Ca→ (G⊕ L)) ∧
(Pm→ (Cc ∨ Ch)) ∧
(Ec→ Ca) ∧
(Pm↔ B)

Fig. 2: Propositional formula corresponding to the feature model of Fig. 1

The third semantics is the configuration-semantics that associates to any
variability representation the set of its valid configurations. The set of the 8
valid configurations for the FM of Fig. 1 is given in Table 1. For the sake of
space, it is shown using the Formal Context representation, which is equivalent.

An important property of a formalism is canonicity. Given a set of configu-
rations that are to be represented, and considering a chosen formalism, there are
often different ways of writing a representation of a given set of configurations
following this formalism. For example different feature models can have the same
configuration-semantics. Concision is also an interesting property: a variability
representation can be extensional if it enumerates all the possible configurations,
or intensional if it represents these configurations in a more compact way. For
example, the formal context of Table 1 is an extensional representation of the
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Table 1: Set of valid configurations of the FM of Fig. 1
e_com.(Ec) catalog(Ca) grid(G) list(L) pay.met.(Pm) cred.card(Cc) check(Ch) basket(B)

1 x x x
2 x x x
3 x x x x x x
4 x x x x x x
5 x x x x x x x
6 x x x x x x
7 x x x x x x
8 x x x x x x x

FM of Fig. 1, whereas the FM is an intensional representation of variability.

In this section, we study graph-like representations which have been used
in the literature to express software product line variability of a feature model
starting from a propositional formula. For each representation, we give a defini-
tion and discuss its canonicity, concision, configuration semantics and ontological
semantics.

A binary decision tree (BDT) is a tree-like graph used to represent the
truth table of a boolean function equivalent to a propositional formula: it is an
extensional representation. This representation has redundancies which can be
avoided by node sharing, which results in a graph called binary decision di-
agram [8, 6] (BDD): this representation is more concise than the BDT. BDD
usually refers to ROBDD (for reduced ordered binary decision diagram), which
is unique for a given propositional formula. A BDD depicts the same set of
configurations as the original feature model, but the ontological semantics is
lost in the transformation. A propositional formula can also be represented as
an implication hypergraph [8]. As the implication set for a given formula
is not necessarily unique (except if it is a canonical basis), neither is the ob-
tained hypergraph. The hypergraph depicts exactly the same configuration set.
It also keeps a part of the ontological semantics, as feature groups patterns can
be extracted from the hyperedges. Another similar representation is the impli-
cation graph [8], which only depicts binary implications, and thus does not
express feature groups. For a given propositional formula, several implication
graphs can be constructed, but two induced structures are unique: the transitive
closure and the transitive reduction of the graph. Its configuration semantics is
not always the same as the original feature model, because an implication graph
can eventually depict more configurations, as it expresses less constraints than
the original feature model or propositional formula. Finally, a feature graph
[19] is a diagram-like representation which seeks to describe all feature models
which depict a same set of configurations. Because configuration semantics do
not formulate mandatory relationships between features, they are not expressed
in feature graphs either. As for FMs, a feature graph is not necessarily unique
for a given set of configurations, but the transitive reduction and the transi-
tive closure of the feature graph are canonical. All these representations express
variability in a compact way.
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Table 2: Properties of the different formalisms
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SPLE Set of configurations x x x x x x
SPLE Feature model x x x x x x x x x
SPLE Propositional formula x x x x x
SPLE Binary decision tree x x x x x x
SPLE Binary decision diagram x x x x x x
SPLE Implication hypergraph x x x x x x
SPLE Implication graph (IG) x x x
SPLE IG → Transitive reduction x x x x
SPLE IG → Transitive closure x x x x
SPLE Feature graph (FG) x x x x x x x
SPLE FG → Transitive reduction x x x x x x x x
SPLE FG → Transitive closure x x x x x x x x
FCA Formal Context x x x x x x
FCA Concept lattice x x x x x x x x
FCA Labelled feature closed set lattice x x x x x x x x x

The upper part of Table 2 compares the different formalisms used in SPLE
domain with respect to canonicity and their ability to encompass or highlight the
different semantics. Besides, it shows which kinds of relationships can be read
in the formalism: between features only, between configurations and features, or
between configurations. Then it indicates if this is a textual or a graphical for-
malism, and if this is an intensional or an extensional representation. In SPLE
domain, all representations (except the set of configurations and the BDT) con-
sider an intensional point of view with only feature organization. FM is the
only representation which clearly expresses all ontological information, but it is
not canonical, since many relevant FMs can be built from domain information.
Implication hypergraph and feature graph preserve the notion of groups, but
refinement and mandatory information of features are lost.

To sum up, these formalisms concentrate on feature organization (except the
set of configurations and the BDT), are more or less respectful of initial semantics
of the FM they represent and none of them considers a mixed representation of
features and configurations. In the next section, we show the benefits of having
such a mixed representation and in general, the contributions that a concept
lattice based representation may bring to the SPLE domain as a complement to
the existing representations.
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3 Contribution of concept lattices to variability
representation and related work

Formal Concept Analysis [10] provides an alternative framework for variability
representation, based on a configuration list, given in the form of a formal context
(as in Table 1). Formal objects are the configurations, while formal attributes
are the features. Fig. 3 presents the corresponding concept lattice. A concept
groups a maximal set of configurations sharing a maximal set of features. In the
representation, configurations appear in the lower part of the concepts and are
inherited from bottom to top. Features appear in the upper part of the concepts
and are inherited from top to bottom. This representation includes the FM, in
the sense that if there is an edge indicating F2 sub-feature of F1 in the tree,
these features are respectively introduced in two comparable concepts C2 ≤ C1,
furthermore, the cross-tree constraints are verified by the logic formula that
describes the concept lattice.

Concept_EC_15

e_commerce
catalog

Concept_EC_13

grid

1

Concept_EC_0

Concept_EC_1

8

Concept_EC_2

4

Concept_EC_10

list

5

Concept_EC_8

Concept_EC_14

payment_method
basket

Concept_EC_9

Concept_EC_4

6

Concept_EC_12

credit_card

Concept_EC_7

2

Concept_EC_3

7

Concept_EC_5

Concept_EC_11

check

Concept_EC_6

3

Fig. 3: Concept lattice for the formal context of Table 1, built with RCAExplore3

3 http://dolques.free.fr/rcaexplore.php
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A concept lattice organizes configurations and features in a single structure,
which has a canonical form (only one concept lattice can be associated with a
formal context). If the configurations in the formal context are the valid config-
urations of a feature model, the configuration semantics of the concept lattice is
the same and the configurations can be read from the lattice. The logical seman-
tics is the same too. However, the ontological semantics is incomplete as in the
structure, we cannot distinguish ontological relationships: for example, when a
feature F2 is in a sub-concept of a concept that introduces another feature F1,
we cannot know whether F2 implies F1 (having a basket implies having a pay-
ment_method) or F2 refines F1 (pay by check is a kind of payment_method).

The concept lattice has many qualities regarding the variability represen-
tation and relationships between configurations, features, as well as between
configurations and features, including highlighting:

– bottom features that are present in all configurations (e.g. catalog, e_comm-
erce)

– mutually exclusive features (in concepts whose supremum is the top)
– feature co-occurrence (introduced in the same concept, e.g. basket and

payment_method)
– feature implication (one is introduced in a sub-concept of another one, e.g.

credit_card implies basket)
– how a configuration is closed to or specializes another one, or a merge of

other configurations. E.g. 8 is a specialization of 5,6,7.
– features that are specific to a configuration, or shared by many.

The concept lattice is also an interesting structure to navigate between these
features and configurations, and is a theoretical support for association rule
extraction, a domain that has not been explored yet in SPLE, as far as we know.

Besides, lattice theory defines irreducible elements, useful for identifying ir-
reducible features and configurations (in a polynomial time), that are used for
defining canonical representations of a context or a rule basis. In lattice theory, an
element is called join-irreducible if it cannot be represented as the supremum of
strictly lower elements. They are easily identifiable in a lattice because they have
only one predecessor in lattice transitive reduction. All join-irreducible elements
are present in the formal context, so they all correspond to valid configurations.

Research work done in the framework of reverse engineering exploits some of
the relevant properties of the concept lattice. Formal Concept Analysis has been
used to organize products, features, scenarios, or to synthesize information on the
product line. In [13], the authors classify the usage of variable features in existing
products of a product line through FCA. The analysis of the concept lattice
reveals information on features that are present in all the products, none of the
products, on groups of features that are always present together, and so on. Such
information can be used to drive modifications on the variability management.
In the same range of idea, the authors of [2] explore concept lattices as a way
to represent variability in products, and revisit existing approaches to handle
variability through making explicit hidden FCA aspects existing in them. The
authors of [7] go a step further in the analysis of the usage of FCA, by studying
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Relational Concept Analysis (RCA) as a way to analyze variability in product
lines in which a feature can be a product of another product family.

Different artifacts are classified in [15]: the authors organize scenarios of a
product line by functional requirements, and by quality attributes. They identify
groups of functional requirements that contribute to a quality attribute, detect
interferences between requirements and quality attributes, and analyze the im-
pact of a change in the product line w.r.t functional requirement fulfillment.

Several proposals investigate with FCA the relationships between features
and source code of existing products. References [4, 21] aim at locating features
in source code: existing products described by source code are classified though
FCA, and an analysis of the resulting concepts can detect groups of source code
elements that may be candidates to reveal a feature. In the same idea, traceability
links from source code to features are mined in reference [17]. In reference [9],
the authors mine source code in order to identify pieces of code corresponding to
a feature implementation through an FCA analysis with pieces of source code,
scenarios executing those pieces of source code, and features.

FCA is also used in several approaches to study the feature organization
in feature models. Concept structures (lattices or AOC-poset) are used to de-
tect constraints in feature models, and propose a decomposition of features into
sub-features. The authors of [16] extract implication rules among features, and
covering properties (e.g. sets of features covering all the products). References
[3, 18] produce logical relationships between the features of a FM, as well as
cross-tree constraints.

Concept lattice could also be a tool in the framework of forward engineering,
using a transformation chain starting from a FM, building with the existing
tools, as FAMILIAR [1], the configuration set (which is equivalent to having a
formal context), then building the corresponding lattice. But applying in practice
this approach to the FMs repository SPLOT4 [14], we noticed that tools hardly
compute more than 1000 configurations, thus we faced a scaling problem.

4 Addressing scaling issues

4.1 From feature models dependencies to implicative systems

The set of all valid attribute implications of a formal context represent a closure
operator, which produces attribute closed sets corresponding to concept intents
of the context. The associated attribute closed set lattice is thus isomorphic to
the concept lattice of the formal context. It is noteworthy that (1) FMs represent
features interaction by graphically depicting a set of features and dependencies
between them, and that (2) the set of all valid implications also describes depen-
dencies between attributes (i.e. features). Thus, an analogy can be done between
implicative systems and FMs dependencies.

We have previously mentioned a method to build a concept lattice from a FM,
which consists in enumerating all the FM configurations (i.e. all combinations of
4 http://www.splot-research.org/
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features w.r.t its dependencies) in a formal context. However, FMs are intensional
representations which can potentially depict a large number of configurations,
making difficult their enumeration and the context computation. In order to
avoid this enumeration, we propose a way to express FMs dependencies as sets
of implications P(F ) × F , without building the formal context. We made an
experiment in which we generated several FMs of small size (< 10 features) and
built their equivalent formal contexts, from which we extracted a complete set of
valid implications with the tool Concept Explorer5 [22]. When comparing these
FMs to their corresponding set of implications, we noticed that each type of FM
dependency generates the same kind of implications, as presented in Table 3.

Table 3: FM dependencies and their corresponding implications
Root Hier. Opt. Mand. Or-group Xor-group

de
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en
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nc

ie
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R

A

B

A

B

A

B

A

B C

A

B C D

im
pl
.

∅ → R B → A None A→ B None
BC → ABCD
BD → ABCD
DC → ABCD

The root feature traditionally represents the name of the modeled software
system, and thus is present in all configurations. This peculiarity is translated
by ∅ → root, requiring the presence of root in all closed sets. Hierarchy con-
straints (subpart relationships) require that a child feature can be selected only
if its parent feature is already selected, and thus produce a child → parent
implication. Optional relationships actually express the absence of dependencies
between a feature and its child, and do not generate any implication. Mandatory
relationships imply that a child feature is necessarily selected with its parent and
produce a parent → child implication. Or-groups behave as optional relation-
ships with an obligation to select at least one feature: this kind of constraints
do not produce any implication. Finally, xor-groups require that two of their
features cannot appear together in any configuration: each pair of features thus
implies the set of all features.

We can also determine implications for cross-tree constraints, i.e. include and
exclude constraints. Let F be the set of all features and f1, f2 ∈ F two features.
f1 includes f2 can naturally be translated by f1 → f2, and f1 excludes f2 can
be translated by f1 f2 → F , as in xor-groups.

Table 3 thus permits to translate FM dependencies in implicative systems
without building a formal context. The fact that the obtained implicative system
is exactly the system corresponding to the original FM can be proved by con-
struction. When adding a new feature (resp. feature group) to a FM, this adds

5 http://conexp.sourceforge.net/
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new dependencies which only involve the added feature (resp. feature group)
and its parent. It does not change the previous dependencies expressed in the
FM, but only adds new ones. In our approach, we first identify the implications
corresponding to each type of feature groups and optional/mandatory relation-
ships. Then, if we construct the FM step by step, we can create the implications
corresponding to each added feature (resp. feature group), and thus no implica-
tion is missing, nor needs to be changed afterward. We applied our method on
the FM of Fig. 1 and obtained the implicative system presented in Fig. 4.

root :
hierarchy :

mandatory :
xor-group :
cross-tree :

∅→ Ec
Ca→ Ec ; G→ Ca ; L→ Ca ;
Pm→ Ec ; Cc→ Pm ; Ch→ Pm ; B → Ec
Ec→ Ca
G,L→ Ec,Ca,G,L, Pm,Cc, Ch,B
Pm→ B ; B → Pm

Fig. 4: Implicative system corresponding to the feature model of Fig. 1

These implications can be extracted by performing a graph search on the
FM, and their number can be predicted by analysing its dependencies (# stands
for "number of"):
1 + #child-parent relationships+ #mandatory relationships
+#pairs of features in each xor-group+ #cross-tree constraints

For example, a representative FM of SPLOT (e-commerce) with 19 features
and 768 configurations is equivalent (with the configuration-semantics) to an
implicative system with 27 implications.

4.2 Identification of the set of possible configurations

In a concept lattice representing a FM, an object introduced in a concept ex-
tent represents a valid configuration, which corresponds to the feature set of the
concept intent. Because each configuration in a FM is unique, a concept can in-
troduce at most one object. Thus, for SPLE, a concept intent represents either a
valid configuration or an invalid one. In the isomorphic feature closed set lattice,
each closed set corresponds to a concept intent from the context: therefore, each
valid configuration of the FM matches a feature closed set. However, the feature
closed set lattice does not display objects and thus we cannot identify which
closed set corresponds to a valid configuration. To be able to retrieve knowledge
about configurations as in concept lattices, their identification in feature closed
set lattice is necessary.

As previously said, all join-irreducibles correspond to valid configurations.
But there can exist valid configurations which do not correspond to join-irreduci-
bles, and thus they cannot be discerned from invalid ones in feature closed set
lattices. A solution is to add a unique attribute for each configuration, as an
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identifier. Thus, we change the lattice structure to make each configuration cor-
respond to a join-irreducible element, which can be detected. However, the ob-
tained lattice is not isomorphic to the original concept lattice, and its size is
larger. A way to keep the isomorphism is to add "reducible" attributes, which
do not modify the lattice structure and which can label the lattice’s elements.

In what follows, we investigate a way to label feature closed sets to help the
identification of valid configurations. We seek to produce a labelled implicative
system that generates a labelled feature closed set lattice, isomorphic to the
concept lattice associated with the formal context. We recall that a valid config-
uration is a combination of features w.r.t. all the FM dependencies: thus, we seek
to retrieve valid configurations by detecting which feature closed sets respect all
these dependencies.

Features linked by mandatory relationships always appear together in closed
sets: this type of dependencies is respected. Optional relationships express the
absence of dependencies and do not create difficulties. Or-groups and xor-groups,
however, are more problematic. Let us consider the or-group in Table 3, com-
posed of B and C, which are two sub-features of A. {A,B} and {A,C} are
two valid combinations of features of this group. Because our feature closed set
family is closed under intersection/join, {A,B} ∩ {A,C} = {A} is also a feature
closed set of the family, but it does not respect the dependencies induced by the
or-group (i.e. contains at least B or C). The same reasoning can be applied to
xor-groups. To identify if a feature closed set respects the dependencies induced
by or-groups and xor-groups, we choose to make constraints related to feature
groups appear directly in feature closed sets, as labels.

Let {f1, . . . , fn} be a subset of features involved in a feature group. If they
form an or-group, each feature closed set containing the parent feature of this
group will be labeled (f1, . . . , fn), defining the constraint: "this feature closed set
must have at least one feature from {f1, . . . , fn} to correspond to a valid config-
uration". If they form a xor-group, each feature closed set containing the parent
feature of the group will be labeled [f1, . . . , fn], defining the constraint: "this
feature closed set must have exactly one feature from {f1, . . . , fn} to correspond
to a valid configuration". As example, the FM of Fig. 1 produces two different
labels: one for the xor-group of the feature catalog (Ca), and another for the
or-group of the feature payment_method (Pm). Each feature closed set possess-
ing catalog has to be labeled [grid, list], and each feature closed set possessing
payment_method has to be labeled (check, credit_card).

We choose to represent these labels in the labelled implicative system as
attributes. A label is attached to a feature by adding to the original implicative
system a double implication between the feature and the corresponding label-
attribute. Fig. 5 presents the implications added to the implicative system of Fig.
4 in order to take into account labels [grid, list] ([G,L]) and (check, credit_card)
((Ch,Cc)).

A feature closed set with a (check, credit_card) label is a valid configuration
if it contains at least features credit_card or check. A feature closed set with a
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labels :
Pm→ (Ch,Cc) ; (Ch,Cc)→ Pm ;
Ca→ [G,L] ; [G,L]→ Ca

Fig. 5: Adding labels in the implicative system of Fig. 4

[grid, list] label is a valid configuration if it contains grid or list, but not both. A
feature closed set respecting the constraints expressed by all its labels represents
a valid configuration. A label is associated with the parent feature of the group,
and thus does not change the original lattice structure.

Closed_set_15

e_commerce, catalog
[grid, list]

Closed_set_13

grid

Closed_set_0

Closed_set_1Closed_set_2

Closed_set_10

list

Closed_set_8

Closed_set_14

payment_method, basket
(check, credit_card)

Closed_set_9

Closed_set_4

Closed_set_12

credit_card

Closed_set_7 Closed_set_3Closed_set_5

Closed_set_11

check

Closed_set_6

Fig. 6: Feature closed set lattice built with the implicative system of Fig. 4,
labeled with implications of Fig. 5

Fig. 6 represents the feature closed set lattice associated with the labeled
implicative system of Fig. 4 plus Fig. 5: feature closed sets which respect all
the constraints defined by their labels are colored, and correspond to the 8
configurations of the formal context of Table 1. In the lattice, "label features"
are inherited from top to bottom, as usual features. For example, Closed_set_3
possesses features {e_commerce, catalog, list, basket, payment_method, check}
and the two labels [grid, list] and (check, credit_card). This feature closed set
possesses feature list and not feature grid, and thus respects the constraint of
label [grid, list]. Moreover, it possesses feature check, and thus also respects the
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constraint of label (check, credit_card). The constraints corresponding to all its
labels are respected: Closed_set_3 is thus a valid configuration of the software
product line. Note that in this particular case, the valid configurations are all
irreducible.

To conclude, the labelled implicative system permits to construct a lattice
from a FM without enumerating all its configurations: the obtained feature closed
set lattice is a canonical representation, isomorphic to the concept lattice of a
formal context, in which one can retrieve exactly the same information about
features and configurations.

5 Conclusion

In this paper, we compare the various formalisms used in the literature to repre-
sent and manage the variability of a software product line. Especially, we study
their different semantics, their canonicity and the type of information they can
highlight. We investigate formal concept analysis and concept lattices to repre-
sent a software product line originally described by a feature model. Contrary
to FMs, concept lattices represent commonalities and variabilities in a canonical
form. Moreover, they permit to extract relationships between features, between
features and configurations and between configurations.

Constructing a concept lattice from a FM requires to enumerate all its con-
figurations in a formal context, but this method can be difficult to realize when
their number is too high. We propose a method to extract feature implications
directly from feature models dependencies. The obtained implicative system pro-
duces a feature closed set lattice isomorphic to the concept lattice which can be
built from the context. We also propose a method to label these implicative sys-
tems in order to identify the set of valid configurations, and thus retrieve the
same informations as in concept lattices.

In the future, we will make experiment on the existing FMs repositories in
order to assess the size of FMs, implicative systems, and closed set lattices and
how frequent are the FMs that have reducible configurations. We will also expand
our study to multiple software product lines. We will study relational concept
analysis to connect several software product lines represented by concept lattices,
and analyze their properties and the issues they permit to answer.
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Abstract. Functional Dependencies (FDs) play a key role in many fields
of the relational database model, one of the most widely used database
systems. FDs have also been applied in data analysis, data quality, knowl-
edge discovery and the like, but in a very limited scope, because of their
fixed semantics. To overcome this limitation, many generalizations have
been defined to relax the crisp definition of FDs. FDs and a few of their
generalizations have been characterized with Formal Concept Analysis
which reveals itself to be an interesting unified framework for charac-
terizing dependencies, that is, understanding and computing them in a
formal way. In this paper, we extend this work by taking into account
order-like dependencies. Such dependencies, well defined in the database
field, consider an ordering on the domain of each attribute, and not sim-
ply an equality relation as with standard FDs.

Keywords: functional dependencies, order dependencies, formal con-
cept analysis

1 Introduction

Functional dependencies (FDs) are well-known constraints in the relational model
used to show a functional relation between sets of attributes [12], i.e. when the
values of a set of attributes are determined by the values of another set of at-
tributes. They are also used in different tasks within the relational data model,
as for instance, to check the consistency of a database, or to guide the design of
a data model [10].

id Month Year Av. Temp. City
t1 1 1995 36.4 Milan
t2 1 1996 33.8 Milan
t3 5 1996 63.1 Rome
t4 5 1997 59.6 Rome
t5 1 1998 41.4 Dallas
t6 1 1999 46.8 Dallas
t7 5 1996 84.5 Houston
t8 5 1998 80.2 Houston

Table 1

Different generalizations of FDs have been
defined in order to deal with imprecision, errors
and uncertainty in real-world data, or simply,
to mine and discover more complex patterns
and constraints within data when the seman-
tics of FDs have shown to be too restrictive for
modeling certain attribute domains.

c© Marianne Huchard, Sergei O. Kuznetsov (Eds.): CLA 2016, pp. 123–134,
ISBN 978-5-600-01454-1, National Research University Higher School of Economics,
2016.



For example, consider the database in Table 1 as an example4. Attributes of
these 8 tuples are city names, month identifiers, years and average temperatures.
From this table, we could expect that the value for average temperature is deter-
mined by a city name and a month of the year (e.g. the month of May in Houston
is hot, whereas the month of January in Dallas is cold). Therefore, we would
expect that this relationship should be somehow expressed as a (functional) de-
pendency in the form city name, month → average temperature. However, while
the average temperature is truly determined by a city and a time of the year, it
is very hard that it will be exactly the same from one year to another. Instead,
we can expect that the value will be similar, or close throughout different years,
but rarely the same. Unfortunately, semantics of FDs is based on an equivalence
relation and fail to grasp the dependencies among these attributes.

To overcome the limitations of FDs while keeping the idea that some at-
tributes are functionally determined by other attributes, different generalizations
of functional dependencies have been defined, as recently deeply reviewed in a
comprehensive survey [4]. Actually, the example presented in the last paragraph
is a so-called similarity dependency [2,4]. Several other families of dependencies
exist and allow relaxing the definition of FDs on the extent part (e.g. the de-
pendency must hold only in a subset of the tuples in a database table) or on
the intent part (equality between attribute values is relaxed to a similarity or
tolerance relation).

The definition of a variation of a functional dependency shows different prob-
lems: characterization, axiomatization and computation. Formal Concept Anal-
ysis (FCA [7]) has already been used to characterize and compute functional
dependencies. Moreover, in order to overcome some of the limitations of FCA
to discover FDs, a more sophisticated formalization is presented in [1] and [3]
where pattern structures ([6]) were used. The same framework is used in [2] to
compute similarity dependencies.

In this paper we present an FCA-based characterization of order-like de-
pendencies, a generalization of functional dependencies in which the equality of
values is replaced by the notion of order. Firstly, we show that the characteriza-
tion of order dependencies in their general definition [8] can be achieved through
a particular use of general ordinal scaling [7]. Secondly, we extend our charac-
terization in order to support restricted order dependencies through which other
FDs generalizations can be modeled, namely sequential dependencies and trend
dependencies [4]. Finally, we present a characterization to a complex FD gener-
alization named lexicographical ordered dependencies [11] showing the flexibility
of our approach.

The rest of this paper is organized as follows. In Section 2 we formally intro-
duce the definition of functional dependencies, formal concept analysis and the
principle of the characterization of FDs with FCA. In Section 3, we characterize
order dependencies in their general definition. We show that our formalization
can be adapted to restricted ordered dependencies in Section 4 and lexicographical
ordered dependencies [11] in Section 5 before presenting our conclusions.

4 http://academic.udayton.edu/kissock/http/Weather/
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2 Preliminaries

2.1 Functional dependencies

We deal with datasets which are sets of tuples. Let U be a set of attributes and
Dom be a set of values (a domain). For the sake of simplicity, we assume that
Dom is a numerical set. A tuple t is a function t : U 7→ Dom and then a table T is
a set of tuples. We define the functional notation of a tuple for a set of attributes
X ⊆ U as follows, assuming that there exists a total ordering on U . Given a tuple
t ∈ T and X = {x1, x2, . . . , xn}, we have: t(X) = 〈t(x1), t(x2), . . . , t(xn)〉.
Definition 1 (Functional dependency [12]). Let T be a set of tuples (data
table), and X,Y ⊆ U . A functional dependency (FD) X → Y holds in T if:

∀t, t′ ∈ T : t(X) = t′(X)→ t(Y ) = t′(Y )

id a b c d

t1 1 3 4 1
t2 4 3 4 3
t3 1 8 4 1
t4 4 3 7 8

Table 2

Example. The table on the right presents 4 tuples T =
{t1, t2, t3, t4} over attributes U = {a, b, c, d}. We have that
t2({a, c}) = 〈t2(a), t2(c)〉 = 〈4, 4〉. Note that the set notation is
usually omitted and we write ab instead of {a, b}. In this example,
the functional dependency d→ c holds and a→ c does not hold.

2.2 Formal Concept Analysis (FCA)

Let G and M be arbitrary sets, respectively called objects and attributes, and
I ⊆ G ×M an arbitrary binary relation: (g,m) ∈ I is interpreted as “g has
attribute m”. (G,M, I) is called a formal context. The two following derivation
operators (·)′ define a Galois connection between the powersets of G and M .

A′ = {m ∈M | ∀g ∈ A : gIm} for A ⊆ G,
B′ = {g ∈ G | ∀m ∈ B : gIm} for B ⊆M

For A ⊆ G, B ⊆ M , a pair (A,B) such that A′ = B and B′ = A, is called
a (formal) concept while A is called the extent and the set B the intent of
the concept. Concepts are partially ordered by (A1, B1) ≤ (A2, B2) ⇔ A1 ⊆
A2 (⇔ B2 ⊆ B1): the set of all formal concepts forms a complete lattice called
the concept lattice of the formal context (G,M, I). An implication of a formal
context (G,M, I) is denoted by X → Y , X,Y ⊆ M and means that all objects
from G having the attributes in X also have the attributes in Y , i.e. X ′ ⊆ Y ′.
Implications obey the Armstrong rules (reflexivity, augmentation, transitivity).

m1 m2 m3

g1 x
g2 x x
g3 x x
g4 x x

Example. The table on the left presents a
formal context: we have ({g3}′′, {g3}′) =
({g3, g4}, {m2,m3}) and the implication m1 →
m2. Its concept lattice representation involves
reduced labeling : each node is a concept, lines
represent partial ordering while an attribute
(resp. object) label is inherited from the top
(resp. the bottom).
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2.3 Characterization of Functional Dependencies with FCA

It has been shown in previous work that functional dependencies, can be char-
acterized with FCA. For example, Ganter & Wille [7] presented a data transfor-
mation of the initial set of tuples into a formal context. In this context, implica-
tions are in 1-to-1 correspondence with the functional dependencies of the initial
dataset. In Figure 1, we illustrate this characterization with the set of tuples
of Table 2. Each possible pair of tuples gives rise to an object in the formal
context. Attributes remain the same. An object, say (ti, tj), has an attribute m
iff ti(m) = tj(m). The concept lattice is given on the right hand side of this
figure: there are two implications, namely d→ c and d→ a, which are also the
functional dependencies in the original set of tuples.

However, this approach implies that a formal context much larger than the
original dataset must be processed. It was then shown that this formal context
can actually be encoded with a pattern structure [6]: each attribute of the original
dataset becomes an object of the pattern structure and is described by a partition
on the tuple set. Actually, each block of the partition is composed of tuples taking
the same value for the given attribute [9]. For example, in Table 2, the partition
describing a is {{t1, t3}, {t2, t4}}. Then, the implications in the pattern concept
lattice are here again in 1-to-1 correspondence with the functional dependencies
of the initial dataset [3]. What is important to notice is that this formalization
is possible as a partition is an equivalence relation: a symmetric, reflexive and
transitive binary relation.

In [2], another kind of dependencies was formalized in a similar way, i.e.
similarity dependencies, where the equality relation is relaxed to a similarity
relation when comparing two tuples. An attribute is not anymore described by a
partition, but by a tolerance relation, i.e. a symmetric, reflexive, but not neces-
sarily transitive binary relation (“the friends of my friends are not necessarily my
friends”). Each original attribute is then described by a set of tolerance blocks,
each being a maximal set of tuples that have pairwise similar values (instead of
equal values for classical dependencies).

This way of characterizing FDs and similarity dependencies actually fails for
order dependencies, as the relation in this case is not symmetric: it is neither an
equality nor a similarity but a partial order in the general case.

3 Characterization of Order Dependencies with FCA

Although functional dependencies are used in several domains they cannot be
used to express some relationships that exist in data. Many generalizations have
been proposed and we focus in this article on order dependencies [8,4]. Such
dependencies are based on the attribute-wise order on tuples. This order assumes
that each attribute follows a partial order associated to the values of its domain.
For the sake of generality, we represent this order with the symbol vx for all
x ∈ U . In practice, this symbol will be instantiated by intersections of any
partial order on the domain of this attribute, as, for instance, <,≤, >,≥, etc.
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id a b c d

t1 1 3 4 1

t2 4 3 4 3

t3 1 8 4 1

t4 4 3 7 8

K a b c d

(t1, t2) × ×
(t1, t3) × × ×
(t1, t4) ×
(t2, t3) ×
(t2, t4) × ×
(t3, t4)

Fig. 1: Characterizing functional dependencies with FCA.

We remark that this order on the set of values of a single attribute does not
need to be a total order, although in many different instances, like numeric or
character strings domains, this will be the case. In the following, we formalize
operator vx (Definition 2) and define accordingly order dependencies (Definition
3).

Definition 2 (Attribute-wise ordering). Given two tuples ti, tj ∈ T and a
set of attributes X ⊆ U , the attribute-wise order of these two tuples on X is:

ti vX tj ⇔ ∀x ∈ X : ti[x] vx tj [x]

This definition states that one tuple is greater –in a sense involving the order of
all attributes– than another tuple if their attribute-wise values meet this order.
This operator induces a partial order ΠX = (T,≺X) on the set T of tuples.

Definition 3 (Order dependency). Let X,Y ⊆ U be two subsets of attributes
in a dataset T . An order dependency X → Y holds in T if and only if:

∀ti, tj ∈ T : ti vX tj → ti vY tj

id a b c

t1 1 3 1
t2 2 7 2
t3 3 4 4
t4 5 3 9
t5 4 2 5
t6 3 8 4

Table 3

Example. Consider the table on the right with six tuples and three
attributes. Taking va, vb and vc defined as the ordering ≤. The
orders induced by the sets of attributes {a},{b},{c} and {a, b} are:

Πa = (T,≺a) = {{t1} ≺ {t2} ≺ {t3, t6} ≺ {t5} ≺ {t4}}
Πb = (T,≺b) = {{t5} ≺ {t1, t4} ≺ {t3} ≺ {t2} ≺ {t6}}
Πab = (T,≺ab) = {{t1} ≺ {t2} ≺ {t6};

{t1} ≺ {t3};
{t1} ≺ {t4};
{t5} ≺ {t4}}

Πc = (T,≺c) = {{t1} ≺ {t2} ≺ {t3, t6} ≺ {t5} ≺ {t4}}
These orders are such that the order dependency {a, b} → {c} holds. Remark

that Definition 3 is generic since the orders that are assumed for each attribute
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need to be instantiated: we chose ≤ in this example for all attributes, while
taking the equality would produce standard functional dependencies.

To achieve the characterization of order dependencies with FCA, we propose
to represent the partial order ΠX = (T,≺X) associated to each subset of at-
tribute X ⊆ U as a formal context KX (a binary relation on T × T thanks to
a general ordinal scaling [7]). Then, we show that an order dependency X → Y
holds iff KX = KXY .

Definition 4 (General ordinal scaling of the tuple set). Given a subset
of attributes X ⊆ U and a table dataset T , we define a formal context for ΠX =
(T,≺X) (the partial order it induces) as follows:

KX = (T, T,@X)

where @X= {(ti, tj) | ti, tj ∈ T, ti vX tj}. This formal context is the general
ordinal scale of ΠX [7]. All formal concepts (A,B) ∈ KX are such that A is the
set of lower bounds of B and B is the set of upper bounds of A. Its concept lattice
is the smallest complete lattice in which the order ΠX can be order embedded.

This way to characterize a partial order is only one among several pos-
sibilities. However, the choice of formal contexts is due to their versatility,
since they can characterize binary relations, hierarchies, dependencies, differ-
ent orders [7] and graphs [5]. In the next section we will see how this versatil-
ity allows us to generalize similarity dependencies. Given the set of attributes
X ⊆ U , an associated partial order ΠX = (T,≺X) and the formal context
(T, T,@X), it is easy to show that the later is a composition of contexts defined
as: (T, T,@X) = (T, T,

⋂
x∈X
@x).

We can now propose a characterization of order dependencies with FCA.

Proposition 1. An order dependency X → Y holds in T iff KX = KXY .

Proof. Recall that KXY = (T, T,@XY ) = (T, T,@X ∩ @Y ). We have that

X → Y ⇐⇒ @X=@X ∩ @Y
⇐⇒ @X ⊆@Y
⇐⇒ ∀ti, tj ∈ T, ti vX tj → ti vY tj

Example. To calculate (T, T,@ab), we just need to calculate (T, T,@a ∩ @b), as
illustrated in the example below.

@a t1 t2 t3 t4 t5 t6
t1 × × × × ×
t2 × × × ×
t3 × ×
t4
t5 ×
t6 × ×

Table 4: (T, T,@a)

@b t1 t2 t3 t4 t5 t6
t1 × × ×
t2 ×
t3 × ×
t4 × × ×
t5 × × × × ×
t6

Table 5: (T, T,@b)

@ab t1 t2 t3 t4 t5 t6
t1 × × ×
t2 ×
t3
t4
t5 ×
t6

Table 6: (T, T,@ab)
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The fact that the order dependency {a, b} → {c} holds can be illustrated
with the formal contexts in Tables 7,8 and 9. We have indeed that Kab = Kabc.

@c t1 t2 t3 t4 t5 t6
t1 × × × × ×
t2 × × × ×
t3 × × ×
t4
t5 ×
t6 × ×

Table 7: (T, T,@c)

@ab t1 t2 t3 t4 t5 t6
t1 × × ×
t2 ×
t3
t4
t5 ×
t6

Table 8: (T, T,@ab)

@abc t1 t2 t3 t4 t5 t6
t1 × × ×
t2 ×
t3
t4
t5 ×
t6

Table 9: (T, T,@abc)

Order dependencies and other FDs generalizations. We have seen that
the definition of order dependencies replaces the equality condition present in
FDs or other similarity measures present in other dependencies, by an order
relation. This may suggest that order dependencies and other kinds of FDs gen-
eralizations are structurally very similar, whereas this is not the case. Functional
dependencies generate a reflexive, symmetric and transitive relation in the set
of tuples, i.e. an equivalence relation. Then the set of tuples can be partitioned
into equivalence classes that are used to characterize and compute the set of
FDs holding in a dataset, as presented in a previous work [3].

In the generalization of functional dependencies that replaces the equality
condition by a similarity measure or a distance function, this measure generates
a symmetric relation in the set of tuples, but not necessarily a transitive relation.
In turn, this implies that the set of tuples can be partitioned into blocks of
tolerance instead of equivalence classes, as shown in [2].

In this article, the novelty is that we are dealing with a transitive relation,
but not necessarily a symmetric relation. That means that we are not dealing
with equivalence classes nor blocks of tolerance any longer, but, precisely, with
orders. And since the characterization of these dependencies cannot be performed
in terms of equivalence classes nor blocks of tolerance, will use a more general
approach: general ordinal scaling.

4 Characterization of Restricted Order Dependencies

Time People waiting
t1 10:00 101
t2 10:20 103
t3 10:40 105
t4 11:00 77
t5 11:20 80
t6 11:40 85

Table 10

Order dependencies allow taking into account the or-
dering of the values of each attribute when looking for
dependencies in data. However, violations of the or-
dering due to value variations should sometimes not
be considered in many real world scenarios. Consider
the example given in Table 10: it gives variations on
the number of people waiting at a bus station over
time. In such a scenario we can expect that more people will be waiting in the
station as time moves on (People waiting → Time). However, at some point,
a bus arrives and the number of people waiting decreases and starts increasing
again. It is easy to observe that the order dependency People waiting → Time
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does not hold as we have the counter-example:

t4 vPeople waiting t3 and t3 vTime t4
However, the gap between the values 77 and 105 is significant enough to be

considered as a different instance of the ordering. We can formalize this idea
by introducing a similarity threshold θ = 10 for the attribute People waiting
such that the ordering between values is checked iff the difference is smaller than
θ. In this way, the previous counter-example is avoided (restricting the binary
relation) along with any other counter-example and we have that the restricted
order dependency People waiting → Time holds.

We now formalize the tuple ordering relation, and consequently the notion
of restricted order dependencies.

Definition 5. Given two tuples ti, tj ∈ T and a set of attributes X ⊆ U , the
attribute-wise order of these two tuples on X is:

ti v∗x tj ⇔ ∀x ∈ X : 0 ≤ tj [x]− ti[x] ≤ θx
Definition 6. Let X,Y ⊆ U two sets of attributes in a table T such that |T | = n,
and let θX , θY be thresholds values of tuples in X and Y respectively. A restricted
order dependency X → Y holds in T if and only if:

t[X] v∗X t′[X]→ t[Y ] v∗Y t′[Y ]

Using these definitions we can encode the tuple ordering relations as formal
contexts for any subset of attributes X ⊆ U . Indeed, the binary relations between
tuples by operator v∗X can be encoded in a formal context K∗X = (T, T,v∗X)
which in turn, can be composed from single attributes x ∈ U as follows:

v∗X=
⋂

x∈X
v∗x

Moreover, we can use the same rationale we used to mine order dependencies
to find restricted order dependencies.

Proposition 2. A restricted order dependency X → Y holds in T iff

X → Y ⇐⇒ K∗X = K∗XY
Proof. This proposition can be proved similarly to Proposition 1.

Example. For the previous example, we calculate the corresponding formal con-
texts shown in Tables 11 and 12 (v∗Tm for Time, and v∗Pp for People waiting). It
is easy to observe that the restricted order dependency People waiting → Time
holds as we have that K∗Pp = K∗Pp,Tm.

v∗
Tm t1 t2 t3 t4 t5 t6
t1 × × × × × ×
t2 × × × × ×
t3 × × × ×
t4 × × ×
t5 × ×
t6 ×

Table 11: (T, T,v∗Tm)

v∗
Pp t1 t2 t3 t4 t5 t6

t1 × × ×
t2 × ×
t3 ×
t4 × × ×
t5 × ×
t6 ×

Table 12: (T, T,v∗Pp)

v∗
Tm,Pp t1 t2 t3 t4 t5 t6
t1 × × ×
t2 × ×
t3 ×
t4 × × ×
t5 × ×
t6 ×

Table 13: (T, T,v∗Tm,Pp)
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Restricted order dependencies and other FDs generalizations. Simi-
larity dependencies (SDs) generalize functional dependencies through the use of
a tolerance relation instead of an equivalence relation between values of tuples
for a given set of attributes. A tolerance relation is a reflexive, symmetric and
non-transitive binary association between two tuples given a threshold θ. In a
nutshell, a SD is established between two tuples if their values are within a
given distance controlled by the threshold. Such dependencies were studied in
a previous work [2]. However, from the perspective of order dependencies, we
can request that such distance has a certain polarity. As we have previously dis-
cussed, order dependencies arise from anti-symmetric, not necessarily reflexive,
and transitive binary relations (<,≤). Then, it can be expected that using a
threshold of distance θ between tuple values for a given set of attributes requires
an antisymmetric, non-transitive relation between the values of tuples w.r.t. a
set of attributes X, that we have defined as v∗X .

Observe that the difference between Definition 5 and tolerance relations is
the drop of the absolute value for tj [x] − ti[x] and the requirement that this is
a positive number, i.e. ti[x] < tj [x],∀x ∈ X. There is an important difference
between this setting and SDs. While in SDs the threshold θ is used to relax
the strict equivalence condition of standard functional dependencies, from the
perspective of order dependencies the threshold is actually used to restrict tuple
relations.

Restricted order dependencies have the potential to implement some other
generalizations of FDs such as sequential dependencies and trend dependen-
cies [4]. The latter is actually a particular case of restricted order dependencies
where the threshold is applied to an attribute not contained in the attributes
of the dependency. Instead, it is applied to a time attribute that allows defin-
ing a snapshot of the database. In sequential dependencies, the antecedent is a
mapping (ρ) of a set of attributes with a complete unrestricted order (without
a threshold). Currently, we are able to support some instances of sequential de-
pendencies when the mapping is symmetric (ρ(XY ) = ρ(Y X)). Details on this
matter has been left out from this paper for space reasons. Rather, in the fol-
lowing section we describe another dependency which is not symmetric, namely
lexicographical ordered dependencies (LODs), that exemplifies the flexibility of
our approach to support complex dependency definitions.

5 Lexicographical ordered dependencies LODs

LODs use the notion of lexicographical ordering in a rather unconventional man-
ner5. While it could be expected that they compare the values of different at-
tributes using lexicographical order, instead new descriptions (or projections) are
composed from the Cartesian product of attribute domains on which the lexi-
cographical order is applied [11]. Consequently, the order in which we compose
new descriptions becomes relevant.

5 Consider lexicographical order as the order of words in a dictionary.
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For example, in Table 14 we compose a description using the ordered set X =
〈b, e〉 such that the new descriptions or projections of tuples t1, t2 onX are tX1 =<
3, 5 > and tX2 =< 4, 0 > respectively. It is clear that tX1 is lexicographically lower
than tX2 . However, considering Y = 〈e, b〉 which is the inverse of X, we have
tY1 = 53 and tY2 = 04 where tY2 is lexicographically lower than tY1 . Definition 7
formalizes lexicographical ordering for tuple projections.

Definition 7 ([11]). Let X ⊆M be an ordered set, such that n = |X|, and let
[1, n] be the set of indices of the ordered set X. A lexicographical ordering on X,
denoted by ≤lX is defined for tX1 , t

X
2 as tX1 ≤lX tX2 , if either:

1. ∃k ∈ [1, n] s.t. tX1 [k] < tX2 [k] and tX1 [j] = tX2 [j] with j ∈ [1, k[.
2. tX1 [i] = tX2 [i], ∀i ∈ [1, n]

The main difference between LODs and standard order dependencies is that
LODs are established over ordered sets and thus, the LOD 〈a, b〉 〈c〉 does not
imply that 〈b, a〉  〈c〉 holds, where  is used to denote a LOD. Definition 8
formalizes lexicographical order dependencies.

Definition 8 ([11]). Let X,Y ⊆ U be two ordered attribute sets. A LOD,
X  Y is satisfied iff for all t1, t2 ∈ r, tX1 ≤lX tX2 implies that tY1 ≤lY tY2 .

In Table 14, we have the LOD 〈c, a, b〉  〈d, e〉 which can be verified as
follows. Let X = 〈c, a, b〉 and Y = 〈d, e〉.

(tX1 = 123) ≤lX (tX2 = 124)→ (tY1 = 45) ≤lX (tY2 = 60)

a b c d e
t1 2 3 1 4 5
t2 2 4 1 6 0

Table 14: Example

≤l〈e,d〉 t1 t2
t1 ×
t2 × ×

Table 15: Kled

≤l〈d,e〉 t1 t2
t1 × ×
t2 ×

Table 16: Klde
As pointed out in [11], a LOD between single attributes is necessarily an

order dependency (with a single attribute there is only one order). Furthermore,
given point 2 of Definition 7, all functional dependencies are also LODs. This
includes the permutations of the antecedent and the consequent of a FD.

In our setting, we have described that a context can be build to encode tuple
relations for a given order operator (e.g. vX ,v∗X) w.r.t. a set of attributes X.
Regarding LODs, this cannot be the case as the set of attributes X is required
to be ordered, meaning that the context Klxy is not necessarily the same as the

context Klyx for x, y ∈ U (Kl indicates a formal context encoding a lexicograph-

ical ordering ≤l). For example, from Table 14 we can build a formal context
encoding ≤l〈e,d〉 (shown in Table 15) where t2 ≤l〈e,d〉 t1, and a different formal

context encoding ≤l〈d,e〉 (shown in Table 16) where t1 ≤l〈d,e〉 t2.
Nevertheless, a close inspection to a generic LOD X  Y reveals that it

requires a series of order-like dependencies to hold to be satisfied. For example,
if X  Y then the functional dependency X → Y holds. We can prove this
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as follows. Consider two tuples such that tXi = tXj (their projections w.r.t. X

are equivalent). Then, ti ≤lX tj and tj ≤lX ti which, if X  Y holds, implies
that ti ≤lY tj and tj ≤lY ti which is the same as tYi = tYj . Clearly, tXi = tXj
regardless the order of attributes in X and thus we have a functional dependency
X → Y . Now, consider the first attribute of X, x1 and the first attribute of Y ,
y1. Necessarily, t[x1] < t′[x1] → t[y1] ≤ t′[y1] which is an order-like dependency
between x1 and y1. Similar analysis can be used to obtain sufficient rules so
X  Y .

For the sake of brevity, we describe a simple algorithm verifying that the LOD
X  Y holds by checking a cascade of order-like dependencies obtained using
the previous analysis. Table 5 presents an example of this algorithm applied to
a table containing a LOD. For each attribute x ∈ U we generate three different
formal contexts, namely K=

x = (T, T,=x), K<x = (T, T,<x) and K≤x = (T, T,≤x).
Then, we proceed as follows:

– Check functional dependency X → Y
– For the i-th element of Y , yi:
• Build Kψ = K=

y1 ∩K=
y2 ∩K=

y3 ∩ · · · ∩K=
yi−1

• For the j-th element of X, xj :
∗ Build Kχ = K=

x1
∩K=

x2
∩K=

x3
∩ · · · ∩K=

xj−1

∗ Check the order-like dependency (Kχ ∩K<xj
∩Kψ) ⊆ K≤yi

Checking 〈a, b〉 〈c, d〉:

– K=
ab is empty and the FD ab→ cd holds.

– For the first element of 〈c, d〉:
• K<

a = {(t1, t2)} ⊆ K≤
c = {(t1, t2), (t1, t3), (t2, t3), (t3, t2)}

• K=
a ∩ K<

b = {(t2, t3)} ⊆ K≤
c = {(t1, t2), (t1, t3), (t2, t3), (t3, t2)}

– For the second element of element of 〈c, d〉:
• K<

a ∩ K=
c = ∅ ⊆ K≤

d = {(t2, t3)}
• K=

a ∩ K<
b ∩ K=

c = {(t2, t3)} ⊆ K≤
d = {(t2, t3)}

a b c d
t1 1 ? 1 ?
t2 2 1 2 1
t3 2 2 2 2

Table 17:
Example

6 Conclusion

Different generalizations of functional dependencies have been defined. The def-
inition of a new kind of generalization of functional dependencies needs to cover
two different aspects: axiomatization and computation.

We have presented a characterization of order dependencies with FCA, which
can be potentially extended to other types of order-like dependencies, and are
used in many fields in database theory, knowledge discovery and data quality.

These dependencies are part of a set of functional dependencies generaliza-
tions where equality condition is replaced with a more general relation. In some
cases, the equality is replaced by an approximate measure, in other cases, like
in order dependencies, by an order relation.

We have seen that order dependencies are based on a transitive, but not nec-
essarily symmetric relation, contrasting approximate dependencies, which are
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based on a symmetric, but not necessarily transitive relation. It is precisely this
formalization in terms of FCA that allows us to find these structural differences
between these types of dependencies. We have also seen that this same charac-
terization can be extended to other kinds of approximate dependencies.

This characterization allows us to cover also the computation of these depen-
dencies: they can use the different algorithms that already exist in FCA.

This present work needs to be extended to other kinds of order-like depen-
dencies, and some experimentation needs to be performed in order to verify the
computational feasibility of this approach.
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Abstract. Removing redundant information in databases is a key issue
in Formal Concept Analysis. This paper introduces several results on the
attributes that generate the meet-irreducible elements of a multi-adjoint
concept lattice, in order to provide different properties of the reducts in
this framework. Moreover, the reducts of particular multi-adjoint concept
lattices have been computed in different examples.
Keywords: attribute reduction, reduct, multi-adjoint concept lattice

1 Introduction

Attribute reduction is an important research topic in Formal Concept Analysis
(FCA) [1, 4, 10, 15]. Reducts are the minimal subsets of attributes needed in or-
der to compute a lattice isomorphic to the original one, that is, that preserve
the whole information of the original database. Hence, the computation of these
sets is very interesting. For example, they are useful in order to obtain attribute
implications and, since the complexity to build concept lattices directly depend
on the number of attributes and objects, if a reduct can be detected before com-
puting the whole concept lattice, the complexity will significantly be decreased.

Different fuzzy extensions of FCA have been introduced [2, 3, 9, 14]. One of
the most general is the multi-adjoint concept lattice framework [11, 12]. Based
on a characterization of the meet-irreducible elements of a multi-adjoint concept
lattice, a suitable attribute reduction method has recently been presented in [6].
In this paper the notions of absolutely necessary, relatively necessary and ab-
solutely unnecessary attribute, as in Rough Set Theory (RST) [13], have been
considered in order to classify the set of attributes. This classification provides
a procedure to know whether an attribute should be considered or not. Con-
sequently, it can be used to extract reducts. In addition, when the attribute
classification verifies that the set of relatively necessary attributes is not empty
several reducts can be obtained.

Due to the relation between the given attribute classification and the meet-
irreducible elements of a concept lattice, this paper studies the attributes that
generate the meet-irreducible elements of a multi-adjoint concept lattice. From
the introduced results, different properties of the corresponding reducts have

c© Marianne Huchard, Sergei O. Kuznetsov (Eds.): CLA 2016, pp. 135–146,
ISBN 978-5-600-01454-1, National Research University Higher School of Economics,
2016.



been presented. In addition, two examples in which the reducts of particular
multi-adjoint concept lattices have been included.

2 Preliminaries

A brief summary with the basic notions and results related to attribute classifi-
cation in the fuzzy framework of multi-adjoint concept lattices is presented.

2.1 Multi-adjoint concept lattices

First of all, we will recall the definitions of multi-adjoint frame and context where
the operators to carry out the calculus are adjoint triples [7, 8].

Definition 1. A multi-adjoint frame is a tuple (L1, L2, P,&1, . . . ,&n) where
(L1,�1) and (L2,�2) are complete lattices, (P,≤) is a poset and (&i,↙i,↖i)
is an adjoint triple with respect to L1, L2, P , for all i ∈ {1, . . . , n}.

Definition 2. Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame, a context is
a tuple (A,B,R, σ) such that A and B are nonempty sets (usually interpreted
as attributes and objects, respectively), R is a P -fuzzy relation R : A × B → P
and σ : A×B → {1, . . . , n} is a mapping which associates any element in A×B
with some particular adjoint triple in the frame.

In order to introduce the multi-adjoint concept lattice associated with this
frame and this context, two concept-forming operators ↑ : LB2 → LA1 and ↓ : LA1 →
LB2 are considered. These operators are defined as

g↑(a) = inf{R(a, b)↙σ(a,b) g(b) | b ∈ B} (1)

f↓(b) = inf{R(a, b)↖σ(a,b) f(a) | a ∈ A} (2)

for all g ∈ LB2 , f ∈ LA1 and a ∈ A, b ∈ B, where LB2 and LA1 denote the set
of mappings g : B → L2 and f : A → L1, respectively, which form a Galois
connection [12].

By using the concept-forming operators, a multi-adjoint concept is defined
as a pair 〈g, f〉 with g ∈ LB2 , f ∈ LA1 satisfying g↑ = f and f↓ = g. The fuzzy
subsets of objects g (resp. fuzzy subsets of attributes f) are called extensions
(resp. intensions) of the concepts.

Definition 3. The multi-adjoint concept lattice associated with a multi-adjoint
frame (L1, L2, P,&1, . . . ,&n) and a context (A,B,R, σ) given, is the set

M = {〈g, f〉 | g ∈ LB2 , f ∈ LA1 and g↑ = f, f↓ = g}

where the ordering is defined by 〈g1, f1〉 � 〈g2, f2〉 if and only if g1 �2 g2 (equiv-
alently f2 �1 f1).
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A classification of the attributes of a multi-adjoint context from a characteri-
zation of the ∧-irreducible elements of the corresponding concept lattice (M,�)
was given in [5, 6]. Before introducing this classification, the characterization the-
orem must be recalled. First and foremost, it is necessary to define the following
specific family of fuzzy subsets of attributes.

Definition 4. For each a ∈ A, the fuzzy subsets of attributes φa,x ∈ LA1 defined,
for all x ∈ L1, as

φa,x(a′) =

{
x if a′ = a
⊥1 if a′ 6= a

will be called fuzzy-attributes, where ⊥1 is the minimum element in L1. The set
of all fuzzy-attributes will be denoted as Φ = {φa,x | a ∈ A, x ∈ L1}.

Theorem 1 ([5]). The set of ∧-irreducible elements of M, MF (A), is formed
by the pairs 〈φ↓a,x, φ↓↑a,x〉 in M, with a ∈ A and x ∈ L1, such that

φ↓a,x 6=
∧
{φ↓ai,xi

| φai,xi
∈ Φ, φ↓a,x ≺2 φ

↓
ai,xi
}

and φ↓a,x 6= g>2
, where >2 is the maximum element in L2 and g>2

: B → L2 is
the fuzzy subset defined as g>2

(b) = >2, for all b ∈ B.

2.2 Attribute classification

The main results, related to the attribute classification in a multi-adjoint concept
lattice framework, were established by meet-irreducible elements of the concept
lattice and the notions of consistent set and reduct [6]. For that reason, we will
recall the following definitions.

Definition 5. A set of attributes Y ⊆ A is a consistent set of (A,B,R, σ) if
the following isomorphism holds:

M(Y,B,RY , σY×B) ∼=E M(A,B,R, σ)

This is equivalent to say that, for all 〈g, f〉 ∈ M(A,B,R, σ), there exists a
concept 〈g′, f ′〉 ∈ M(Y,B,RY , σY×B) such that g = g′.

Moreover, if M(Y \ {a}, B,RY \{a}, σY \{a}×B) 6∼=E M(A,B,R, σ), for all
a ∈ Y , then Y is called a reduct of (A,B,R, σ).

The core of (A,B,R, σ) is the intersection of all the reducts of (A,B,R, σ).

A classification of the attributes can be given from the reducts of a context.

Definition 6. Given a formal context (A,B,R, σ) and the set Y = {Y ⊆ A |
Y is a reduct} of all reducts of (A,B,R, σ). The set of attributes A can be divided
into the following three parts:

1. Absolutely necessary attributes (core attribute) Cf =
⋂
Y ∈Y Y .

2. Relatively necessary attributes Kf = (
⋃
Y ∈Y Y ) \ (

⋂
Y ∈Y Y ).
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3. Absolutely unnecessary attributes If = A \ (
⋃
Y ∈Y Y ).

The attribute classification theorems introduced in [6] are based on the pre-
vious notions and are recalled below.

Theorem 2 ([6]). Given ai ∈ A, we have that ai ∈ Cf if and only if there exists
xi ∈ L1, such that 〈φ↓ai,xi

, φ↓↑ai,xi
〉 ∈ MF (A), satisfying that 〈φ↓ai,xi

, φ↓↑ai,xi
〉 6=

〈φ↓aj ,xj
, φ↓↑aj ,xj

〉, for all xj ∈ L1 and aj ∈ A, with aj 6= ai.

Theorem 3 ([6]). Given ai ∈ A, we have that ai ∈ Kf if and only if ai /∈ Cf
and there exists 〈φ↓ai,xi

, φ↓↑ai,xi
〉 ∈MF (A) satisfying that Eai,xi

is not empty and
A \ Eai,xi is a consistent set, where the sets Eai,x with ai ∈ A and x ∈ L1 are
defined as:

Eai,x = {aj ∈ A \ {ai} | there exist x′ ∈ L1, satisfying φ↓ai,x = φ↓aj ,x′}

Theorem 4 ([6]). Given ai ∈ A, it is absolutely unnecessary, ai ∈ If , if and
only if, for each xi ∈ L1, we have that 〈φ↓ai,xi

, φ↓↑ai,xi
〉 6∈ MF (A), or in the case

that 〈φ↓ai,xi
, φ↓↑ai,xi

〉 ∈MF (A), then A \ Eai,xi
is not a consistent set.

The classification of the set of attributes in absolutely necessary, relatively
necessary and absolutely unnecessary attributes, provided by the previous theo-
rems, will allow us to obtain reducts (minimal sets of attributes) in the following
section. Determining the reducts can entail an important reduction of the com-
putational complexity of the concept lattice.

3 Computing the reducts of a multi-adjoint concept
lattice

This section is focused on analyzing the construction process of reducts from
the attribute classification shown in the previous section. To begin with, the
attributes in the core, that is, the absolutely necessary attributes, are included
in all reducts and the unnecessary attributes must be removed.

The choice of the relatively necessary attributes is the main task in the
process, because several reducts are obtained when the set of relatively necessary
attributes is nonempty.

Hence, several issues raise, such as, how should we select the set of relatively
necessary attributes? What is the most efficient way to perform this process?
Do all the reducts have the same cardinality? How can we get a reduct with a
minimal number of attributes? This work establishes the first steps in order to
answer these questions.

Regarding a simplification in the selection of the relatively necessary at-
tributes, a subset of attributes associated with each concept will be considered.

Definition 7. Given a multi-adjoint frame (L1, L2, P,&1, . . . ,&n) and a con-
text (A,B,R, σ) with the associated concept lattice (M,≤). Let C be a concept
of (M,≤), we define the set of attributes generating C as the set:

Atg(C) = {ai ∈ A | there exists φai,x ∈ Φ such that 〈φ↓ai,x, φ↓↑ai,x〉 = C}

138 Maria Eugenia Cornejo Piñero et al.



Now, we will present several properties about the attributes of the context
which will be useful to build reducts in our context, together with some example
which illustrate them.

Proposition 1. If C is a meet-irreducible concept of (M,≤), then Atg(C) is a
nonempty set.

The following example was introduced in [6], in which an attribute classifi-
cation was given. Now, we will use it in order to clarify the previous result.

Example 1. Let (L,�,&G) be a multi-adjoint frame, where &G is the Gödel
conjunctor with respect to L = {0, 0.5, 1}. In this framework, the context is
(A,B,R, σ), where A = {a1, a2, a3, a4, a5}, B = {b1, b2, b3}, R : A × B → L is
given by the table in Figure 1, and σ is constant.

R b1 b2 b3

a1 1 1 0

a2 0.5 1 0

a3 0.5 1 0

a4 1 1 0.5

a5 1 1 1

C0

C1

C2

C3

Fig. 1. Relation R and Hasse diagram of Example 1.

The concept lattice of the considered framework and context are displayed in
Figure 1, from which it is easy to see that the meet-irreducible elements are C0,
C1 and C2. Now, we will show that the sets Atg(C0), Atg(C1) and Atg(C2) are
not empty. For that, the fuzzy-attributes associated with the meet-irreducible
concepts need to be obtained. Applying the concept-forming operators to the
fuzzy-attributes we have

〈φ↓a4,1.0, φ
↓↑
a4,1.0

〉 = C2

〈φ↓a1,0.5, φ
↓↑
a1,0.5

〉 = 〈φ↓a1,1.0, φ
↓↑
a1,1.0

〉 = 〈φ↓a2,0.5, φ
↓↑
a2,0.5

〉 = 〈φ↓a3,0.5, φ
↓↑
a3,0.5

〉 = C1

〈φ↓a2,1.0, φ
↓↑
a2,1.0

〉 = 〈φ↓a3,1.0, φ
↓↑
a3,1.0

〉 = C0

obtaining the association which is written in Table 1.
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MF (A) Fuzzy-attributes generating the meet-irreducible concept

C0 φa2,1, φa3,1
C1 φa1,0.5, φa1,1, φa2,0.5, φa3,0.5
C2 φa4,1

Table 1. Fuzzy-attributes generating the meet-irreducible concepts of Example 1.

From this table, the sets of attributes generating these concepts are straight-
forwardly determined:

Atg(C0) = {a2, a3}
Atg(C1) = {a1, a2, a3}
Atg(C2) = {a4}

Hence, these subsets of attributes are nonempty as Proposition 1 shows. ut

The following proposition characterizes the singleton sets of attributes gen-
erating a concept.

Proposition 2. If C is a meet-irreducible concept of (M,≤) satisfying that
card(Atg(C)) = 1, then Atg(C) ⊆ Cf .

Example 2. In the framework of Example 1, if we consider the concept C2

then we see that the hypothesis given in Proposition 2 are satisfied, that is
card(Atg(C2)) = 1, and consequently Atg(C2) = {a4} ⊆ Cf .

This can be checked from the attribute classification given from Table 1 and
the classification theorems:

If = {a1, a5}
Kf = {a2, a3}
Cf = {a4}

ut

Note that the counterpart of the previous proposition is not true, in gen-
eral. That is, we can find a ∈ Cf such that a ∈ Atg(C) and satisfying that
card(Atg(C)) ≥ 1. What we can assert is that we can always find a meet-
irreducible element C satisfying that card(Atg(C)) = 1, if the core is nonempty,
as the following proposition explains.

Proposition 3. If the attribute a ∈ Cf then there exists C ∈MF (A) such that
a ∈ Atg(C) and card(Atg(C)) = 1.

Example 3. Coming back to Example 1, we can ensure that the attribute a4
belongs to Cf and, as Proposition 3 shows, there exists a concept in MF (A),
which is C2, verifying that a4 ∈ Atg(C2) and card(Atg(C2)) = 1. ut

As a consequence of the above properties, the following corollary holds.
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Corollary 1. If C is a meet-irreducible concept of (M,≤) and Atg(C)∩Kf 6= ∅
then card(Atg(C)) ≥ 2.

Example 4. In Example 1, the concept C1 is a meet-irreducible element such
that Atg(C1) ∩Kf = {a1, a2, a3} ∩ {a2, a3} = {a2, a3} 6= ∅. As a consequence,
we have that card(Atg(C1)) = 3 ≥ 2 as Corollary 1 shows. ut

The next proposition guarantees that, if a meet-irreducible concept C is
obtained from a relatively necessary attribute, then there does not exist an
attribute in the core belonging to Atg(C).

Proposition 4. Let C be a meet-irreducible concept. Atg(C) ∩Kf 6= ∅ if and
only if Atg(C) ∩ Cf = ∅.

Example 5. Considering the meet-irreducible concept C0 of Example 1, we have
that Atg(C0) ∩ Kf = {a2, a3}. Since this intersection is nonempty, applying
Proposition 4, we obtain that Atg(C0) ∩ Cf = {a2, a3} ∩ {a4} = ∅. A similar
situation is given if we take into account C1. ut

A lower bound and a upper bound of the cardinality of the reducts in a
multi-adjoint concept lattice framework are provided.

Proposition 5. Given GK = {Atg(C) | C ∈MF (A) and Atg(C) ∩Kf 6= ∅}
and any reduct Y of the context (A,B,R, σ). Then, the following chain is always
satisfied:

card(Cf ) ≤ card(Y ) ≤ card(Cf ) + card(GK)

Example 6. From Example 1, we can ensure that either attribute a2 or a3 is
needed (the attribute a1 is absolutely unnecessary) in order to obtain the meet-
irreducible concepts C0 and C1. Hence, since a4 ∈ Cf , two reducts Y1 = {a2, a4}
and Y2 = {a3, a4} exist. Thus, only two attributes are needed in order to consider
a concept lattice isomorphic to the original one. Now, we will see that these
reducts satisfy the previous proposition.

Since the set GK is composed by the attributes generating C0 and C1, we have
that GK = {{a2, a3}, {a1, a2, a3}}. Therefore, both reducts Y1 and Y2 satisfy the
inequalities in Proposition 5:

1 = card(Cf ) ≤ card(Y1) = card(Y2) ≤ card(Cf ) + card(GK) = 3

ut

The proposition below is fundamental in order to provide a sufficient condi-
tion to ensure that all the reducts have the same cardinality.

Proposition 6. If GK = {Atg(C) | C ∈MF (A) and Atg(C) ∩Kf 6= ∅} is a
partition of Kf , each attribute in Kf generates only one meet-irreducible element
of the concept lattice.

The following result states several conditions to guarantee that all the reducts
have the same cardinality.
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Theorem 5. When the set

GK = {Atg(C) | C ∈MF (A) and Atg(C) ∩Kf 6= ∅}

is a partition of Kf , then:

(a) All the reducts Y ⊆ A have the same cardinality and, specifically, the cardi-
nality is:

card(Y ) = card(Cf ) + card(GK)

(b) The number of different reducts obtained from the multi-adjoint context is

∏

Atg(C)∈GK
card(Atg(C))

Note that the previous theorem provides a sufficient condition in order to en-
sure that the cardinality of the reducts is the same, however it is not a necessary
condition as Example 6 reveals.

4 Worked out examples

This section begins with an illustrative example of Proposition 6 and Theo-
rem 5 that computes the reducts of a particular multi-adjoint concept lattice
framework, and shows that these reducts have the same cardinality.

Example 7. Let (L1, L2, L3,�,&∗G) be a multi-adjoint frame, where L1 = [0, 1]10,
L2 = [0, 1]4 and L3 = [0, 1]5 are regular partitions of [0, 1] in 10, 4 and 5 pieces,
respectively, and &∗G is the discretization of the Gödel conjunctor defined on
L1 × L2. We consider a context (A,B,R, σ), where A = {a1, a2, a3, a4, a5, a6},
B = {b1, b2, b3}, R : A × B → L3 is given by the table shown in the left side of
Figure 2 and σ is constantly &∗G.

In order to obtain reducts, we will study the meet-irreducible elements of the
concept lattice displayed in the right side of Figure 2 and the fuzzy-attributes
associated with them. From the corresponding Hasse diagram, we can assert
that MF (A) = {C1, C8, C9, C10, C13, C14}. The fuzzy-attributes related to these
concepts are shown in Table 2.

Applying the attribute classification theorems, we obtain:

Cf = {a1, a2}
Kf = {a3, a4, a5, a6}

Once we have classified the attributes, we are going to construct all possi-
ble reducts. Clearly, the attributes a1 and a2 must be included in all reducts.
Hence, it only remains to choose the relatively necessary attributes that should
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R a1 a2 a3 a4 a5 a6

b1 0.6 0.2 0.2 0 1 0.6

b2 0.8 0.4 0.6 0.6 1 0.8

b3 0.6 0.6 0.2 0 0 0

Fig. 2. Relation R (left side) and Hasse diagram of (M,�) (right side) of Example 7.

be contained in each reduct. For that purpose, we will analyze the attributes
generating each meet-irreducible concept:

Atg(C1) = {a3, a4}
Atg(C8) = {a1}
Atg(C9) = {a5, a6}

Atg(C10) = {a1}
Atg(C13) = {a2}
Atg(C14) = {a2}

Since Atg(C1) and Atg(C9) are disjoint subsets of Kf , we can guarantee that
GK is a partition of Kf and therefore:

(1) By Proposition 6, each attribute in Kf generates only one meet-irreducible
element of the concept lattice. From Table 2, it is easy to prove that the
attributes a3 and a4 only generate the meet-irreducible concept C1. The
concept C9 is uniquely generated by a5 and a6.

Reducts in Multi-Adjoint Concept Lattices 143



MF (A) Fuzzy-attributes generating the meet-irreducible concept

C1 φa3,0.7, φa3,0.8, φa3,0.9, φa3,1
φa4,0.7, φa4,0.8, φa4,0.9, φa4,1

C8 φa1,0.9, φa1,1
C9 φa5,0.1, φa5,0.2, φa5,0.3, φa5,0.4, φa5,0.5, φa5,0.6, φa5,0.7, φa5,0.8, φa5,0.9, φa5,1

φa6,0.1, φa6,0.2, φa6,0.3, φa6,0.4, φa6,0.5, φa6,0.6
C10 φa1,0.7, φa1,0.8
C13 φa2,0.3, φa2,0.4
C14 φa2,0.5, φa2,0.6

Table 2. Fuzzy-attributes generating the meet-irreducible concepts of Example 7.

(2) By Theorem 5, all the reducts have the same cardinality. Thus, since

GK = {Atg(C) | C ∈MF (A) and Atg(C) ∩Kf 6= ∅}
= {Atg(C1),Atg(C9)}
= {{a3, a4}, {a5, a6}}

we have that card(Y ) = card(Cf ) + card(GK) = 2 + 2 = 4, for any reduct
Y of the context. Moreover, the number of reducts that we obtain from this
context is ∏

Atg(C)∈GK
card(Atg(C)) = 2 · 2 = 4

Specifically, the whole set of reducts are listed below:

Y1 = {a1, a2, a3, a5}
Y2 = {a1, a2, a3, a6}
Y3 = {a1, a2, a4, a5}
Y4 = {a1, a2, a4, a6}

From the previous reducts, we obtain the following isomorphic concept lattices:

(M,�) ∼= (MY1 ,�) ∼= (MY2 ,�) ∼= (MY3 ,�) ∼= (MY4 ,�)

ut

Now, we will present a situation where the elements belonging to the set GK
are not a partition of Kf , and we will see that in this particular example several
reducts with different cardinality are obtained.

Example 8. Considering the same framework that in the previous example, we
fix a context (A,B,R, σ) where the set A consists of seven attributes, the set B
contains three objects and R is obtained from the relation of the previous ex-
ample with a few of changes shown in Table 3. Hence, we obtain an isomorphic
concept lattice to the one shown in Figure 2, but a different attribute classifica-
tion arises.
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Table 3. Definition of R

R a1 a2 a3 a4 a5 a6 a7

b1 0.6 0.2 0.2 1 0.6 0.2 0

b2 0.8 0.4 0.4 1 0.8 0.6 0.6

b3 0.6 0.6 0.2 0 0 0.2 0

The attributes are classified as follows:

Cf = {a1, a2}
Kf = {a4, a5, a6, a7}
If = {a3}

As a consequence, a1 and a2 must belong to all the reducts and a3 should
be removed. Analyzing the meet-irreducible elements and the fuzzy-attributes
generating them, we obtain:

Atg(C1) = {a6, a7}
Atg(C8) = {a1}
Atg(C9) = {a4, a5, a6}

Atg(C10) = {a1}
Atg(C13) = {a2}
Atg(C14) = {a2}

Now, we have to select one attribute of Atg(C1) and another one of Atg(C9)
in order to obtain the whole set of meet-irreducible concepts and compute the
reducts. However, in this case, Atg(C1) ⊆ Kf and Atg(C9) ⊆ Kf and the
intersection Atg(C1) ∩ Atg(C9) = a6 is nonempty. Therefore, the set GK =
{Atg(C1),Atg(C9)} is not a partition of Kf .

Consequently, we can obtain the following different reducts whose sizes de-
pend on the chosen attributes as we can see below:

Y1 = {a1, a2, a6}
Y2 = {a1, a2, a4, a7}
Y3 = {a1, a2, a5, a7}

ut
This example provides the idea that, in order to compute a minimal reduct,

with respect to the number of attributes, the relatively necessary attributes to
be taken into account must be the ones given in the intersection of the sets
Atg(C), with Atg(C) ∈ GK .

5 Conclusion and future work

Based on the attribute classification introduced in [6], a construction process of
the reducts of a multi-adjoint concept lattice has been shown. Several properties
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have been stated together with examples that illustrate the shown results. The
importance of the choice of the relatively necessary attributes for computing the
reducts has also been highlighted.

More properties related to reducts will be investigated in the future in order
to find the most profitable way to generate them. We are also interested in ob-
taining an algorithm that provides a reduct with a minimal number of attributes
for any multi-adjoint concept lattice framework given.

References
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Abstract. The paper is devoted to methods for identifying payment plans and 
services by mobile operators which are the best for the given subscribers. We 
base our research on the model-theoretic approach to domain formalization. We 
use Formal Concept Analysis for processing the mobile subscriber data. An On-
tological Model of the domain “Mobile Networks” is constructed in the scope 
of this research. The Ontological Model of the domain is constructed by inte-
gration of data extracted from depersonalized subscriber profiles. The signature 
of this Ontological Model contains unary predicates which describe subscriber 
behavior and features of payment plans and services. We consider formal con-
texts where objects are subscriber models and attributes are formulas of predi-
cate logic. We investigate concept lattices and association rules of these formal 
contexts. Knowledge about optimal payment plans and services for a given sub-
scriber is generated automatically with the help of the association rules. 

Keywords: mobile networks, mobile network subscribers, formal context, con-
cept lattice of formal context, association rules, ontology, ontological model. 

1 Introduction 

Mobile connection is a very important part of our life. Mobile operators provide the 
possibility to be in touch for people in different countries. Operators provide access to 
USSD-applications and to the Internet. 

Mobile operators develop various payment plans and services to satisfy their cli-
ents' needs. However it is difficult for mobile network subscribers to get up-to-date 
information about new payment plans or services. Mobile operators send SMS mes-
sages to inform clients about news. But it is very expensive to inform all subscribers 
about every small change or update of services. A possible solution of this problem is 
sending personal recommendations about services and payment plans that could be 
useful for a given subscriber. 

A visualization approach based on a graph of calls made by subscribers was used 
in [1] for mining behavior patterns of mobile network subscribers. A behavior pattern 
discovered during the graph exploration resulted in developing and applying a new 
payment plan. Development of methods for increasing the number of subscribers 
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using services by a mobile network is studied in [2]. An algorithm called Frequent 
Pattern-Growth Strategy is used for mining patterns in how subscribers use mobile 
network services. Optimization strategies are suggested by experts based on series of 
‘frequent’ sets. 

Formal Concept Analysis is a well-known formalism in data analysis and 
knowledge engineering, see recent surveys [3, 4]. Formal Concept Analysis is used to 
develop user behavior templates [5, 6]. These results are applied to planning and run-
ning marketing campaigns. 

Association rules for optimizing structures of menus for accessing mobile network 
services were constructed in [7]. The Apriori algorithm was used in [8] to develop 
association rules patterns in services visited during a single subscriber session. Today 
we have more effective algorithms for mining association rules, e.g. see [9]. 

Fuzzy concept lattices were first introduced in [10].  Papers [11-13] are devoted to 
definitions of fuzzy transaction, support and confidence of fuzzy association rules. 
The authors of [11] used an algorithm developed in [14] for building sets of fuzzy 
rules which describe dependencies between popular telecom services provided by 
mobile networks in Taiwan. 

Our research is devoted to methods for identifying payment plans and services 
which would be optimal for a given mobile network subscriber. Such knowledge al-
lows mobile operator to make really useful recommendations for subscribers.  

We base our research on the model-theoretic approach to domain formalization 
[15-18]. We use methods and techniques of Formal Concept Analysis for processing 
the mobile subscriber data. Now a lot of attention is paid to the relationships between 
FCA and models of knowledge representation and processing [19]. 

The ontological model of the domain “Mobile Networks” is constructed by integra-
tion of data extracted from depersonalized subscriber profiles. The signature of this 
ontological model contains unary predicates which describe subscriber behavior and 
features of payment plans and services. To generate meaningful recommendation of 
alternative services and payment plans, we define formal contexts where objects are 
subscriber models, and attributes are formulas of predicate logic. We investigate con-
cept lattices and association rules of these formal contexts to get high-quality recom-
mendation. To do this, we consider extensions of attribute sets of formal contexts.  

In [20] extensions of infinite attribute sets were considered, it was suggested to use 
concept descriptions of bounded depth. In [21] a new approach to reduce the number 
of attributes was presented. 

In this paper we consider finite extensions of the initial finite context. We use in-
terrelation between axiomatizable classes and FCA [22]. Section 2.1 is devoted to 
isomorphisms between lattices of relatively axiomatizable classes of one-element 
models and lattices of formal concepts of formal contexts generated by these classes. 
Section 2.2 describes extensions of such formal contexts having distributive concept 
lattices. 

The main purpose of this paper is to develop methods of identifying payment plans 
and services which would be optimal for the given mobile network subscriber. To do 
this, firstly, we construct Case Model based on the known information about behavior 
patterns of mobile network subscribers (Section 2.2). We represent the Case Model as 
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a relatively axiomatizable class of one-element models. On the base of this Case 
Model we define a formal context.  

Secondly, we move from the Case Model to Ontology Model (Section 3.1). We 
construct the set of ontological projections which is the basis of extensions of attribute 
set of the formal context under consideration (Section 3.2). 

And finally we mine association rules with high confidence and support in the ex-
tended formal context. Computer experiments show that the methods presented in the 
paper allow us to find association rules which can be used for recommendations. 

2 Case Model   

2.1 Relatively axiomatizable classes and formal contexts 

Here we introduce some definitions and results on the relationship between relatively 
axiomatizable classes and formal contexts. The main result of this section is Proposi-
tion 2 which is necessary for proofs of Propositions 4 and 5 in Section 2.2. The proofs 
of the statements are based on [22].  

An algebraic system (a model) is a tuple 𝔄 = 𝐴;  𝑃!, . . . ,𝑃!, 𝑓!, . . . , 𝑓!, 𝑐!, . . . , 𝑐! , 
where the set  𝔄 = 𝐴 is called universe, 𝑃!, . . . ,𝑃! are predicates defined on the set 
𝐴, 𝑓!, . . . , 𝑓! are functions defined on the set 𝐴 and 𝑐!, . . . , 𝑐! are constants. The tuple 
𝜎 =  𝑃!, . . . ,𝑃!, 𝑓!, . . . , 𝑓!, 𝑐!, . . . , 𝑐!  is called signature of the algebraic system 𝔄. 

Denote by 𝐹𝑉(𝜑) the set of all free variables of a formula 𝜑. A formula having no 
free variables is called sentence. For a signature 𝜎 we denote:  

𝐹(𝜎) ⇋ {𝜑 | 𝜑 𝑖𝑠 𝑎 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝜎}, 
𝐹! 𝜎 ⇋ 𝜑  𝜑 ∈ 𝐹 𝜎  𝑎𝑛𝑑 𝐹𝑉 𝜑 = {𝑥}}, 
𝑆(𝜎) ⇋ {𝜑 | 𝜑 𝑖𝑠 𝑎 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝜎} and 
𝐾(𝜎) ⇋ {𝔄 | 𝔄 𝑖𝑠 𝑎 𝑚𝑜𝑑𝑒𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝜎}. 

Here 𝐹𝑉 𝜑 = {𝑥} means that each formula 𝜑 ∈ 𝐹! 𝜎   has just one free variable, 
which is the fixed variable 𝑥. 

Consider a signature 𝜎 and a model 𝔄 ∈ 𝐾(𝜎). For a sentence 𝜓 ∈ 𝑆(𝜎) we denote  
𝔄 ⊨ 𝜓 if 𝜓 is true in the model 𝔄. For a formula 𝜑(𝑥!,… , 𝑥!) ∈ 𝐹(𝜎) we write 
𝔄 ⊨ 𝜑  if  𝔄 ⊨ ∀𝑥!…∀𝑥!𝜑(𝑥!,… , 𝑥!). 

Definition 1. Let 𝐾 ⊆ 𝐾(𝜎). For a formula 𝜑 ∈ 𝐹(𝜎) we denote 𝐾 ⊨ 𝜑 if 𝔄 ⊨ 𝜑 
for any 𝔄 ∈ 𝐾. For a set of formulas 𝛤 ⊆ 𝐹(𝜎) we denote 𝐾 ⊨ 𝛤 if  𝔄 ⊨ 𝜑  for any  
𝔄 ∈ 𝐾 and  𝜑 ∈ 𝛤. For a set of formulas 𝛤 ⊆ 𝐹(𝜎) we denote 

𝐾 𝛤 ⇋  𝐾! 𝛤 ⇋ 𝔄 ∈ 𝐾 𝜎 𝔄 ⊨ 𝜑   𝑓𝑜𝑟  𝑎𝑛𝑦 𝜑 ∈ 𝛤 }. 

A class 𝐾 ⊆ 𝐾 𝜎  is called axiomatizable if there exists a set 𝛤 ⊆ 𝑆(𝜎) such that  
𝐾 = { 𝔄 ∈ 𝐾(𝜎) | 𝔄 ⊨ 𝛤}.   

 For the aims of our research we need to generalize the notion of relatively axio-
matizable class [22] to the case of arbitrary sets of formulas 𝛥.    

Definition 2. Let 𝐾, 𝐾! ⊆  𝐾 𝜎  and 𝛥 ⊆ 𝐹(𝜎). We say that the class 𝐾! is axio-
matizable in the class 𝐾  relatively to the set of formulas 𝛥 if there exists a set 𝛤 ⊆ 𝛥 
such that  𝐾! = {𝔄 ∈ 𝐾 | 𝔄 ⊨ 𝛤}. 
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Notice that the class 𝐾! ⊆ 𝐾 𝜎  is axiomatizable if and only if 𝐾! is axiomatizable 
in the class 𝐾 = 𝐾 𝜎  relatively to the set of formulas 𝛥 = 𝑆(𝜎). 

Definition 3. For 𝐾 ⊆ 𝐾(𝜎) and 𝛥 ⊆ 𝐹(𝜎) we denote 
𝔹 𝐾,𝛥 ⇋ 𝐾!   𝐾! 𝑖𝑠 𝑎𝑥𝑖𝑜𝑚𝑎𝑡𝑖𝑧𝑎𝑏𝑙𝑒 𝑖𝑛 𝐾 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑙𝑦 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑠 𝛥}  
and  𝑇!(𝐾) ⇋ {𝜑 ∈ 𝛥 | 𝐾 ⊨ 𝜑}. The set of formulas 𝑇!(𝐾) is call 𝜟-type of  𝐾. 

Note that 𝐾! ∈ 𝔹(𝐾,𝛥) if and only if 𝐾! = {𝔄 ∈ 𝐾| 𝔄 ⊨  𝑇!(𝐾!)}. 
For each class 𝐾 ⊆ 𝐾(𝜎)  and set 𝛥 ⊆ 𝑆(𝜎)  we consider the formal context 

(𝐾,𝛥,⊨), with derivation operator ()′ [23]. 

Remark 1. Let 𝐾 ⊆ 𝐾(𝜎), 𝛥 ⊆ 𝐹(𝜎) and 𝐴 ⊆  𝐾. Then 𝐴′ = 𝑇!(𝐾). 

For a formal context  G,M, I   by  𝔙 G,M, I   we denote the lattice of formal con-
cepts of the formal context  G,M, I .  

Proposition 1. Let 𝐾 ⊆ 𝐾(𝜎) , 𝛥 ⊆ 𝐹(𝜎) , 𝐴 ⊆ 𝐾  and 𝐵 ⊆ 𝛥 . Then 𝐴,𝐵 ∈
𝔅 𝐾,𝛥,⊨  if and only if 𝐴 is axiomatizable in the class 𝐾 relatively to the set of for-
mulas 𝛥 and 𝐵 = 𝑇!(𝐴). 

Proof. (⇒) Let 𝐴,𝐵 ∈ 𝔅 𝐾,𝛥,⊨ . Then 𝐵 = 𝐴′, so 𝐵 = 𝑇!(𝐴) by Remark 1. 
We have 𝐴 = 𝐵′, hence 𝐴 = {𝔄 ∈ 𝐾 | 𝔄 ⊨ 𝐵} and 𝐵 ⊆ 𝛥. Therefore, by Definition 2, 
the class 𝐴 is axiomatizable in the class 𝐾  relatively to the set of formulas 𝛥.  

(⇐) Let the class 𝐴 be axiomatizable in the class 𝐾  relatively to the set of formu-
las 𝛥 and 𝐵 ⊆ 𝛥. So there exists 𝛤 ⊆ 𝛥 such that  𝐴 = {𝔄 ∈ 𝐾 | 𝔄 ⊨ 𝛤}. Then in the 
formal context (𝐾,𝛥,⊨)  we have 𝛤′ = 𝐴 . So 𝐴′′ = 𝐴 . The set 𝐵 = 𝑇!(𝐴) , thus 
𝐵 = 𝐴′ by Remark 1. Therefore,  𝐴,𝐵 ∈ 𝔅 𝐾,𝛥,⊨ . 

Corollary 1. Let  𝐾, 𝐾! ⊆  𝐾 𝜎  and 𝛥 ⊆ 𝐹(𝜎). 
1. 𝐾! ∈ 𝔹(𝐾,𝛥) if and only if  𝐾!,𝑇!(𝐾!) ∈ 𝔅 𝐾,𝛥,⊨ . 
2. 𝐾! = 𝐾!′′  if and only if 𝐾! is axiomatizable in the class 𝐾 relatively to the set 

of formulas 𝛥. 
Therefore, the classes which are axiomatizable in a class 𝐾 relatively to a set of 

formulas Δ are exactly extents of the formal concepts of the formal context (𝐾,𝛥,⊨). 
We consider  𝔹(𝐾,𝛥) as a set ordered by inclusion ⊆. So 𝔹(𝐾,𝛥) is a lattice. 

Proposition 2. The lattices 𝔅(𝐾,𝛥,⊨)  and 𝔹(𝐾,𝛥)  are isomorphic, i.e.,  
𝔅(𝐾,𝛥,⊨) ≅ 𝔹(𝐾,𝛥), for any 𝐾 ⊆ 𝐾(𝜎) and 𝛥 ⊆ 𝐹(𝜎). 

Proof. Let us consider the mapping ℎ: 𝔅(𝐾,𝛥,⊨) → 𝔹(𝐾,𝛥) defined as follows: 
ℎ 𝐴,𝐵 = 𝐴  for any 𝐴,𝐵 ∈ 𝔅(𝐾,𝛥,⊨) . By Proposition 1 for any 𝐴,𝐵 ∈ 
𝔅(𝐾,𝛥,⊨)  we have ℎ 𝐴,𝐵 = 𝐴 ∈ 𝔹(𝐾,𝛥) . For each 𝐴 ∈ 𝔹(𝐾,𝛥)  it is true that 
𝐴,𝑇!(𝐴) ∈ 𝔅(𝐾,𝛥,⊨),  so ℎ 𝐴,𝑇!(𝐴) = 𝐴. Thus the mapping ℎ is onto.  

For any 𝐴!,𝐵! , 𝐴!,𝐵! ∈ 𝔅(𝐾,𝛥,⊨)  we have: 𝐴!,𝐵! ≤ 𝐴!,𝐵!  iff 
𝐴! ⊆ 𝐴!. Hence the mapping ℎ preserves the partial order.   

Therefore, the mapping ℎ is an isomorphism.  
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2.2 Description of the Case Model  

Further we consider signatures consisting of a finite set of unary predicate symbols, 
i.e. 𝜎 =< 𝑃!,… ,𝑃! >. We consider the set  𝛥 ⊆ 𝑆(𝜎) for different signatures 𝜎 which 
means that the original signature is enriched by new unary predicate symbols. From a 
model-theoretic point of view we may assume that there is some covering signature 
𝜎! and all considered signatures are its subsets. 

Consider a finite set 𝐴 = 𝑒!,… , 𝑒!  of subscribers of a given mobile network and 
fix a signature 𝜎 = 𝜎ℙ ∪ 𝜎ℚ where 𝜎ℙ is a set of personal characteristics of subscrib-
ers and 𝜎ℚ is a set of payments plans, services and options. Each of these sets has a 
hierarchical structure. There are more details about the signatures 𝜎ℙ and 𝜎ℚ below. 
For each subscriber 𝑒! we know which characteristics (presented by signature predi-
cates from  𝜎) are true and which characteristics are false. Thus, for each subscriber 𝑒! 
there is a one-element model 𝒆𝒊 = 𝑒! ,𝜎  which is called a case of the domain  𝕄. 

 Consider the Case Model  𝔄 = 𝐴,𝜎  defined by a set of cases  𝒆𝟏,… , 𝒆𝒏  [20]. 
On the model 𝔄 for each signature predicate 𝑃 ∈ 𝜎 and for every element 𝑒 ∈ 𝐴 we 
have 𝔄 ⊨ 𝑃 𝑒  if and only if the predicate 𝑃 𝑥  is true in the model (case) 𝒆 (i.e., 
𝒆 ⊨ 𝑃 𝑥 ). Here 𝒆 ⊨ 𝑃 𝑥  means that  ⊨ �𝑥𝑃 𝑥 . On the base of the Case Model 
𝔄 = 𝐴,𝜎    in the section 3.5 we will define the ontological model.  

Denote by 𝐾𝔄 = 𝒆𝟏,… , 𝒆𝒏  the class of cases (one-element models) generated by 
the set of subscribers 𝑒!,… , 𝑒! .  

Note that 𝐾𝔄 = 𝑒 ;  𝜎  | 𝑒 ∈ 𝐴 𝑎𝑛𝑑 𝑒 ;  𝜎 ≤ 𝔄 . Here the notation 𝒆 =
𝑒 ;  𝜎 ≤ 𝔄 means that the model 𝒆 is a submodel of the model 𝔄. Recall that in 

pure predicate signature each subset of a model is the universe of its submodel.  
Here we consider different sets of formulas Δ ⊆ 𝐹!(𝜎). In particular, we consider 

Δ! = 𝑃 𝑥 | 𝑃 ∈ 𝜎 ⊆ 𝐹!(𝜎). Denote by  𝐶𝔄! = 𝐾𝔄,∆,⊨  the formal context having 
the set of objects 𝐾𝔄, the set of attributes Δ and the incidence relation ⊨. Denote 
𝐶𝔄! = 𝐾𝔄,∆! ,⊨ .  
∆⊆ 𝐹!(𝜎) is a set of properties of the cases 𝒆 ∈ 𝐾𝔄, which are definable by formu-

las of the signature 𝜎. When we change the set ∆ we change the set of attributes of the 
formal context keeping fixed the set of objects 𝐾𝔄. Reductions and expansions of 
formal contexts were studied in [25].  

Let us consider two formal contexts 𝐶! = 𝐺,𝑀!, 𝐼  and 𝐶! = 𝐺,𝑀!, 𝐼 . Suppose 
that 𝑀! ⊆ 𝑀!, 𝐴 ⊆ 𝐺 and 𝐴 = 𝐴′′ в 𝐶!. Then 𝐴 = 𝐴′′ in 𝐶!. 

We define a mapping 𝑖: 𝔅(𝐺,𝑀!, 𝐼) → 𝔅(𝐺,𝑀!, 𝐼) as follows: 𝑖 𝐴,𝐵! = (𝐴,𝐵!), 
where  𝐴 ⊆ 𝐺, 𝐵! ⊆ 𝑀!, 𝐵! ⊆ 𝑀!, 𝐴 = 𝐴′′, 𝐵! = 𝐴′ in the context 𝐶! and 𝐵! = 𝐴′ in 
the context 𝐶!. 

Remark 2. The mapping 𝑖: 𝔅(𝐺,𝑀!, 𝐼) → 𝔅(𝐺,𝑀!, 𝐼) is an isomorphic embedding 
of the lattice  𝔅(𝐺,𝑀!, 𝐼) into the lattice  𝔅(𝐺,𝑀!, 𝐼). 

Next consider an arbitrary signature 𝜎! and an arbitrary class 𝐾! ⊆ 𝐾(𝜎!). 

Remark 3. Let ∆⊆ 𝐹(𝜎!) and 𝜑!,… ,𝜑! ∈ 𝐹(𝜎!). Then the mapping 
𝑖: 𝔅(𝐾!,∆,⊨) → 𝔅(𝐾!,∆ ∪ 𝜑!&…&𝜑! ,⊨) is an isomorphism of lattices.  
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Corollary 2. а) The sets of association rules of the formal contexts (𝐾!,∆,⊨) and 
(𝐾!,∆ ∪ 𝜑!&…&𝜑! ,⊨)  coincide up to the substitution of the formula  
𝜑!&…&𝜑!  by the set 𝜑!,… ,𝜑! . 

b) The sets of attribute implications of the formal contexts (𝐾!,∆,⊨) и (𝐾!,∆ ∪
𝜑!&…&𝜑! ,⊨) coincide up to the substitution of the formula  𝜑!&…&𝜑!  by the 

set 𝜑!,… ,𝜑! . 

Corollary 3. If ∆,∆!⊆ 𝐹(𝜎!), ∆⊆ ∆! and the set ∆!\∆ consists of some conjunc-
tions of formulas from ∆ then the sets of attribute implications as well as the sets of 
association rules of the formal contexts (𝐾!,∆,⊨) and (𝐾!,∆!,⊨) coincide up to the 
substitution of the conjunctions from ∆!\∆ by the corresponding sets of formulas.  

Let us go back to the formal context (𝐾𝔄,∆! ,⊨). 

Remark 4. Let 𝑃!,𝑃! ∈ 𝜎 . Then the mapping  
𝑖: 𝔅(𝐾𝔄,∆! ,⊨) → 𝔅(𝐾𝔄,∆! ∪ 𝑃!(𝑥) ∨ 𝑃!(𝑥) ,⊨)  is an isomorphic embedding of 
lattices; in the general case this mapping is not an isomorphism. Moreover, in the 
general case  𝔅(𝐾𝔄,∆! ,⊨) ≇ 𝔅 𝐾𝔄,∆! ∪ 𝑃!(𝑥) ∨ 𝑃!(𝑥) ,⊨ . 

Corollary 4. In the general case if we add a disjunction 𝑃! 𝑥 ∨ … ∨ 𝑃!(𝑥)    to 
the set of formulas ∆!, where 𝑃!,… ,𝑃! ∈ 𝜎, then the set of association rules of the 
formal context (𝐾𝔄,∆! ,⊨) will be changed.  

Denote ∆!∨= ∆! ∪ 𝑃! 𝑥 ∨ … ∨ 𝑃!(𝑥) , | 𝑃! ∈ 𝜎 .  
We will be adding disjunctions of signature predicates into the set ∆! for improv-

ing association rules based on an algorithm for subscribers’ behavior prediction. It 
means that we will consider the set of formulas  ∆!∨  instead of the set of formulas ∆! 
and the formal context (𝐾𝔄,∆!∨ ,⊨) instead of the formal context (𝐾𝔄,∆! ,⊨).  

Definition 4. We say that a set of formulas 𝛥 ⊆ 𝐹(𝜎!) is closed under disjunction 
if (𝜑 ∨ 𝜓) ∈ 𝛥  for any 𝜑,𝜓 ∈ 𝛥. 

Proposition 3. Let 𝐾 ⊆ 𝐾𝔄 and  ∆⊆ 𝐹(𝜎). If the set of formulas ∆ is closed under 
disjunction then the lattice 𝔹(𝐾,∆) is distributive. 

Proof. Assume that ∆⊆ 𝐹(𝜎) and 𝐾!,𝐾! ∈ 𝔹(𝐾,∆). Then 𝐾!,𝐾! ⊆ 𝐾 and there ex-
ist Γ!, Γ! ∈ ∆ such that 𝐾! = 𝔄 ∈ 𝐾 | 𝔄 ⊨ Γ!  and 𝐾! = 𝔄 ∈ 𝐾 | 𝔄 ⊨ Γ! .  

Denote Γ! = Γ! ∪ Γ!  and Γ! = 𝜑 ∨ 𝜓) | 𝜑 ∈ Γ! 𝑎𝑛𝑑  𝜓 ∈ Γ! . Then 𝐾! ∩ 𝐾! =
𝔄 ∈ 𝐾 | 𝔄 ⊨ Γ! , hence 𝐾! ∩ 𝐾! ∈ 𝔹(𝐾,∆). 

Let 𝔄 ∈ 𝐾. Then 𝔄 is a one-element model. Therefore for any 𝜑 ∈ Γ! and  𝜓 ∈ Γ! 
we have: 𝔄 ⊨ 𝜑 ∨ 𝜓  ⇔ 𝔄 ⊨ ∀𝑥!…∀𝑥! 𝜑(𝑥!,… , 𝑥! ∨ 𝜓(𝑥!,… , 𝑥!))   ⇔ 

⇔   𝔄 ⊨ ∀𝑥!…∀𝑥!𝜑 𝑥!,… , 𝑥!  𝑜𝑟 𝔄 ⊨ ∀𝑥!…∀𝑥!𝜓 𝑥!,… , 𝑥!   ⇔ 
⇔    𝔄 ⊨ 𝜑  𝑜𝑟  𝔄 ⊨ 𝜓,  where 𝐹𝑉 𝜑 ∨ 𝜓 = 𝑥!,… , 𝑥! . 

Assume that  𝔄 ∈ 𝐾! ∪ 𝐾! , then  𝔄 ∈ 𝐾! 𝑜𝑟 𝔄 ∈ 𝐾!   ⇒   
⇒  𝔄 ∈ 𝐾 𝑎𝑛𝑑 𝔄 ⊨ Γ!  𝑜𝑟 𝔄 ∈ 𝐾 𝑎𝑛𝑑 𝔄 ⊨ Γ!   ⇒ 

⇒    𝔄 ∈ 𝐾 𝑎𝑛𝑑 𝔄 ⊨ Γ!  𝑜𝑟  𝔄 ⊨ Γ!   ⇒   𝔄 ∈ 𝐾 𝑎𝑛𝑑 𝔄 ⊨ Γ!. 
Next, suppose that 𝔄 ⊭ Γ! and 𝔄 ⊭ Γ!. So there exist 𝜑 ∈ Γ! and  𝜓 ∈ Γ! such that 

𝔄 ⊭ 𝜑 and 𝔄 ⊭ 𝜓. Then 𝔄 ⊭ 𝜑 ∨ 𝜓 , so 𝔄 ⊭ Γ!. 
Thus, if 𝔄 ⊨ Γ! then 𝔄 ⊨ Γ! 𝑜𝑟 𝔄 ⊨ Γ! . Hence, if 𝔄 ∈ 𝐾 and 𝔄 ⊨ Γ! then 

𝔄 ∈ 𝐾! or 𝔄 ∈ 𝐾!, so 𝔄 ∈ 𝐾! ∪ 𝐾! .  
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Therefore, 𝐾! ∪ 𝐾! = 𝔄 ∈ 𝐾 | 𝔄 ⊨ Γ!  and 𝐾! ∪ 𝐾! ∈ 𝔹(𝐾,∆). 
We proved that 𝐾! ∩ 𝐾! , 𝐾! ∪ 𝐾! ∈ 𝔹(𝐾,∆) for any 𝐾!,𝐾! ∈ 𝔹(𝐾,∆). Hence, 

the lattice 𝔹(𝐾,∆) is distributive.  

Proposition 4. The lattice of formal concepts  𝔅(𝐾𝔄,∆!∨ ,⊨) is distributive. 

Proof: in virtue of Proposition 2 and Proposition 3. 

However the initial formal context (𝐾𝔄,∆! ,⊨) does not have this good property. 

Remark 5. In the general case the lattice of formal concepts  𝔅(𝐾𝔄,∆! ,⊨) is not 
distributive. It means that there exists a class 𝐾𝔄 such that the lattice  𝔅(𝐾𝔄,∆! ,⊨)  is 
not distributive.    

Remark 6. Let ∆ ⊆ 𝐹! 𝜎 , ∆!⊆ ∆ and the set ∆\∆! consists of some conjunctions 
of formulas from ∆!. Then there exists a class 𝐾𝔄 such that the lattice (𝐾𝔄,∆,⊨) is 
not distributive.     

For the set of all formulas the situation is better. 

Proposition 5. 1) The lattice of formal concepts  𝔅(𝐾𝔄,𝐹! 𝜎 ,⊨) is distributive. 
2) The lattice of formal concepts  𝔅(𝐾𝔄,𝐹 𝜎 ,⊨) is distributive. 

Proof: in virtue of Proposition 2 and Proposition 3. 

Association rule mining for the original context 𝐾𝔄,∆! ,⊨  does not produce a lot 
of rules with high confidence. A lot of various payment plans and services exist, and 
commonly more than one service can be useful for the subscriber. The service that 
will be preferred by the user depends on many factors. Some of these factors can 
change time to time. So we cannot detect such factors in scope of formal context 
𝐾𝔄,∆! ,⊨  because the context is based on long users’ history.  

Moreover, mobile operator can suggest 2-3 possible services and the subscriber 
may select himself the most useful service. That is why it makes sense to add disjunc-
tions of signature predicates to ∆! and use context 𝐾𝔄,∆!∨ ,⊨  on next steps. 

There are two problems with association rules that were mined using formal con-
text (𝐾𝔄,∆!∨ ,⊨). First of all some of rules have high confidence, but their conclusions 
are disjunctions of meaningfully nonrelated services. Such association rules could not 
be used for recommendations. It will be looking like spam for mobile network sub-
scribers. So experts should process all rules and select only meaningful rules. Second, 
processing the whole formal context (𝐾𝔄,∆!∨ ,⊨) is very laborious computational pro-
cedure. 

 To solve these problems we are moving from the Case Model 𝔄 =  𝐴,𝜎  to the 
Ontological Model 𝔄,𝑇! ,𝑇!,𝑇!  of the domain. We add new unary predicates to the 
signature 𝜎 to describe meaning of payment plans and services. Using new predicates 
(from the signature 𝜎ℝ) we generate automatically meaningful disjunctions of original 
predicates from the signature 𝜎. 
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3 Ontological Model of the domain 

3.1 Ontology 

Ontological Model of the domain consists of four parts [15]: 
(1) The domain ontology, i.e. description of the structure and the meaning of the 

domain concepts.  
(2) General knowledge and domain regularities, sentences which are true for every 

case. 
(3) The set of cases from the domain, that we consider in the given moment. This 

is empirical knowledge about the domain; the set of cases that we are looking at in 
this article is represented by the model 𝔄 = 𝐴,𝜎 . 

(4)  Estimated and probabilistic knowledge: probabilistic and confidential esti-
mates, fuzzy values of sentences [16]. 

In this section we describe construction of the domain ontology. 
From a model-theoretic point of view the domain ontology construction consists 

of description of the signature and creation of a set of axioms that describe the mean-
ing of the concepts of the domain [17, 18]. To define the signature 𝜎𝕄 of the domain 
𝕄 = “Mobile networks” we consider two sets of attributes: 𝜎ℙ, the set of individual 
subscriber’s features and 𝜎ℚ, the set of various payment plans and services. 

The set of attributes 𝜎ℙ, “Individual subscribers’ feature” consists of two parts: 
𝜎ℙ! , “payment plans” and 𝜎ℙ!, “accrual”. Every part 𝜎ℙ!  (𝑖 = 1, 2) consists of two 
subparts, such as 𝜎ℙ!!, “traffic (and accrual) without roaming inside operator net-
work”,…, 𝜎!!", “traffic (and accrual) in common roaming”, … .  Each of the listed 
signatures consists of more detailed categories, e.g., 𝜎!!!!, “Traffic SMS without 
roaming inside operator network”. Every category 𝜎!!"# contains finite number of 
signature symbols 𝑃!!"! ,… . ,𝑃!!"! . For example, 𝑃!!!! 𝑥 = “Traffic of SMS without 
roaming inside network for subscriber 𝑥 is not more than 50 SMS in month” and 
𝑃!!"! 𝑥 = “Traffic of SMS without roaming inside network for subscriber 𝑥 is more 
than 50 SMS in month”.  

Signature 𝜎ℚ consists of two parts: 𝜎ℚ!and 𝜎ℚ!. Part 𝜎ℚ!is “payment plans”, it has 
hierarchical structure and consists of symbols of unary predicates. Each unary predi-
cate describes the presence or absence of connected payment plan for subscribers. 
Signature 𝜎ℚ!, “services and options”,  consists of symbols of unary predicates. Each 
unary predicate describes the presence or absence of connected service or option. 

To describe the domain ontology, we define a finite set of ontological axioms 
𝒜𝓍! ⊆ 𝐹!(𝜎ℙ ∪ 𝜎ℚ). We introduce the following axioms.   

Axioms of hyponym-hyperonym.  Hierarchical structure of the signature 𝜎ℚ! is 
represented by axioms such as: 

(𝑄!"#! 𝑥 → 𝑄!"! 𝑥 )  𝑎𝑛𝑑 (𝑄!"! (𝑥) → 𝑄!(𝑥)). 
Axioms of completeness. For each predicates inside every class 𝜎ℙ!"# and class 

 𝜎ℚ! for a given subscriber there must be at least one true predicate. The schemes of 
such axioms are the following: 
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∨ 𝑃 𝑥  | 𝑃(𝑥) ∈ 𝜎ℙ!"#  𝑎𝑛𝑑 ∨ 𝑃 𝑥  | 𝑃(𝑥) ∈  𝜎ℚ!  . 
Axioms of including. For example, if payment plan 𝑡 contains “more than 100 free 

SMS” then it contains “more 50 free SMS”. The schemes of such axioms are the fol-
lowing: 

(𝑄!"#
!! 𝑥 → 𝑄!"#

!! 𝑥 ), where  𝑛! < 𝑛!. 
Next we construct an extension 𝜎ℙ ∪ 𝜎ℚ  of the signature 𝜎𝕄 by additional unary 

predicates that describe properties of payment plans and interests of subscribers. For 
that we introduce two types of concepts: 

1) Concepts 𝜎ℝ. This is a set of features for different payment plans, services, and 
options. For example,  amount of free calls time, volume of SMS package or of Inter-
net package and etc. With the help of  𝜎ℝ we can give formal definition for payment 
plans and services, i.e., formal definition of predicates of the signature 𝜎ℚ.  

2) Concepts 𝜎𝕀 describing subscriber’s interests, e.g., reducing the costs of calls, 
SMS, etc. 

Concepts from 𝜎ℝ ∪ 𝜎𝕀  are used for automation of construction formulas as at-
tributes in formal contexts for association rules mining. Notice that the pair 𝜎𝕄,𝒜𝓍  
forms the ontology of the domain 𝕄 [18]. 

In the next step we introduce a new set of axioms 𝒜𝓍! ⊆ 𝐹!(𝜎𝕄) and call it the 
domain axioms. This set will be used for describing various characteristics of pay-
ment plans and services provided at present moment of time by a mobile network.  

Among other things, these axioms relate personal parameters of a subscriber. The 
range of parameters contains subscriber traffics denoted by predicates from 𝜎ℙ! and 
payments denoted by predicates from 𝜎ℙ!, with regard to activated payment plans 
from 𝜎ℚ!and services from 𝜎ℚ!. 

Axioms 𝒜𝓍! are true for any case from the domain, and the same statement is true 
for ontological axioms as well. However, there is a difference between ontological 
and domain axioms, as the second ones might change over time. Consider the follow-
ing formula as an example of a domain axiom: 

(𝑄! 𝑥 → ¬𝑄! 𝑥 ), 𝑤ℎ𝑒𝑟𝑒  𝑄! ∈ 𝜎ℚ! ,𝑄! ∈ 𝜎ℚ! . 
This formula declares the following: if a subscriber has payment plan 𝑄! activat-

ed, then service 𝑄! cannot be activated for this subscriber. Note that a mobile network 
company can naturally change its decision for not supporting simultaneously the pre-
cise payment plan along with the specific service, at any moment.  

3.2 Ontological projections 

In order to automate development of the formula set Δ for the sake of finding associa-
tion rules, we use the Ontological Model of the domain. 

Definition 4. An Ontological Model of a domain is a tuple 𝔄,𝑇! ,𝑇!,𝑇! , where 
𝑇! is an analytical theory of the domain, 𝑇! is a theory of the domain, and 𝑇! is a 
fuzzy theory of the model 𝔄𝕄. 

The analytical theory 𝑇! of the domain under consideration is axiomatized by the 
sentences 𝒜𝓍! which are axioms of the domain ontology. A theory 𝑇! of the domain 
is axiomatized by the axioms 𝒜𝓍! of the domain.  
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Formula definitions of predicates from 𝜎ℚ (which present payment plans and ser-
vices) are defined by construction of ontological projection.  

Definition 5. Consider the Ontological Model 𝔄,𝑇! ,𝑇!,𝑇! , let 𝑄 ∈ 𝜎ℚ. Denote 
𝑆! = 𝜑 ∈ 𝐹! 𝜎ℝ | 𝑇! ⊢ 𝑄 𝑥 → 𝜑 𝑥 . 

An ontological projection of the predicate 𝑄 on the signature 𝜎ℝ is the formula  
𝜑!
!ℝ 𝑥 = & 𝑃 𝑥 | 𝑃 ∈ 𝜎ℝ 𝑎𝑛𝑑 𝑃(𝑥) ∈ 𝑆! . 

A projection of the predicate 𝑄  on the set of formulas 𝐹! 𝜎ℝ  is the formula  
𝜓!
!ℝ 𝑥 = &𝑆! = & 𝜑 𝑥 | 𝜑(𝑥) ∈ 𝑆! . 

Let us consider the formal context 𝐶𝔄! = 𝐾𝔄,∆,⊨ . We search association rules 
with the following requirements:  

1)  а) the premise of the association rule is included in the set ∆↾𝜎ℙ or 
b) the premise of the association rule is included in the set ∆↾ 𝜎ℙ ∪ 𝜎ℚ ; 

2) a) the conclusion of the association rule belongs to the set ∆↾ 𝜎ℚ or 
b) the conclusion of the association rule belongs to the set ∆↾ 𝜎ℝ or 
c) the conclusion of the association rule belongs to the set ∆↾ 𝜎ℝ ∪ 𝜎𝕀 ;  

3)  the support and the confidence of the rules are higher than specified limits. 
Notice that the set of association rules of the formal context 𝐶𝔄! = 𝐾𝔄,∆,⊨  is in-

cluded in the fuzzy theory 𝑇! of the model 𝔄𝕄 [26, 27].  
Then the software system automatically processes obtained association rules. For 

example, consider an association rule with one-element conclusion 𝑃 belonging to 𝜎ℝ. 
This rule will be transformed into association rule with the same premise, but the 
conclusion of the new rule will be one-variable formula from Δ which is a disjunction 
of all predicates 𝑄! ∈ 𝜎ℚ such that P belongs to the ontological projection of 𝑄!.  

4 Software Implementation  

Using the results of the presented investigation, we have developed a software for 
mining association rules in the formal context (𝐾𝔄,∆!∨ ,⊨). We have found out that 
adding predicates from 𝜎ℝ to the formal context gives us the possibility to find associ-
ation rules with high confidence and support. Conclusions of such rules are trans-
formed into disjunctions of predicates from 𝜎ℚ with the help of the operator of ontol-
ogy projection. Obtained association rules seem to be useful for mobile network com-
panies. The software processes the impersonal data for more than 10 million subscrib-
ers. This is information for one month of mobile network using by subscribers. 

The set of characteristics of subscribers contains more than 90 different items1: 
1) Personal features of subscriber, 
2) Attributes that describe calls made by subscriber, 
3) Attributes that describe the mode of using Internet 
4) Attributes that describe the mode of using SMS, 
5) Attributes that describe the mode of using MMS, 
6) Attributes that describe the mode of using LBS (Location Based Services), 
7) List of mobile services that were connected to subscriber, 
8) Payment plan that is used by subscriber. 
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The total amount of services that can be connected to subscriber is more than 90. 
The total count of different payment plans is more than 1200. 

Thus, we have more than 10 million objects and nearly 1400 attributes. Part of at-
tributes is quantitative, most part of attributes (more than 1200) are binary. 

Let us notice that attributes of connected payment plans, services and personal at-
tributes are always filled. That is why we use only quantitative attributes for density 
calculation. We calculate data density as follows:  !

!∗!
, where P is the number of non-

zero subscribers’ attributes, M is the total number of subscribers, N is the number of 
quantitative attributes. For our data the data density is equal to 0.043. 

The data is stored in a file with Basket format. Basket is one of standard formats 
for storing data of “objects-attributes” type in R.  

Let us consider an example of association rules which have conclusions consisting 
of payment plans providing access to the Internet. The predicate 𝑃(𝑥) ∈ 𝜎ℝ denotes 
that subscriber’s payment plan includes unlimited Internet traffic of the special kind1. 
The payment plans having the unlimited Internet traffic of this kind are 𝑄!,𝑄!,𝑄! ∈
𝜎ℚ!, where 𝑄! is “Unlimited”, 𝑄! is “United”, and 𝑄! is “Online”. These payment 
plans provide unlimited access to Internet with different connection speed and differ-
ent price. Formally, in terms of ontological projections, it means that 𝑃(𝑥) ∈ 𝑆!! ,
𝑃(𝑥) ∈ 𝑆!!,  𝑃(𝑥) ∈ 𝑆!! and   𝑃 𝑥 ∉ 𝑆!  for every  𝑄 ∈ 𝜎ℚ\ 𝑄!,𝑄!,𝑄! . 

Mined association rules have premises with various sets of personal features of 
subscribers from 𝜎ℙ and the conclusion 𝑃 𝑥 . The automatically chosen rules have 
rather high confidence and support (see examples 1 and 2, table 1).  

After that the predicate 𝑃 𝑥  is substituted by the equivalent disjunction 
(𝑄! ∨  𝑄! ∨ 𝑄!) in the conclusions of the association rules. Table 1 shows that substi-
tuting the disjunction (𝑄! ∨  𝑄! ∨ 𝑄!) by any of these predicates 𝑄! notably decreases 
both confidence and support of the association rules. 

Thus, the new association rules generated by the algorithm in the extended formal 
context (𝐾𝔄,∆!∨ ,⊨) have higher support and confidence as compared to rules with the 
same premise which may be found in the original formal context (𝐾𝔄,∆!∨ ,⊨).  

 
Table 1. Examples of association rules1. 

 Rule Support Confidence 
Example 1 𝑷𝟏,… ,𝑷𝒏 → 𝑷 11% 91% 

𝑃!,… ,𝑃! → 𝑄! 6% 50% 
𝑃!,… ,𝑃! → 𝑄! 3% 23% 
𝑃!,… ,𝑃! → 𝑄! 2% 24% 

Example 2 𝑷𝟏!!,… ,𝑷𝒍!! → 𝑷 11% 89% 
𝑃!!!,… ,𝑃!!! → 𝑄! 4% 35% 
𝑃!!!,… ,𝑃!!! → 𝑄! 5% 38% 

                                                             
1 Due to NDA, the details of the attribute list and characteristics  𝑃!, 𝑄! cannot be given. So in 

the examples below, the real names of characteristics  𝑃! and 𝑄! have been changed.  
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𝑃!!!,… ,𝑃!!! → 𝑄! 2% 18% 
Example 3 𝑷𝟏!!!,… ,𝑷𝒍!!! → 𝝋 10% 82% 

𝑃!!!!,… ,𝑃!!!! → 𝑄! 5% 40% 
𝑃!!!!,… ,𝑃!!!! → 𝑄! 4% 38% 
𝑃!!!!,… ,𝑃!!!! → 𝑄! 0.01% 0.08% 
𝑃!!!!,… ,𝑃!!!! → 𝑇! 4% 45% 
𝑃!!!!,… ,𝑃!!!! → 𝑇! 1% 5% 
𝑃!!!!,… ,𝑃!!!! → 𝑇! 0.01% 0.06% 
𝑃!!!!,… ,𝑃!!!! → 𝑇! 1% 3% 

𝑃!!!!,… ,𝑃!!!! → (𝑇! ∨ 𝑇! ∨ 𝑇! ∨ 𝑇!) 6% 51% 
If we would process association rules just in the formal context (𝐾𝔄,∆!∨ ,⊨) without 

using the signature 𝜎ℝ, then many conclusions of mined rules will be non-meaningful 
disjunctions. Let us consider Example 3 in Table 1. Here  𝜑 = (𝑄! ∨  𝑄! ∨ 𝑄! ∨ 𝑇! ∨
 𝑇! ∨ 𝑇! ∨ 𝑇!) ∈ ∆!∨  , services 𝑄!  provide unlimited Internet, and services 𝑇!  provide 
unlimited SMS. Here 𝑇! is “unlimited free SMS for month with a fixed price”, 𝑇! is 
“1000 free SMS for month with a fixed price”, 𝑇! is “unlimited cheap SMS”, and 𝑇! 
is “discount for SMS, using with special conditions”. The confidence of the associa-
tion rule 𝑃!!!!,… ,𝑃!!!! → 𝜑 is high enough. The value is much greater than the confi-
dence of rules 𝑃!!!!,… ,𝑃!!!! → 𝑄!  and 𝑃!!!!,… ,𝑃!!!! → 𝑇! , but the mobile operator 
cannot use this association rule for recommendations, because it contains non-related 
services 𝑄! and 𝑇! in the conclusion. However, if we consider the association rule 
𝑃!!!!,… ,𝑃!!!! → (𝑇! ∨ 𝑇! ∨ 𝑇! ∨ 𝑇!), we can see that this rule has low confidence.  

5 Conclusion 

The paper is devoted to methods for identifying payment plans and services by 
mobile operators which would be most useful for the given mobile network subscrib-
ers. We use the Case Model 𝐾𝔄,𝜎  for mobile subscriber’s behavior description. The 
Case Model is based on depersonalized subscribers’ data provided by mobile opera-
tor. Objects (elements of the model) are mobile subscribers. The signature of the Case 
Model consists of unary predicates. These predicates describe individual subscriber’s 
features (accruals, traffics) or features of payment plans and services. We construct 
the formal context (𝐾𝔄,∆,⊨) based on the Case Model. Then we mine association 
rules describing payment plans and services that are commonly used by subscribers 
with given features. After that we consider the formal context (𝐾𝔄,∆! ,⊨). Our exper-
iments show that interesting association rules have low confidence values in this con-
text. That is why they cannot be used by mobile operator for any recommendations. 

To improve association rules quality we deal with an extension of this formal con-
text, the formal context 𝐾𝔄,∆!! ,⊨ . Using this context we can find association rules 
with high confidence. However, a big part of mined rules have conclusions which are 
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disjunctions of non-related services, e.g. ‘Song instead of Beep’ and ‘Unlimited Inter-
net’. That is why such association rules could not be used for recommendations 

Finally, we consider enriched signature 𝜎𝕄 instead of the signature 𝜎 to find se-
mantically useful disjunctions. Signature 𝜎𝕄 contains predicates that describe specific 
features of payment plans and services. Using the formal context (𝐾𝔄,∆!𝕄 ,⊨) we 
compute association rules such that their conclusions are predicates of the signature 
𝜎ℝ. We transform the obtained association rules into association rules of the formal 
context 𝐾𝔄,∆!! ,⊨  using the Ontological Model 𝐾𝔄,𝑇! ,𝑇!,𝑇! . We substitute the 
predicate in the conclusion of an association rule by disjunction of predicates of the 
initial signature 𝜎. As the result we obtain association rules of the formal context 
𝐾𝔄,∆!! ,⊨ . These rules have high confidence and support, and the conclusions of 

these rules are completely meaningful for the mobile network operator as well as for 
mobile network subscribers. Mined association rules allow making recommendations 
for customers who will be interested in information about these services and tariffs. 
 
Acknowledgment The reported study was partially supported by Russian Founda-
tion for Basic Research, research project No. 14-07-00903-a. 
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Abstract. In this paper, we introduce an approach for analyzing com-
plex biological data obtained from metabolomic analytical platforms.
Such platforms generate massive and complex data that need appro-
priate methods for discovering meaningful biological information. The
datasets to analyze consist in a limited set of individuals and a large
set of attributes (variables). In this study, we are interested in mining
metabolomic data to identify predictive biomarkers of metabolic diseases,
such as type 2 diabetes. Our experiments show that a combination of nu-
merical methods, e.g. SVM, Random Forests (RF), and ANOVA, with a
symbolic method such as FCA, can be successfully used for discovering
the best combination of predictive features. Our results show that RF
and ANOVA seem to be the best suited methods for feature selection
and discovery. We then use FCA for visualizing the markers in a sugges-
tive and interpretable concept lattice. The outputs of our experiments
consist in a short list of the 10 best potential predictive biomarkers.

Keywords: hybrid knowledge discovery, random forest, SVM, ANOVA,
formal concept analysis, feature selection, biological data analysis, lattice-
based visualization

1 Introduction

In the analysis of biological data, one of the challenges of metabolomics1 is
to identify, among thousands of features, predictive biomarkers2 of disease de-
velopment [13]. However, such a mining task is difficult as data generated by
metabolomic platforms are massive, complex and noisy. In the current study,

1 Metabolomics is the characterization of a biological system by the simultaneous
measurement of metabolites (small molecules) present in the system and accessi-
ble for analysis. Data obtained are provided from different techniques and different
analytical instruments.

2 A biomarker, or biological marker, generally refers to a measurable indicator of some
biological status or condition.

c© Marianne Huchard, Sergei O. Kuznetsov (Eds.): CLA 2016, pp. 161–172,
ISBN 978-5-600-01454-1, National Research University Higher School of Economics,
2016.



we aim at identifying from a large metabolomic dataset, predictive metabolic
biomarkers of future T2D (type 2 diabetes) development, a few years before oc-
currence, in an homogeneous population considered healthy at the time of the
analysis. The datasets include a rather limited number of individuals and a quite
large set of variables. Specific data processing is required, e.g., feature selection.
Accordingly, we propose a knowledge discovery process based on data mining
methods for biomarker discovery from metabolomic data. The approach focuses
on evaluating a combination of numeric-symbolic techniques for feature selection
and evaluates their capacity to select relevant features for further use in predic-
tive models. Actually, we need to apply feature selection for reducing dimension
and avoid over-fitting3. The resulting reduced dataset is then used as a context
for applying FCA [5] for visualization and interpretation. More precisely, we de-
velop a hybrid data mining process which combines FCA with several numerical
classifiers including Random Forest (RF) [3], Support Vector Machine (SVM)
[16], and the Analysis of Variance (ANOVA) [4]. The dataset relies on a large
number of numerical variables, e.g. molecules or fragments of molecules, a lim-
ited numbers of individuals, and one binary target variable, i.e. developing or
not the disease a few years after the analysis. RF, SVM and ANOVA are used to
discover discriminant biological patterns which are then organized and visualized
thanks to FCA. Because it is known that the most discriminant4 features may
not be necessarily the best predictive5 ones, it is essential to be able to compare
different feature selection methods and to evaluate their capacity to select rele-
vant features for further use in predictive models. The initial problem statement
based on a data table of individuals × features is transformed into a binary
table features × classification process. Data preparation for feature selection
is carried out using filter methods based on the correlation coefficient and mu-
tual information to eliminate redundant/dependent features, to reduce the size
of the data table and to prepare the application of RF, SVM and ANOVA.

A comparative study of the best k features from the combination of these
different classification process (CP) –10 combinations of CP are considered– is
performed. Then a binary data table is built consisting of N features × 10 CP .
This binary table is considered as a formal context and as a starting point for
the application of FCA and the construction of concept lattices. The features
shared by all CP combinations can be interpreted as potential biomarkers of
disease development. However, it is essential for biological experts to evaluate
and compute the performances of the proposed biomarkers in models predicting
the disease development a few years before occurrence. The performance of pre-
diction models can be assessed using different methods. One classical method
used by biologists for binary outcomes is the receiver operating characteristic

3 The problem of over-fitting occurs when a statistical model describes random error
or noise instead of the underlying relationship.

4 A feature is said to be discriminant if it separates individuals in distinct classes (as,
healthy vs not healthy).

5 A feature is said to be predictive if it enables predicting the evolution of individuals
towards the disease a few years later.
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(ROC) curve [11], where the TPR (True positive rate) is plotted in function of
the FDR (False discovery rate) for different cut-off points. A short list of the
best predictive features is selected as the core set of biomarkers. Based on this
selection, FCA is used to identify the top list of feature selection methods that
provide the best ranking of these core set of biomarkers. This additional visu-
alisation is essential for experts to discover the few best predictive biomarkers
from the massive metabolomic dataset.

The remainder of this paper is organized as follows. Section 2 provides a de-
scription of related works. Section 3 presents the proposed approach and explains
the methodological analysis of biomarker identification. Section 4 describes the
experiments performed on a real-world metabolomic data set and discusses the
results, while section 5 concludes the paper.

2 State of the art

In [14], the authors discuss the main research topics related to FCA and fo-
cus on works using FCA for knowledge discovery and ontology engineering in
various application domains, such as text mining and web mining. They also dis-
cuss recent papers on applying FCA in bio-informatics, chemistry and medicine.
Bartel et al. [1] are one of the first papers which apply FCA in chemistry. They
use FCA to analyze the structure-activity relationships to predict the toxicity
of chemical compounds. Gebert et al. [6] use an FCA-based model to identify
combinatorial biomarkers of breast cancer from gene expression values. Since,
the structure of gene expression data (GED) differs from metabolomic data, we
can approve according to literature that FCA is never applied on metabolomic
data. Indeed, the GED data tables include genes which are more or less ex-
pressed. Each gene is represented by a vector of values that explain the relative
expression of the gene. This is totally different from metabolomic data where
input data tables contain samples in rows and thousands of metabolites (small
molecules) or feature in columns expressed as signal intensities. The goal is to
identify metabolites that predict the evolution towards a clinical outcome. The
processing of such metabolomic data is usually performed within different su-
pervised learning techniques, such as PLS-DA (partial least squares discriminant
analysis), PC-DFA (Principal component discriminant function analysis), LDA
(Linear discriminant analysis), RF and SVM. Standard univariate statistical
methodologies (as ANOVA or Student’s t-test6) are also frequently used to an-
alyze the metabolomic data [10]. In [8], authors show that there is no universal
choice of method which is superior in all cases, even if they show that PLS-
DA methods outperform the other approaches in terms of feature selection and
classification. In a more detailed study [7], authors compare different variable
selection approaches (LDA, PLS-DA with Variable Importance in Projection

6 t-test or Student’s t-test is a statistical hypothesis test which can be used to deter-
mine if two sets of data are significantly different from each other. If the p-value is
below the threshold chosen for statistical significance (usually the 0.10, the 0.05, or
0.01 level), then the null hypothesis is rejected in favor of the alternative hypothesis.
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(VIP), SVM-Recursive Feature Elimination (RFE), RF with Accuracy and Gini
scores) in order to identify which of these methods are ideally suited to analyze a
common set of metabolomic data, capable of classifying the Gram-positive bac-
teria Bacillus. They conclude that RF with its feature ranking techniques (mean
decrease gini/accuracy) and SVM combined with SVM-RFE [9] as a variable
selection method display the best results in comparison to other approaches.
All these studies show that the choice of the appropriate algorithms is highly
dependent on the dataset characteristics and the objective of the data mining
process. In the field of biomarker discovery, SVM and RF algorithms prove to be
robust for extracting relevant chemical and biological knowledge from complex
data, in particular in metabolomics [7]. RF is a highly accurate classifier, based
on a robust model to outlier detection (a sample point that is distant from other
samples). Its main advantage [2] includes essentially its power to deal with over-
fitting and missing data, as well as its capacity to handle large datasets without
variable elimination in terms of feature selection. Nevertheless, it generates un-
stable and volatile results, contrary to SVM which delivers a unique solution.
These alternative approaches may be useful for data dimensionality reduction
and feature selection purposes, and may be suitable to combine with FCA.

3 Design approach for Metabolomic data analysis

In this study, we design a hybrid data mining strategy based on the combination
of numerical classifiers including RF, SVM, the univariate analysis ANOVA with
the symbolic method FCA, to discover the best combination of biological fea-
tures. In this work, we aim to find, from a large dataset, predictive metabolomic
biomarkers of future T2D development.

We evaluate the proposed approach from a performance point of view. For
this, we use Dell machine with ubuntu 14.04 LTS, a 3.60 GHZ ×8 CPU and 15,6
GBi RAM. We perform all data analyses using the RStudio software (Version
0.98.1103, R 3.1.1) environment. Rstudio is available for free and offers a selection
of packages suitable for different types of data.

3.1 Dataset description and pre-processing

Dataset description: we use a biological data set obtained from a case-control
study within the GAZEL French population-based cohort (20 000 subjects).
The data set includes the measurements (signal intensities) of 111 male subjects
(54-64 years old) free of T2D at baseline. It consists in continuous numerical
(semi quantitative) data which represent measurements performed on for each
individual. Cases (55 subjects) who developed T2D at the follow-up belong to
class ’1’ (diabetes) and are compared to Controls (56 subjects) which belong to
class ’-1’ (healthy controls). A total of about three thousand features is generated
after carrying out mass spectrometry (MS) analysis. But after noise filtration,
each subject is described by 1195 features. In the rest of this paper, we consider
this new filtered dataset of 1195 features, the original dataset.
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The obtained dataset is then the result of an analysis performed on homo-
geneous individuals considered healthy at that time. However, the binary target
variable describing the data classes is introduced based on the health status of
the same individuals five years after the first analysis. Some of these individu-
als developed the disease at the follow-up. For this reason, we can not consider
the discriminant features as the predictive ones, since features enabling a good
separation between data classes (healthy vs not healthy) are not necessarily the
same that predict the disease development a few years later.

Data pre-processing: the metabolomic database contains thousands of fea-
tures with a wide intensity value range. A data preprocessing step is mandatory
for adjusting the importance weights allocated to the features. Thus, before
applying any FS method, except ANOVA, data are transformed using a Unit-
Variance scaling method. It divides each feature value by its standard deviation;
so that all features have the same chance to contribute to the model as they
have an equal unit variance. The transformed dataset of 1195 features is used as
input for all FS methods, except for ANOVA.

3.2 Feature selection for data dimensionality reduction

Only a few features (a small part of the original dataset) allow a good separation
between data classes. Therefore, it is necessary to reduce data dimension to select
a small number of relevant features for further use in predictive models. Reducing
the dimensionality of the data is a challenging step, requiring a careful choice of
appropriate feature selection techniques [15]. Filter and embedded methods are
used for this purpose. We discarded wrapper approaches since they are greedy
in computational cost.

The metabolomic data contain highly correlated features, which may impact
the calculation of feature importance and ranking features [8]. To overcome
this problem, we use two filter methods, the coefficient of correlation (Cor) and
mutual information (MI). The first filter (Cor) is used to discard very highly
correlated features, and the second filter (MI) is used to remove very dependent
features. As embedded methods [12], we retain two FS techniques that are widely
used on biological data, which are RF and SVM.

Figure 1 describes the feature selection workflow we propose to obtain a
reduced set of relevant features. This workflow considers at the beginning the
filter methods ’Cor’ and ’MI’ to eliminate redundant/dependent features. In or-
der to limit the loss of information, very highly correlated features are discarded
(one feature per group of correlated ones is kept) to keep a reasonable number
of features to work with. All the features whose MI average values are smaller
than the threshold are selected, since it is known that high mutual information
is indicating a large reduction of uncertainty [17]. We then set correlation and
mutual information thresholds to 0.95 and 0.02, respectively. Consequently, two
reduced subsets are generated: the first subset contains 963 features after ’Cor’
filter, and the second one contains 590 features after ’MI’ filter. When we fix
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Fig. 1. Feature selection and dimensionality reduction process.

a lower threshold of correlation, we remove a lot of features since the original
dataset is very correlated. When we set the MI threshold to a lower value, we
keep only a small number of features and consequently we may loose a lot of
information.

Both reduced subsets are used as input for the application of RF and SVM
classifiers. Nonetheless, as correlation values between variables are still high,
we furthermore adapt the RFE7 approach with RF and SVM. To cover various
possible classification results, we apply the embedded methods RF, RF-RFE and
SVM-RFE on both filtered subsets. We also apply the ANOVA method on the
original data set (not transformed) since it is commonly applied on metabolomic
data. Three different classification models are respectively obtained. The first
model is built from the application of RF on data filtered with Cor. The second
classification model is fitted according to RF-RFE also on the subset of data
filtered with ’Cor’. The third model is built from the application of SVM-RFE on
the subset of data filtered with ’MI’. Based on these three classification models,
we use several accuracy metrics to measure the importance of each feature in
the overall result. These measures include MdGini8, MdAcc9, Accuracy, and

7 Recursive Feature Elimination (RFE) is a backward elimination method, originally
proposed by Guyon et al. [9] for binary classification. This is one of the classical
embedded methods for feature selection with SVM.

8 Mean decrease in Gini index (MdGini) provides a measure of the internal structure
of the data.

9 Mean decrease in accuracy (MdAcc) measures the importance/performance of each
feature to the classification. The general idea of these metrics is to permute the
values of each variable and measure the decrease in the accuracy of the model.
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Kappa10. The scores given by these metrics enable ranking the features by means
of the classification models already built.

When no filter is used, three feature selection techniques (SVM-RFE, RF
and ANOVA) are applied directly to the original dataset using the feature
weight values ’W’ (i.e. the weight magnitude of features), p-value11, MdGini
and MdAcc scores to sort the features and identify those with the highest dis-
criminative power. Various forms of results (feature ranking, feature weighting,
etc.) and multiple (sub)sets of ranked features are obtained as output. In to-
tal, 10 (sub)sets are generated, corresponding to the different CP and ranking
scores (Figure 1). For each CP, we give a corresponding name that well describe
the whole classification process. The first CP is called ’Cor-RF-MdAcc’, which
means that we apply firstly the correlation coefficient ’Cor’, then we apply RF
on the obtained set and rank features according to MdAcc. We follow the same
logic to name the other CP: (2) ’Cor-RF-MdGini’, (3) ’Cor-RF-RFE-Acc’, (4)
’Cor-RF-RFE-Kap’, (5) ’MI-SVM-RFE-Acc’, (6) ’MI-SVM-RFE-Kap’, (7) ’RF-
MdAcc’, (8) ’RF-MdGini’, (9) ’SVM-RFE-W’ and (10) ’ANOVA-pValue’. To
preserve only important features, we retain the 200 first ranked ones from each
of the 10 (sub)sets, except the set ’ANOVA-pValue’ from which we select only
107 features that have a reasonable p-value (lower than 0.1). Ten reduced sets
of ranked features are consequently obtained, named Di, where i ∈ {1, . . . , 10}.
Then, to analyze the relative importance of individual features and to enable a
comprehensive interpretation of the results, these reduced sets of ranked features
are combined for comparison.

3.3 Visualization with FCA

This section focuses on comparing all the reduced sets (Di, where i ∈ {1, . . . , 10})
of highly ranked features (Figure 1). The combination of these subsets resulting
from different CP, enables covering several possible results and yields to a stable
unique reduced output. For the comparison propose, a binary table of features
× CP is built (e.g., Table 1), where the objects (rows) are the features and
the variables (columns) are the 10 CP. We put ’1’ if the feature exists in the
reduced set of a corresponding CP; otherwise, we put ’0’. Each feature has then
a support12 calculated from the obtained binary table, where the most frequent
features are those existing in all the reduced sets (support =10). Nevertheless,
since we are looking for frequent features according to the different CP, a subset
of features common to at least 6 techniques is selected (i.e., features belonging
to Di, where i ∈ {1, . . . , 10} and identified by at least 6 CP), and a new subset
of 48 frequent features is obtained. The choice of this value (6) is not random,

10 Cohens Kappa (Kappa) is a statistical measure which compares an Observed Accu-
racy with an Expected Accuracy (random chance)

11 A p-value helps determining the statistical significance of the results when a hypoth-
esis test is performed.

12 The support is the number of times we have ’1’ in each row, according to the binary
table.
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but it enables obtaining results from complementary FS methods. It ensures the
selection of some relevant features that could have been removed by filters, while
keeping a reasonable dataset size (48 features). A new binary table of the form
48 features × 10 CP is obtained and presented in Table 1. It describes features
in rows by the CP in columns and transforms then the initial problem statement
from a data table of 111 individuals × 1195 features to 48 features × 10 CP .
The labels of the features start with the word ’m/z’ which corresponds to the
mass per charge value.

From this (48 × 10) binary table, we apply FCA with the help of ConExp
tool [18]). Two seventy six concepts are obtained from the derived concept lattice
(Figure 2). The combination of FCA with the results of the numerical methods
and the transformation of the problem statement bring new light to the gen-
erated data. Four features ’m/z 383’, ’m/z 227’, ’m/z 114’ and ’m/z 165’ of
the subconcept are identified as the most frequent (maximum rectangle full of
1 in Table 1). Most of the 44 remaining features highlight strong relationships
between each others, such as ’m/z 284’, ’m/z 204’, ’m/z 132’, ’m/z 187’, ’m/z
219’, ’m/z 203’, ’m/z 109’, ’m/z 97’ and ’m/z 145’. Among the 48 frequent
features, 39 are significant w.r.t. ANOVA (have a pvalue<0.05). The generated
lattice highlights then the potential of the proposed feature selection approach
for analyzing metabolomic data. It enables discriminating direct and indirect
associations: highly linked metabolites belonging to the same concept. The links
between the concepts in the lattice represent the degree of interdependencies be-
tween concept and metabolites belonging to the same concept. These 48 frequent
features are then proposed as candidate for prediction.

4 Evaluation and discussion

4.1 Predictive performance evaluation and interpretation

Considering the 48 most frequent features previously identified, we would like
to evaluate their predictive capacities. Accordingly, we start the performance
evaluation using the ROC curves (Figure 3) of the 48 features with associated
confidence intervals. These analyses are performed using the ROCCET tool
(http://www.roccet.ca), with calculation of the area under the curve (AUC)
and confidence intervals (CI), calculation of the true positive rate (TPR), where
TPR = TP/(TP + FN), and the false discovery rate (FDR), where FDR =
TN/(TN+FP ). The p-values of these relevant features are also computed using
t-test.

ROC curve is a non-parametric analysis, which is considered to be one of
the most objective and statistically valid method for biomarker performance
evaluation [11]. They are commonly used to evaluate the prediction performance
of a set of features, or their accuracy to discriminate diseased cases from normal
cases. Since the number of features to propose as biomarkers requires to be quite
limited (because of clinical constraints), we rely on the ROC curves of the top 2,
3, 5, 10, 20 and 48 of important features ranked based on their AUC values. These
small sets of features are used to build the RF classification models based on the
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Table 1. Input binary table describing the 48 frequent features with the 10 CP.
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m/z 383 1 1 1 1 1 1 1 1 1 1
m/z 227 1 1 1 1 1 1 1 1 1 1
m/z 114 1 1 1 1 1 1 1 1 1 1
m/z 165 1 1 1 1 1 1 1 1 1 1
m/z 145 1 1 1 1 1 1 1 1 1
m/z 97 1 1 1 1 1 1 1 1 1
m/z 441 1 1 1 1 1 1 1 1 1
m/z 109 1 1 1 1 1 1 1 1 1
m/z 203 1 1 1 1 1 1 1 1 1
m/z 219 1 1 1 1 1 1 1 1 1
m/z 198 1 1 1 1 1 1 1 1 1
m/z 263 1 1 1 1 1 1 1 1 1
m/z 187 1 1 1 1 1 1 1 1 1
m/z 132 1 1 1 1 1 1 1 1 1
m/z 204 1 1 1 1 1 1 1 1 1
m/z 261 1 1 1 1 1 1 1 1 1
m/z 162 1 1 1 1 1 1 1 1
m/z 284 1 1 1 1 1 1 1 1 1
m/z 603 1 1 1 1 1 1 1 1
m/z 148 1 1 1 1 1 1 1 1
m/z 575 1 1 1 1 1 1 1 1
m/z 69 1 1 1 1 1 1 1
m/z 325 1 1 1 1 1 1 1
m/z 405 1 1 1 1 1 1 1
m/z 929 1 1 1 1 1 1 1 1
m/z 58 1 1 1 1 1 1 1 1
m/z 336 1 1 1 1 1 1 1 1
m/z 146 1 1 1 1 1 1 1
m/z 104 1 1 1 1 1 1 1
m/z 120 1 1 1 1 1 1 1 1
m/z 558 1 1 1 1 1 1 1
m/z 231 1 1 1 1 1 1
m/z 132* 1 1 1 1 1 1 1
m/z 93 1 1 1 1 1 1 1
m/z 907 1 1 1 1 1 1 1
m/z 279 1 1 1 1 1 1 1
m/z 104* 1 1 1 1 1 1 1
m/z 90 1 1 1 1 1 1 1
m/z 268 1 1 1 1 1 1
m/z 288* 1 1 1 1 1 1 1
m/z 287 1 1 1 1 1 1 1
m/z 167 1 1 1 1 1 1 1
m/z 288 1 1 1 1 1 1 1
m/z 252 1 1 1 1 1 1 1
m/z 141 1 1 1 1 1 1 1
m/z 275 1 1 1 1 1 1
m/z 148* 1 1 1 1 1 1
m/z 92 1 1 1 1 1 1 1

cross validation (CV) performance. The ROC curves enable identifying this best
combination of predictive features. Figure 3 shows that the best performance is
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Fig. 2. The concept lattice derived from the 48 × 10 binary table (Table 1).

given to the 48 features together (AUC=0.867). But a predictive model with 48
metabolites is not useable in clinical practices. The set of best features with the
smallest p-values and the highest accuracy values is selected to finally obtain a
short list of potential biomarkers. When we select the ten first features (Table
3), we have an AUC equals to 0.79, and a CI=0.71-0.9. When we select the first
four features, we obtain an AUC close to 0.75. These high AUC values show a
good predictive performance.

In sight of these results, it is more advisable to select the 10 first features
which have an AUC greater than 0.74 and a significant small t-test values (Ta-
ble 3) as potential biomarkers. We compare this subset of 10 best predictive
features with the four most frequent features (features with full of ’1’ in Table
1), we find that only one feature is in common, ’m/z 383’. We conclude that the
core set of most frequent features is not the best predictive set, as expected bio-
logically because the metabolomic analyses are performed 5 years before disease
occurrence. Moreover, these best predictive features (or potential biomarkers)
are not belonging to the same concept. Figure 2 highlights this conclusion and
shows that the best predictive biomarkers have different extents and belong to
concepts with different intents. They are depicted by the red squares in the lat-
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Fig. 3. The ROC curves of at least 2 and max 48 combined frequent features based on
RF model and AUC ranking.

tice. For example, the features ’m/z 145’, ’m/z 97’, ’m/z 109’ and ’m/z 187’ are
part of the intent of a concept including all the CP, except ’SVM-RFE-W’, in
extent. By contrast, the feature ’m/z 268’ belongs to another concept including 6
CP in extent (’RF-MdGini’, ’RF-MdAcc’, ’MI-SVM-RFE-Acc’, ’MI-SVM-RFE-
Kap’, ’SVM-RFE-W’, ’ANOVA-pValue’ ). Here again, the simple visualization
of the lattice comes to highlight the position of the predictive features among
the discriminant ones and shows the associations with selection methods. This
information is interesting for the expert domain since this visualization allows
choosing the best combination of feature selection methods.

4.2 Selection of the best FS method(s)

As some feature selection methods do not retain the ten best predictive ones
as their highly ranked, it remains essential to identify the methods that provide
the best selection from metabolomic data. Here again, FCA comes to highlight
and to assist information retrieval and visualization of the results. We then
retain only the subset of ten best features (’m/z 145’, ’m/z 441’, ’m/z 383’,
’m/z 97’, ’m/z 325’, ’m/z 69’, ’m/z 268’, ’m/z 263’, ’m/z 187’ and ’m/z 109’ )
identified previously due to the ROC curve, and apply FCA another time on
their corresponding binary Table 2. A new concept lattice is generated (Figure
4) showing a superconcept with 4 feature selection methods, ’ANOVA-pValue’,
’MI-SVM-RFE-Acc’, ’RF-MdAcc’ and ’RF-MdGini’, verified by all features.

This is a very interesting result which needs a deeper interpretation before
validation. We then consider these 4 methods and look for their ranking w.r.t. the
10 best predictive features (Table 3). Table 4 shows that RF-based techniques
and Anova provide a good ranking to the 10 features contrarily to ’MI-SVM-
RFE-Acc’. For example, ’m/z 145’ is ranked first according to ’RF-MdAcc’, ’RF-
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Table 2. Input binary table describing the 6 best predictive features with the 10 CP.
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m/z 383 1 1 1 1 1 1 1 1 1 1
m/z 145 1 1 1 1 1 1 1 1 1
m/z 97 1 1 1 1 1 1 1 1 1
m/z 263 1 1 1 1 1 1 1 1 1
m/z 325 1 1 1 1 1 1 1
m/z 268 1 1 1 1 1 1

Fig. 4. The concept lattice of the 10 best predictive variables.

MdGini’, second according to ’ANOVA-pvalue’ and hundredth within ’MI-SVM-
RFE-Acc’. The feature ’m/z 441’ is ranked 6th according to ’RF-MdAcc’, 8th
within ’RF-MdGini’, 172th within ’MI-SVM-RFE-Acc’, and 11th according to
’ANOVA-pvalue’. Consequently, the toplist methods for biomarker identification
from metabolomic data are RF-based and ANOVA.

5 Conclusion and future works

In this paper, we presented a new approach for the identification of predictive
biomarkers from complex metabolomic dataset. Due to the nature of metabolomic
data (highly correlated and noisy), the results highlighted the importance of
working on reduced datasets to identify important variables related to the ob-
served discrimination between case and control subjects and candidate for pre-
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Name AUC T-tests
m/z 145 0.79 1.4483E-6
m/z 383 0.79 5.0394E-7
m/z 97 0.78 1.5972E-6
m/z 325 0.77 2.2332E-5
m/z 69 0.76 1.2361E-5
m/z 268 0.75 4.564E-6
m/z 441 0.75 9.0409E-5
m/z 263 0.75 5.996E-6
m/z 187 0.74 9.0708E-6
m/z 109 0.74 2.6369E-5

Table 3. Table of performance of the best 10 AUC ranked features.

Feature RF-MdAcc RF-MdGini MI-SVM-RFE-Acc ANOVA-pValue
m/z 145 1 1 100 2
m/z 383 3 3 40 1
m/z 97 2 2 63 3
m/z 325 5 5 38 8
m/z 69 4 4 65 7
m/z 268 9 6 168 4
m/z 441 6 8 172 11
m/z 263 8 7 28 5
m/z 187 14 10 27 6
m/z 109 7 9 37 9

Table 4. Ranking of the 10 features with respect to 4 CP.

diction. Indeed, a combination of numerical (supervised) and symbolic (unsuper-
vised) methods remains the best approach, as it allows combining the strengths
of both techniques.

In this study, we used machine learning methods, RF and SVM, that we
combined with FCA, to select a subset of good candidate biological features
for prediction diseases. Our results showed the interest of this association to
reveal subtle effects (hidden information) in such high dimensional datasets and
how FCA highlighted the relationship between the best predictive features and
the selection methods. RF-based methods as well as ANOVA gave the toplist
of relevant features that best predict the disease development. With this help,
the experts in biology will go deeper in interpretation, attesting the success of
the knowledge discovery process. Additional experiments on other metabolomic
datasets are required to attest the success of the proposed approach.
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Abstract. We provide an approach to generalized metrics that covers
various concepts of distance. In particular, we consider functorial maps
which are weakly positive. Here, we focus on the supermodular case
which generalizes dimension functions. We give a lattice-theoretically
based construction for supermodular functorial maps, which generalize
those arising from Dempster-Shafer-Theory. Within this framework, gen-
eralized metrics relevant for FCA and closure operators are discussed.

Keywords: Generalized metric, supermodular, formal concept analysis,
Dempster-Shafer-Theory, closure operators

1 Introduction

Generalized metrics recently have become of increased interest for modelling a
concept of directed distances with values in a qualitative measurement space. In
particular, they allow to distinguish between deletion and error within the con-
text of transferred information. We propose a general modeling including lattices
and ordered monoids. Here, our goal is to construct generalized metrics relevant
for FCA and closure operators [3, 8, 7]. For our approach it turns out that su-
permodularity plays an important role, which goes beyond ideas of measurement
accociated with Dempster-Shafer-Theory [8].

Our modeling of generalized metrics can be very helpful to improve and better
understand the mapping of ratings, i. e. compare the rating methodologies of
different rating agencies with different result scales.

2 Motivation

Before we present generalized metrics in an abstract setting, we want to discuss a
motivating special situation where we collect properties relevant for our general
approach.

c© Marianne Huchard, Sergei O. Kuznetsov (Eds.): CLA 2016, pp. 175–186,
ISBN 978-5-600-01454-1, National Research University Higher School of Economics,
2016.



We start with a lattice L = (L,≤L). Then, we consider the ordered monoid
M = (M,∪, ∅,⊆) with M = 2L. Furthermore, we set

↓ x := {t ∈ L | t ≤L x}

and define the maps
λ : L −→M : x 7→↓ x

and
Dλ : ≤L−→M : (x, y) 7→↓ y − ↓ x. (1)

We can easily see that Dλ(x, y) is equal to the set {t ∈ L | t ≤L y and t �L x},
where x, y ∈ L and x ≤L y.

Observation Obviously, Dλ fulfils the following properties:

– Dλ(x, x) = ∅ holds for all x ∈ L, since Dλ(x, x) =↓ x − ↓ x = ∅.
– Dλ(x, y) ∪ Dλ(y, z) = Dλ(x, z) holds for all x, y, z ∈ L with x ≤L y ≤L z,

since

Dλ(x, y) ∪Dλ(y, z) = (↓ y − ↓ x) ∪ (↓ y − ↓ z)
= ↓ z − ↓ x
= Dλ(x, z).

Satisfying these conditions, Dλ will be called functorial (see definition 2).

Now we want to put the previous considerations in a slightly more general setting.
As above, the starting point is a lattice L = (L,≤L). For a given subset A of L
we consider the ordered monoid M = (M,∪, ∅,⊆) with M = 2A. Then, for all
x ∈ L we define

Ax := {a ∈ A | a ≤L x}.
Based on this setup, we consider the following maps:

λ : L −→M : x 7→ Ax,

Dλ : ≤L−→M : (x, y) 7→ Ay −Ax. (2)

Claim 1 Dλ is functorial w. r. t. (L,M).

Proof. – Firstly, Dλ(x, x) = ∅ obviously holds for all x ∈ L.

– Secondly, we have to show that Dλ(x, y) ∪Dλ(y, z) = Dλ(x, z) holds for all
x, y, z ∈ L with x ≤L y ≤L z:

Let x, y, z be elements in L such that x ≤L y ≤L z. For all a ∈ A, a ∈ Dλ(x, z)
is equivalent to

a �L x and a ≤L z.

Let a ∈ Dλ(x, z). We distinguish two situations:
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Case 1: a ≤L y Then, a �L x and a ≤L y, that is a ∈ Dλ(x, y).

Case 2: a �L y Then, a �L y and a ≤L z, that is a ∈ Dλ(y, z).

Hence, a ∈ Dλ(x, y) ∪Dλ(y, z).

On the other hand, assume a ∈ Dλ(x, y) ∪ Dλ(y, z). Hence, a �L x and
a ≤L y, or a �L y and a ≤L z. Then, a �L x (since x ≤L y) and a ≤L z
(since y ≤L z) which yields a ∈ Dλ(x, z). 2

In (2), we introduced Dλ as a function with domain ≤L. Next, we want to look
for an extension of Dλ onto L× L. We achieve this by the following map:

dλ : L× L −→M : (x, y) 7→ Dλ(x ∧ y, y) (3)

Claim 2 The map dλ is a generalized quasi metric (GQM) w. r. t. (L,M), that
is, the subsequent conditions are satisfied:

(A0) for all x, y ∈ L : ∅ ⊆ dλ(x, y),

(A1) for all x ∈ L : dλ(x, x) = ∅,
(A2) for all x, y, z ∈ L : dλ(x, z) ⊆ dλ(x, y) ∪ dλ(y, z).

We remind the reader that A is called join-dense in L if for all x, y ∈ L with
x �L y there exists a ∈ A such that a �L y and a ≤L x.

Claim 3 Let A be join-dense in L. Then dλ is a generalized metric (GM) w. r.
t. (L,M), that is, dλ is a GQM which additionally satisfies:

(A3) For all x, y ∈ L : dλ(x, y) = ∅ = dλ(y, x) =⇒ x = y.

A more general definition for the underlying concepts will be given in definition
3.

Proof. (A0) Obviously, for all x, y ∈ L, the condition ∅ ⊆ dλ(x, y) is
satisfied.

(A1) Clear, since for all x ∈ L : dλ(x, x) = ∅.
(A2) We have to show that dλ(x, z) ⊆ dλ(x, y)∪ dλ(y, z) holds for all

x, y, z ∈ L. This is equivalent to

Dλ(x ∧ z, z) ⊆ Dλ(x ∧ y, y) ∪Dλ(y ∧ z, z).

To do so, let a ∈ Dλ(x ∧ z, z). Hence, a �L x ∧ z and a ≤L z,
which implies

a �L x and a ≤L z.

We have to examine two cases:
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Case 1: a ≤L y Hence, a �L x ∧ y and a ≤L y. It follows

a ∈ Dλ(x ∧ y, y).

Case 2: a �L y Hence, a �L y ∧ z and a ≤L z. It follows

a ∈ Dλ(y ∧ z, z).
All in all, also (A2) is satisfied. Consequently, dλ is a GQM.

(A3) Let x, y ∈ L. We suppose dλ(x, y) = ∅. This is equivalent to

Ay −A(x ∧ y) = ∅
⇐⇒ Ay = A(x ∧ y).

Taking advantage of the precondition dλ(x, y) = ∅ = dλ(y, x),
we follow that

Ay = A(x ∧ y) = A(y ∧ x) = Ax.

Hence, y = x, as A is join-dense.

All in all, dλ is a GM w. r. t. (L,M). 2
Claim 4 The map Dλ is supermodular w. r. t. (L,M) [10], that is, for all
x, y ∈ L, the following condition holds:

(A4) Dλ(x ∧ y, y) ⊆ Dλ(x, x ∨ y)

Proof. Let a ∈ Dλ(x ∧ y, y). Since Dλ(x ∧ y, y) equals Ay − A(x ∧ y), we know
that

a ∈ Ay and a /∈ A(x ∧ y). (4)

According to the definition of A, we obtain a ≤ y and a � x∧y. Hence, a ≤ x∨y.

Suppose a ≤ x. As a ≤ y, it follows a ≤ x ∧ y which is a contradiction to (4).
Therefore, a ∈ A(x ∨ y)−Ax = Dλ(x, x ∨ y). 2

3 Abstract Approach

We want to put our recent examinations from the special case into a more general
setting. For that, we start with some necessary definitions [1, 3, 10].

Definition 1 M = (M, ∗, ε,≤) is an ordered monoid if M := (M, ∗, ε) is a
monoid and (M,≤) is a poset such that a ≤ b implies c∗a ≤ c∗b and a∗c ≤ b∗c,
for all a, b, c ∈M .

Definition 2 Let P = (P,≤P) be a poset and M = (M, ∗, ε,≤) be an ordered
monoid. A function

∆ : ≤P −→M

is called functorial w. r. t. (P,M), if
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– for all p ∈ P : ∆(p, p) = ε,

– for all p, t, q ∈ P with p ≤P t ≤P q : ∆(p, t) ∗∆(t, q) = ∆(p, q).

Furthermore, ∆ is called weakly positive, if ε ≤ ∆(p, q) for all (p, q) ∈ ≤P.

∆ is called supermodular w. r. t. (P,M), if ∆(p ∧ q, q) ≤ ∆(p, p ∨ q) holds for
all (p, q) ∈ ≤P.

Furthermore, ∆ is called submodular w. r. t. (P,M), if ∆(p∧q, q) ≥ ∆(p, p∨q)
holds for all (p, q) ∈ ≤P.

Definition 3 Let P be a set, and M = (M, ∗, ε,≤) be an ordered monoid. A
function d : P × P −→ M is called generalized quasi-metric (GQM) w. r.
t. (P,M), if

(A0) for all (p, q) ∈ ≤P : ε ≤ d(p, q)

(A1) for all p ∈ P : d(p, p) = ε

(A2) for all p, t, q ∈ P : d(p, t) ∗ d(t, q) ≤ d(p, q)

If in addition, (A3) holds, d is a generalized metric (GM) w. r. t. (P,M):

(A3) for all (p, q) ∈ P × P : d(p, q) = ε = d(q, p) =⇒ p = q

For a given ∆ : ≤P−→M , does there exist a generalized quasi-metric
d : P × P −→M w. r. t. (P,M) which extends ∆ such that d|≤P = ∆?

Theorem 1 Let P = (P,≤P) be a lattice. If a map ∆ : ≤P −→M is weakly
positive, supermodular and functorial w. r. t. (P,M), then

d : P × P −→M, (p, q) 7→ ∆(p ∧ q, q)

is a GQM w. r. t. (P,M).

Proof. Obviously, conditions (A0) and (A1) from definition 3 hold for d.

For (A2), we have to show that d(p, q) ≤P d(p, t) ∗ d(t, q) holds for all p, t, q ∈ P .
According to the definition of d this means

∆(p ∧ q, q) ≤P ∆(p ∧ t, t) ∗∆(t ∧ q, q).

We will prove this inequality immediately in Claim 3 below. However, first of
all, we need to show two properties in preparation for that.
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Claim 1 (Interval Property)

t ≤P x ≤P y ≤P z =⇒ ∆(x, y) ≤ ∆(t, z).

Proof. Since ∆ is functorial, we obtain

∆(t, z) = ∆(t, x) ∗∆(x, y) ∗∆(y, z).

As ∆ is weakly positive, we get

∆(x, y) = ε ∗∆(x, y) ∗ ε ≤ ∆(t, z).

3

z

y

x

t

Fig. 1

Claim 2 (Meet Property)

x ≤P y =⇒ ∆(x ∧ z, y ∧ z) ≤ ∆(x, y).

Proof. To show this implication, we rewrite the
right hand side:

∆(x ∧ z, y ∧ z) = ∆(x ∧ (y ∧ z), y ∧ z)

We continue denoting y ∧ z by y′ and derive

∆(x ∧ (y ∧ z), y ∧ z) = ∆(x ∧ y′, y′)
≤ ∆(x, x ∨ y′),

due to supermodularity of ∆. We know that
x ∨ y′ ≤P y, since x ≤P y and y′ ≤P y. Hence,
with Claim 1, we get

∆(x ∧ z, y ∧ z) ≤ ∆(x, y).

3

x y ∧ z

x ∧ z

y z

∆(x, y)

∆(x ∧ z, y ∧ z)

Fig. 2

x y′

x ∧ z

y

x ∨ y′ z

∆(x, y)

∆(x ∧ z, y′)

Fig. 3

Claim 3

∆(p ∧ q, q) ≤ ∆(p ∧ t, t) ∗∆(t ∧ q, q).
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p ∧ t p ∧ q t ∧ q

p ∧ t ∧ q

Fig. 4

Proof. Taking advantage of Claim 1, we know that

∆(p ∧ q, q) ≤ ∆(p ∧ t ∧ q, q).

Since ∆ is functorial, it follows

∆(p ∧ t ∧ q, q) = ∆(p ∧ t ∧ q, t ∧ q) ∗∆(t ∧ q, q).

With Claim 2, we finally receive

∆(p ∧ t ∧ q, t ∧ q) ∗∆(t ∧ q, q) ≤ ∆(p ∧ t, t) ∗∆(t ∧ q, q).

Therefore, ∆(p ∧ q, q) ≤ ∆(p ∧ t, t) ∗∆(t ∧ q, q). 2

The latter theorem can be applied to various concepts of distance between ob-
jects of a given lattice. In the following, we will study some interesting applica-
tions in different context, starting with formal concept analysis.

4 Application to FCA

Let K = (G,M, I) be a finite formal context. Then the set of formal concepts of
K is given by

BK := {(X,Y ) ∈ 2G × 2M | X ′ = Y and , Y ′ = X}

and the formal concept lattice of K is defined as

BK := (BK,≤BK)

with c1 ≤BK c2 iff A1 ⊆ A2 holds for all c1 = (A1, B1), c2 = (A2, B2) ∈ BK.

Remarkably, the map

dext : BK×BK −→ N such that (c1, c2) 7→ #(A2 −A1)

is a GM w. r. t. (BK,M) with M := (N,+, 0,≤). The reason for this is based
in Theorem 1, as we will outline below.
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For all c1 = (A1, B1), c2 = (A2, B2) ∈ BK it follows

dext(c1, c2) = #A2 −#(A1 ∩A2),

since A2 −A1 = A2 − (A1 ∩A2) and # is the counting measure.

To verify that dext is a GM, we define

Dext : ≤BK−→ N such that(c1, c2) 7→ #A2 −#A1.

Claim 4 Dext is functorial w. r. t. (BK,M), weakly positive and supermodular.

Proof. The properties of being weakly positive and functorial are clear due to
the definition of Dext via the counting measure. Let us have a closer look at the
supermodularity:

Let c1, c2 ∈ BK. We have to show that

Dext(c1 ∧ c2, c2)
!
≤ Dext(c1, c1 ∨ c2).

Transforming the left hand side, we obtain

Dext(c1 ∧ c2, c2) = Dext

((
A1 ∩A2, (A1 ∩A2)′

)
,
(
A2, B2

))

= #A2 −#(A1 ∩A2)

= dext(c1, c2).

On the right hand side, we get

Dext(c1, c1 ∨ c2) = Dext

((
A1, A2

)
,
(

(B1 ∩B2)′︸ ︷︷ ︸
=(A1∪A2)′′

, B1 ∩B2

))

= #
(
(A1 ∪A2)′′

)
−#A1

≥ #(A1 ∪A2)−#A1

= #A2 −#(A1 ∩A2)

= dext(c1, c2).

Hence,
Dext(c1 ∧ c2, c2) ≤ Dext(c1, c1 ∨ c2)

and the supermodularity is shown. 2

Obviously, by theorem 1 together with claim 4 it immediately follows that dext
is a GM w. r. t. (BK,M).

Remark. In analogy to the above, the map

dint : BK×BK −→ N such that (c1, c2) 7→ #(B1 −B2)

is a GM w. r. t. (BK,M).
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5 Application to Dempster-Shafer-Theory

Choosing L := 2U and A := L, where U is a finite set, allows us a link to
Dempster-Shafer-Theory.

Let m be a mass function on L, that is

m : L −→ R≥0 : X 7→ mX is a map such that m(∅) = 0 and
∑

X∈L
mX = 1.

We define
Belm : L −→ R≥0 : X 7→

∑

T⊆X
mT

as the so-called belief map w. r. t. m and

Plm : L −→ R≥0 : X 7→
∑

T∈L:T∩X 6=∅
mT

as the so-called plausibility map w. r. t. m.

Obviously, for all X ∈ Belm, the equation BelmX+Plm(U−X) = 1 holds. That
is:

1− Plm(U −X) = BelmX

1− BelmX = Plm(U −X). (5)

Claim 5 Let ∆ be the function which maps every pair (X,Y ) with X ⊆ Y ⊆ U
to

∆(X,Y ) := Belm Y − BelmX. (6)

∆ is functorial, weakly positive, and supermodular w. r. t. the power set lattice
of U into the naturally ordered additive monoid of non-negative real numbers.

Applying this claim to theorem 1, we receive that

d : L× L −→ R≥0, (X,Y ) 7→ ∆(X ∩ Y, Y ) = Belm Y − Belm(X ∩ Y )

is a GM w. r. t. the power set of U into the naturally ordered additive monoid
of non-negative real numbers.

Remark. With the plausibility map introduced above, a submodular pendant
to the supermodular map ∆ in (6) can be constructed via

∆̃(X,Y ) := Plm Y − PlmX where X ⊆ Y ⊆ U.

∆̃ is indeed submodular, as the following inequation holds:

Plm(X ∪ Y ) + Plm(X ∩ Y ) ≤ PlmX + Plm Y.
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This can be shown by using the equality

PlmX = 1− Belm(U −X)

that we have already observed in (5).

Remark. Dually to theorem 1, ∆̃ induces a GM d̃ via

d̃ : L× L −→ R≥0, (X,Y ) 7→ ∆̃(X,X ∪ Y ) = Plm(X ∪ Y )− PlmX.

6 A Fundamental Construction of Generalized Quasi
Metrics

Let P = (P,≤P) be a poset, M = (M, ∗, ε) be a monoid, and ∗ : P ×M −→ P
be a map such that the following properties are satisfied:

1 For all p ∈ P and all x, y ∈M : p ∗ (x ∗ y) = (p ∗ x) ∗ x
2 For all p ∈ P : p ∗ ε = p

3 For all p, y ∈ P, x ∈M : p ≤P q =⇒ p ∗ x ≤P q ∗ x
Then we call the triple (P,M, ∗) a poset right monoid action.

In this setup, we consider the map ∇ : P × P −→M defined by

∇(p, q) := {x ∈M | q ≤P p ∗ x} for all p, q ∈ P.

Claim 6 For all p, q, r ∈ P the following reverse triangle inequality holds:

∇(p, q) ∗ ∇(q, r) ⊆ ∇(p, r)

Proof. We choose z ∈ ∇(p, q) ∗ ∇(q, r). That is, there exits x ∈ ∇(p, y) and
y ∈ ∇(q, r) such that z = x ∗ y.

Since x ∈ ∇(p, q), we know that q ≤P p ∗ x. Analogously, y ∈ ∇(q, r) implies
r ≤P q ∗ y.

Using property 3 , we get

r ≤P q ∗ y
3

≤P (p ∗ x) ∗ y
1

= p ∗ (x ∗ y)

= p ∗ z.

All in all, r ≤P p ∗ z which implies z ∈ ∇(p, r). 2
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Let (L, ∗, ε,≤) be a residual complete lattice, that is an ordered monoid for which
∗ preserves arbitrary infima in each component. Furthermore, we consider a map
ν : M −→ L which satisfies the condition

ν(x ∗ y) ≤ νx ∗ νy for all x, y ∈M. (7)

On this basis, we construct the following map

d : P × P −→ L via (p, q) 7→ inf ν
(
∇(p, q)

)
.

Claim 7 The map d satisfies the triangle inequality, that is

d(p, r) ≤ d(p, q) ∗ d(q, r) holds for all p, q, r ∈ P.

Proof. Let p, q, r ∈ P . First, we transform the inequality’s right hand side:

d(p, q) ∗ d(q, r) = inf ν
(
∇(p, q)

)
∗ inf ν

(
∇(q, r)

)

= inf
(
ν
(
∇(p, q)

)
∗ ν
(
∇(q, r)

))
.

Hence, we have to show that inf ν
(
∇(p, q)

)
≤ inf

(
ν
(
∇(p, q)

)
∗ ν
(
∇(q, r)

))
.

Let t ∈ ν
(
∇(p, q)

)
∗ ν
(
∇(q, r)

)
. It follows that there exists x ∈ ∇(p, q) and

y ∈ ∇(q, r) such that t = νx ∗ νy, which is greater than or equal to ν(x ∗ y) due
to property, i. e. we obtain

ν(x ∗ y) ≤ t. (8)

Consequently, with claim 6, we get

x ∗ y ∈ ∇(p, q) ∗ ∇(q, r) ⊆ ∇(p, r).

Applying ν on both sides yields

ν(x ∗ y) ∈ ν
(
∇(p, r)

)
.

Hence,

inf ν
(
∇(p, r)

)
≤ ν(x ∗ y)

(8)

≤ t

and the triangle inequality of d is shown. 2
Definition 4 Let M = (M, ∗, ε) be a monoid and let L = (L, ∗, ε,≤) be an
ordered monoid. Then, a map ν : M −→ L is a monoid norm w. r. t. (M,L)
if ν(ε) = ε and ν(x ∗ y) ≤ νx ∗ νy holds for all x, y ∈M .

Theorem 2 Let (P,M, ∗) be a poset right monoid action with P = (P,≤P) and
M = (M, ∗, ε). Further, let L = (L, ∗, ε,≤) be a residual complete lattice and
ν : M −→ L be a monoid norm w. r. t. (M,L).

Then
d : P × P −→ L, (p, q) 7→ inf ν

(
∇(p, q)

)

is a GQM w. r. t. (P,L).
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7 Application to join geometries

Let P = (P,≤) be a complete lattice. Then an element x ∈ P is called compact
in P if for every subset T of P with x ≤ supT there exists a finite subset U of
T such that x ≤ supU .

Definition 5 A join geometry is defined as a pair (P, E) consisting of a com-
plete lattice P and a join-dense subset E consisting of compact elements in P.

For the following, let (P, E) be a join geometry such that for all p, q ∈ P there
exists a compact element r ∈ P such that q ≤ p ∨ r.
Then the triple (P,M, ∗) is a poset right monoid action for M = (M,∪, ∅) with
M := 2Efin and

∗ : P ×M −→ P, (x,D) 7→ x ∨ supD.

Moreover, the map

ν : M −→ N ∪ {∞}, D 7→ #D

is a monoid norm w. r. t. (M,L) for

L :=
(
N ∪ {∞},+, 0,≤

)

(which forms a residual complete lattice). Obviously, by theorem 2 it follows
that

d : P × P −→ N ∪ {∞}, (p, q) 7→ inf ν
(
∇(p, q)

)

= min{#D | D ∈ 2Efin : q ≤ p ∨ supD}
is a GM w. r. t. (P,L).

This result has an important specialisation for closure operators on power sets
of finite sets.

8 Application to Closure Operators

Let U be a finite set and γ be a closure operator on P :=
(
P,⊆

)
with P := 2U .

Further, let M :=
(
N,+, 0,≤

)
. Then the map

d : P × P −→ N, (X,Y ) 7→ min
{

#T | T ∈ P : Y ⊆ γ(X ∪ T )
}

is a GQM w. r. t. (P,M), which we want to call the closure distance.

In particular, the restriction of d onto γP × γP is a GM w. r. t. (γP,M).

In context of information pooling, for a group of received elements, we can
construct the corresponding closure and with the closure distance d from above,
the distance to a given closure can be evaluated. This works for arbitrary closure
operators, which also includes closure systems of a matroid, for instance.
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Global Optimization in Learning with Important
Data: an FCA-Based Approach
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Abstract. Nowadays decision tree learning is one of the most popular
classification and regression techniques. Though decision trees are not
accurate on their own, they make very good base learners for advanced
tree-based methods such as random forests and gradient boosted trees.
However, applying ensembles of trees deteriorates interpretability of the
final model. Another problem is that decision tree learning can be seen
as a greedy search for a good classification hypothesis in terms of some
information-based criterion such as Gini impurity or information gain.
But in case of small data sets the global search might be possible.
In this paper, we propose an FCA-based lazy classification technique
where each test instance is classified with a set of the best (in terms of
some information-based criterion) rules. In a set of benchmarking exper-
iments, the proposed strategy is compared with decision tree and nearest
neighbor learning.

Keywords: Formal Concept Analysis, lazy learning, global optimization

1 Introduction

The classification task in machine learning aims to use some historical data
(a training set) to predict unknown discrete variables in unknown data (a test
set). While there are dozens of popular methods for solving the classification
problem, usually there is an accuracy-interpretability trade-off when choosing
a method for a particular task. Neural networks, random forests and ensemble
techniques (boosting, bagging, stacking etc.) are known to outperform simple
methods in difficult tasks. Kaggle competitions also bear testimony for that –
usually, winners resort to ensemble techniques, mainly to gradient boosting [1].
The mentioned algorithms are widely spread in those application scenarios where
classification performance is the main objective. In Optical Character Recogni-
tion, voice recognition, information retrieval and many other tasks typically we
are satisfied with a trained model if it has a low generalization error.

However, in lots of applications we need a model to be interpretable as well
as accurate. Some classification rules, built from data and examined by experts,
may be justified or proved. In medical diagnostics, when making highly respon-
sible decisions, e.g., predicting whether a patient has cancer (i.e., dealing with
“important data”), experts prefer to extract readable rules from a machine learn-
ing model in order to “understand” it and justify the decision. In credit scoring,

c© Marianne Huchard, Sergei O. Kuznetsov (Eds.): CLA 2016, pp. 189–200,
ISBN 978-5-600-01454-1, National Research University Higher School of Economics,
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for instance, applying ensemble techniques can be very effective, but the model
is often obliged to have “sound business logic”, that is, to be interpretable [2].

2 Related work

Eager (non-lazy) algorithms construct classifiers that contain an explicit hy-
pothesis mapping unlabelled test instances to their predicted labels. A decision
tree classifier, for example, uses a stored model to classify instances by tracing
the instance through the tests at the interior nodes until a leaf containing the
label is reached. In eager algorithms, the main work is done at the phase of
building a classifier.

In lazy classification paradigm [3], however, no explicit model is constructed,
and the inductive process is done by a classifier which maps each test instance
to a label using a training set.

2.1 Lazy decision trees

The authors of [4] point the following problem with decision tree learning:
while entropy measures used in C4.5 and ID3 are guaranteed to decrease on
average, the entropy of a specific child may not change or may increase. In other
words, a single decision tree may find a locally optimal hypothesis in terms of
entropy measure such as Gini impurity or pairwise mutual information. But us-
ing a single tree may lead to many irrelevant splits for a given test instance.
A decision tree built for each test instance individually can avoid splits on at-
tributes that are irrelevant for the specific instance. Thus, such “customized”
decision trees (actually classification paths) built for a specific test instance may
be much shorter and hence may provide a short explanation for the classification.

2.2 Lazy associative classification

Associative classifiers build a classifier using association rules mined from
training data. Such rules have the class attribute as a conclusion. This approach
was shown to yield improved accuracy over decision trees as they perform a
global search for rules satisfying some quality constraints [5]. Decision trees, on
the contrary, perform greedy search for rules by selecting the most promising
attributes.

Unfortunately, associative classifiers tend to output too many rules while
many of them even might not be used for classification of a test instance. Lazy
associative classification algorithm overcomes these problems of associative clas-
sifiers by generating only the rules with premises being subsets of test instance
attributes [5]. Thus, in lazy associative classification paradigm only those rules
are generated that might be used in classification of a test instance. This leads
to a reduced set of classification rules for each test instance.
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2.3 Decision trees in terms of Formal Concept Analysis

In [6] the authors utilize concept lattices to represent each concept intent (a
closed set of attributes) as a decision tree node and a concept lattice itself – as
a set of overlapping decision trees. The construction of a decision tree is thus
reduced to selecting one of the downward paths in a concept lattice via some
information criterion.

2.4 Lazy classification for complex structure data

The modification of the lazy classification algorithm capable of handling com-
plex structure data was first proposed in [7]. The main difference from the Lazy
Associative Classification algorithm is that the method is designed to analyze
arbitrary objects with complex descriptions (intervals, sequences, graphs etc.).
This setting was implemented for interval credit scoring data [8] and for graphs
in a toxicology prediction task [9].

3 Definitions

Here we introduce some notions from Formal Concept Analysis [10] which
help us to organize the search space for classification hypotheses.

Definition 1. A formal context in FCA is a triple K = (G,M, I) where G is a
set of objects, M is a set of attributes, and the binary relation I ⊆ G×M shows
which object possesses which attribute. gIm denotes that object g has attribute
m. For subsets of objects and attributes A ⊆ G and B ⊆M Galois operators are
defined as follows:

A′ = {m ∈M | gIm ∀g ∈ A},
B′ = {g ∈ G | gIm ∀m ∈ B}.

A pair (A,B) such that A ⊆ G,B ⊆ M,A′ = B and B′ = A, is called
a formal concept of a context K. The sets A and B are closed and called the
extent and the intent of a formal concept (A,B) respectively.

Example 1. Let us consider a “classical” toy example of a classification task. The
training set is represented in Table 1. All categorical attributes are binarized
into “dummy” attributes. The table shows a formal context K = (G,M, I) with
G = {1, . . . , 10}, M = {or, oo, os, tc, tm, th, hn,w} (let us omit a class attribute
“play”) and I – a binary relation defined on G×M where an element of a relation
is represented with a cross (×) in a corresponding cell of a table.

A concept lattice for this formal context is depicted to the right from1. It
should be read as follows: for a given element (formal concept) of the lattice
its intent (closed set of attributes) is given by all attributes which labels can
be reached in ascending lattice traversal. Similarly, the extent (a closed set of
objects) of a certain lattice element (formal concept) can be traced in a downward
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lattice traversal from a given point. For instance, a big blue-and-black circle
depicts a formal concept ({1, 2, 5}, {or, tc, hn}).

Such concept lattice is a concise way of representing all closed itemsets (for-
mal concepts’ intents) of a formal context. Closed itemsets, further, can serve
as a condensed representation of classification rules [11]. In what follows, we
develop the idea of a hypotheses search space represented with a concept lattice.

Table 1. A toy classification problem and a concept lattice of the corresponding
formal context. Attributes: or – outlook = rainy, oo – outlook = overcast, os
– outlook = sunny, tc – temperature = cold, tm – temperature = mild, th –
temperature = high, hn – humidity = normal, w – windy, play – whether to
play tennis or not (class attribute).

№ or oo os tc tm th hn w play
1 × × × ×
2 × × × ×
3 × × ×
4 × ×
5 × × × ×
6 × × × ×
7 × × × ×
8 × × × ×
9 × × ×
10 × × ?

4 Concept lattice a hypothesis search space

Further we describe and illustrate the proposed approach in binary- and
numeric-attribute cases when dealing with binary classification. The approach
is naturally extended to multiclass case with the corresponding adjustments to
information criteria formulas.

4.1 Binary-attribute case

In case of training and test data represented as binary tables, the proposed
algorithm is described as Algorithm 1.

Let Ktrain = (Gtrain,M0 ∪M0 ∪ ctrain, Itrain) and Ktest = (Gtrain,M0 ∪
M0, Itest) be formal contexts representing a training set and a test set corre-
spondingly. We state clearly that the set of attributes is dichotomized:
M = M0 ∪M0 where ∀g ∈ Gtrain,m ∈ M0 ∃ m ∈ M0 : gItrainm→ ¬gItrainm.
Let CbO(K,min_supp) be the algorithm used to find all formal concepts of a
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formal context K with support greater or equal to min_supp (by default we use
a modification of the InClose-2 program implementation [12] of the CloseByOne
algorithm [13]). Let inf : M ∪ ctrain → R be an information criterion used to
rate classification rules (we use Gini impurity by default). Finally, let min_supp
and n_rules be the parameters of the algorithm (the minimal support of each
classification rule’s premise and the number of rules to be used for prediction of
each test instance’s class attribute).

With these designations, the main steps of the proposed algorithm for each
test instance are the following:

1. For each test object we leave only its attributes in the training set (step 1
in Algorithm 1). Or, formally, we build a new formal context
Kt = {Gtrain, g′t, Itrain} with the same objects Gtrain as in the training
context Ktrain and with attributes of a test object g′t ∪ ctrain. We clarify
what it means in case of real-valued attributes in subsection 4.2.

2. With CbO(K,min_supp), find all formal concepts of a formal context Kt

satisfying the constraint on minimal support. We build formal concepts in a
top-down manner (increasing the number of attributes) and backtrack when
the support of a formal concept intent is less thanmin_supp. The parameter
min_supp refines the support of any possible hypothesis mined to classify
the test object and is therefore analogous to the parameter
min_samples_leaf of a decision tree. While generating formal concepts, we
keep track of the values of the class attributes for all training objects having
all corresponding attributes (i.e. for all objects in formal concept extent).
We calculate the value of an information criterion inf (we use Gini impurity
by default) for each formal concept intent.

3. Then the mined formal concepts are sorted by the value of the criterion inf
from the “best” to the “worse”.

4. Retaining first n concepts with the best values of the chosen information
criterion, we have a set of rules to classify the current test object. For each
concept we define a classification rule with concept intent as an antecedent
and the most common value of class attribute among the objects of concept
extent as a consequent.

5. Finally, we predict the value of the class attribute for current test object
simply via majority rule among n “best” classification rules’ antecedents. We
also save the rules for each test object in a dictionary rtest.

4.2 Numeric-attribute case

In our approach, we deal with numeric attributes similarly to what is done
in the CART algorithm [14]. We sort the values of a numeric attribute and
identify the thresholds to binarize numeric attributes where the target attribute
changes. Let us demonstrate step 1 of Algorithm 1 in case of binary and numeric
attributes with a sample from Kaggle “Titanic: Machine Learning from Disaster”
competition dataset.1

1 https://www.kaggle.com/c/titanic
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Algorithm 1 Lazy Lattice-based Optimization (LLO)
Input: Ktrain = (Gtrain,M0 ∪M0 ∪ ctrain, Itrain)
Ktest = (Gtest,M0 ∪M0, Itest)
min_supp ∈ R+, nrules ∈ N;
CbO(K,min_supp) : K → S;
sort(S, inf) : S → S
inf : M ∪ ctrain → R;
Output: ctest, rtest

ctest = ∅, rtest = ∅
for gt ∈ Gtest do

1. Kt = {Gtrain, g′t, Itrain}
2. St = {(A,B) | A ⊆ Gtrain, B ⊆ g′t, A

′ = B,B′ = A, |A|
Gtrain

≥ min_supp} =

CbO(Kt,min_supp)
3. St = sort(St, inf)
4. {Bi}i∈[1,nrules] = {Bj | (Aj , Bj) ∈ St}, j ∈ [1, n_rules]
5. ci = argmax({count(ctrainj ) | j ∈ B′

i})
6. rtest[i] = {Bi → ci}, i = 1, . . . , nrules
7. ctest[i] = argmax({count(cj) | j = 1, . . . , nrules)}

end for

Example 2. Table 2 shows a sample from the Titanic dataset. Let us build a
formal context to classify passenger no. 7 with attributes Pclass=2, Age=28,
City=C. If we sort the data by age in ascending order we see where the target
attribute “Survived” switches from 0 to 1 or vice versa.

Age 16 18 30 39 42 62
Survived 1 0 0 1 0 1

Thus we have a set of thresholds to discretize the attribute “Age”:
T = {17, 34.5, 40.5, 52}. The formal context K7 (corresponding to Kt for t = 7
in Algorithm 1) is presented in Table 3.

4.3 Complexity

The algorithm is based on the CloseByOne lattice-building algorithm with
time complexity shown [15] to be equal to O(|G||M |2|L|) for a formal context
(G,M, I) and a corresponding lattice L. To put it simply, the complexity is linear
in the number of objects, quadratic in the number of attributes and linear in the
number of built formal concepts.

In the proposed algorithm CloseByOne is run for each test object (step 3
in Algorithm 1), and for each formal concept information criterion values are
calculated. Calculating entropy or Gini index is linear in the number of objects
as it requires calculating supports of attribute sets. This is done “on-the-go”
while building a lattice (step 4 in Algorithm 1).
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Table 2. A sample from the Titanic dataset. Attributes: “Pclass” – passenger’s
class, “City” – boarding city (here Cherburg or Southhampton), “Age” – passen-
ger’s age, “Survived” – whether a passenger survived in the Titanic disaster.

Id Pclass Age City Survived
1 3 39 S 1
2 3 16 S 1
3 1 62 C 1
4 3 42 S 0
5 2 30 C 0
6 2 18 C 0
7 2 28 C ?
8 1 47 C ?

Table 3. A formal context built to classify a test passenger no. 7.

Id Pclass! = 1 Pclass == 2 Pclass! = 3 Age ≥ 17 Age ≤ 34.5 Age ≤ 40.5 Age ≤ 52 City == C Survived
1 × × × × 1
2 × × × × 1
3 × × × 1
4 × × × 0
5 × × × × × × × × 0
6 × × × × × × × × 0

Therefore, the time complexity of classifying |Gt| test instances with the pro-
posed algorithm based on a training formal context (G,M, I) is approximately
O(|Gt||G||M |2|L̄|) where |L̄| is an average lattice size for formal contexts de-
scribed in step 2 in Algorithm 1.

5 Example

Let us illustrate the proposed algorithm with a toy example from Table 1. To
classify the object no. 10, we do the following steps according to Algorithm 1:

1. Let us fix Gini impurity as an information criterion of interest and the pa-
rameters min_supp = 0.5 and n = 3. Thus, we are going to classify a test
instance with 3 rules supporting at least 5 objects and having highest gain
in Gini impurity.

2. The case Outlook=sunny, Temperature=cool, Humidity=high, Windy=false
corresponds to a set of attributes {os, tc, hh,w} describing the test instance.
Or, if we consider the negations of the attributes, such case is described with
a set of attributes: {ōr, ōo, os, tc, ¯tm, t̄h, h̄n, w̄}

3. We build a formal context with objects being the training set instances and
attributes of a test instance – {ōr, ōo, os, tc, ¯tm, t̄h, h̄n, w̄}. The correspond-
ing binary table is shown in Table 4.
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Table 4. The training set instances with attributes of a test instance Out-
look=sunny, Temperature=cool, Humidity=high, Windy=false. Attributes: ōr –
outlook is not rainy, ōo – outlook is not overcast, os – outlook = sunny, tc –
temperature = cool, ¯tm – temperature is not mild, t̄h – temperature is not high,
h̄n – humidity is not normal, w̄ – not windy, play – whether to play tennis or
not (class attribute). A concept lattice on the right-hand side is build with the
corresponding formal context. The horizontal line separates the concepts with
extents comprised of at least 5 objects.

№ ōr ōo os tc ¯tm t̄h h̄n w̄ play
1 × × × × × ×
2 × × × ×
3 × × × × ×
4 × × × × × ×
5 × × × × × ×
6 × × × × × × × ×
7 × × × × × ×
8 × × × ×
9 × × × × ×
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4. A concept lattice, organizing all formal concepts for a formal context is shown
to the right from Table 4. The horizontal line separates the concepts with
extents having at least 5 objects (above, min_supp ≥ 0.5).

5. 9 formal concepts satisfying min_supp ≥ 0.5 give rise to 9 classification
rules. Top 3 rules having the highest gain in Gini impurity are given in
Table 5.

Table 5. Top 3 rules to classify the test instance Outlook=sunny, Tempera-
ture=cool, Humidity=high, Windy=false

Rule Gini gain
{not windy, temperature not mild} → play 0.278

{outlook not overcast, temperature not high} → play 0.111
{outlook not overcast, temperature not mild} → play 0.044

6. The “best” rules mined in the previous step unanimously classify the test
instance Outlook=sunny, Temperature=cool, Humidity=high, Windy=false
as appropriate for playing tennis.

6 Experiments

As we have stated, in this paper we deal with “important data” problems,
those where accurate and interpretable results are needed. We compare the pro-
posed classification algorithm (denoted as LLO for “Lazy Lattice-based Opti-
mization”) with Scikit-learn [16] implementations of CART [14] and kNN on
several datasets from the UCI machine learning repository.2

We used pairwise mutual information as a criterion for rule selection. CART
and kNN parameters were chosen in stratified 5-fold cross-validation and are
given in Table 7.

Parametermin_supp for LLO was taken equal to CARTmin_sample_leaf
for each dataset divided by the number of objects. We used n = 5 classification
rules to vote for a test instance label.

As it can be seen, the proposed approach performs better than CART on
most of the datasets while kNN is often better when the number of attributes is
not high. Obviously, the running times of LLO are far from perfect. That is due
to the computationally demanding nature of the algorithm.

Conclusions and further work

In this paper, we have shown how searching for classification hypotheses in
a formal concept lattice for each test instance individually may yield accurate
2 http://repository.seasr.org/Datasets/UCI/csv/
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Table 6. Accuracy and F1-score in classification experiments with the UCI ma-
chine learning datasets. “CART acc” stands for “5-fold cross-validation accuracy
of the CART algorithm”, ... , “LLO F1” stands for “5-fold cross-validation F1
score of the Lazy Lattice Optimization algorithm”.

dataset CART acc kNN acc LLO acc CART F1 kNN F1 LLO F1
audiology 0.743 0.442 0.758 0.725 0.336 0.736

breast-cancer 0.738 0.727 0.769 0.477 0.66 0.694
breast-w 0.936 0.773 0.942 0.909 0.734 0.921

colic 0.647 0.644 0.653 0.619 0.569 0.664
heart-h 0.782 0.837 0.791 0.664 0.831 0.787

heart-statlog 0.804 0.848 0.816 0.761 0.846 0.823
hepatitis 0.794 0.794 0.782 0.867 0.702 0.755

hypothyroid 0.975 0.923 0.968 0.974 0.886 0.948
ionosphere 0.9 0.783 0.924 0.923 0.757 0.938
kr-vs-kp 0.98 0.761 0.98 0.981 0.756 0.984
letter 0.769 0.711 0.774 0.769 0.645 0.771
lymph 0.818 0.831 0.82 0.806 0.813 0.85

primary-tumor 0.425 0.469 0.457 0.376 0.418 0.409
segment 0.938 0.872 0.947 0.938 0.869 0.928
sonar 0.697 0.663 0.73 0.665 0.658 0.718

soybean 0.877 0.89 0.88 0.868 0.883 0.879
splice 0.943 0.833 0.956 0.943 0.832 0.948
vehicle 0.708 0.677 0.692 0.708 0.667 0.62
vote 0.956 0.929 0.968 0.946 0.929 0.955
vowel 0.436 0.405 0.442 0.428 0.387 0.406

waveform-5000 0.761 0.834 0.783 0.761 0.583 0.774
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Table 7. Parameters and runtimes in classification experiments with the UCI
machine learning datasets. “CART msl” stands for for the minimal required
number of objects in each node of a CART tree (min_samples_leaf), “kNN k”
is the number of neighbors used by the kNN algorithm.

dataset # objects # attr CART kNN CART kNN LLO
msl k time time time

audiology 226 94 1 10 0.31 0.52 9.97
breast-cancer 286 39 4 20 0.29 0.52 5.35

breast-w 699 89 6 10 0.29 0.83 258.37
colic 368 59 1 30 0.3 0.52 6.41

heart-h 294 24 2 20 0.3 0.52 0.89
heart-statlog 270 13 5 45 0.3 0.53 3.76

hepatitis 155 285 2 10 0.29 0.55 62.9
hypothyroid 3772 126 7 15 0.63 1.39 298.84
ionosphere 351 34 4 10 0.41 0.54 2.03
kr-vs-kp 3196 38 1 50 0.4 2.03 23.15
letter 20000 256 1 71 38.04 67.85 6607.2
lymph 148 50 1 10 0.29 0.52 4.7

primary-tumor 339 26 4 15 0.3 0.52 1.59
segment 2310 19 1 10 1.05 0.83 4.17
sonar 208 60 3 15 0.41 0.53 3.79

soybean 683 98 1 10 0.3 0.73 32.6
splice 3190 287 6 65 1.3 11.29 1302.57
vehicle 846 18 4 10 0.62 0.63 1.34
vote 435 32 2 10 0.31 0.53 2.65
vowel 990 26 2 35 0.63 0.63 3.29

waveform-5000 5000 40 5 82 3.79 1.34 40.2
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results while keeping the classification model interpretable. The proposed strat-
egy is computationally demanding but may be used for “small data” problems
where prediction delay is not as important as classification accuracy and inter-
pretability.

Further we plan to implement the idea of searching for classification hypothe-
ses in a concept lattice for complex structure data such as molecular graphs We
plan to implement the same strategy of lazy classification by searching for suc-
cinct classification rules in a pattern concept lattice. The designed framework
might help to learn sets of rules for tasks such as biological activity (toxicology,
mutagenicity, etc.) prediction. We are also going to interpret random forests as
a search for an optimal hypothesis in a concept lattice and try to compete with
this popular classification method.
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Intension Graphs as Patterns over Power
Context Families

Jens Kötters

data2knowledge GmbH, Bremen, Germany

Abstract. Intension graphs are introduced as an intensional variant of
Wille’s concept graphs. Windowed intension graphs are then introduced
as formalizations of conjunctive queries. Realizations describe pattern
matching over power context families, which have been introduced with
concept graphs as representations of relational data using a sequence
of formal contexts. Using windowed intension graphs as patterns within
pattern structures, we can define concept lattices, where power context
families take the role of formal contexts. Relational Context Families,
used in Relational Concept Analysis (RCA), correspond to power context
families using sorts and only binary relations, and the lattices generated
by the RCA algorithm (using wide scaling) can be represented using
rooted trees as intents, which are introduced as a subclass of windowed
intension graphs. Consequently, projections of the previously introduced
pattern structure can be used as an alternative to the RCA algorithm.

Keywords: Conjunctive Queries, Pattern Structures, Power Context
Families, Relational Concept Analysis

1 Introduction

In the terminology of philosophers and linguists, a concept has an extension
and an intension. We may say that ”extension” refers to the things belonging
to a concept, whereas “intension” refers to the meaning of a concept. Formal
Concept Analysis [6] (FCA) provides a mathematical formalization of concepts
which represents the extension by a set of formal objects (the extent) and the
intension by a set of formal attributes (the intent). The notion of intension is
however a vague one and different representations can be thought of.

Many real-world concepts describe objects in terms of their relations to other
objects (e.g. visitor, grandfather, ticket), and this may suggest a different repre-
sentation of intensions using graphs. It turns out that conjunctive queries offer
a rich notational framework to support this kind of representation. In [8], con-
cepts have been defined in terms of family relations, and windowed relational
structures have been used to represent conjunctive queries. The qualifier “win-
dowed” is used here to express that a number of designated elements have been
chosen from the underlying structure. These are the elements being described.
The current paper introduces intension graphs (IGs), which are attribute-labeled
graphs, and uses them in place of relational structures. In contrast to relational

c© Marianne Huchard, Sergei O. Kuznetsov (Eds.): CLA 2016, pp. 203–214,
ISBN 978-5-600-01454-1, National Research University Higher School of Economics,
2016.



structures, IGs formally represent information in the same way it is drawn (i.e.
centered around objects) and are supposed to be more intuitive to work with.
Conjunctive queries are accordingly represented by windowed IGs. Section 2 de-
fines IGs, describes pattern matching over power context families [12] (PCFs)
and shows that IGs can be represented by PCFs and vice versa.

Sections 3 and 4 define the sum and product of IGs and windowed IGs,
respectively. In both cases, sum and product realize the supremum and infimum
operations. These operations are called sum and product because they realize
certain universal properties (coproduct and product) defined in category theory.
Also, Sect. 4 briefly states connections of windowed IGs to primitive positive
formulas and relational algebra operations, which are known to exist because
windowed IGs model conjunctive queries.

The concept lattice depends not only on the PCF (which plays the role of a
formal context), but also depends on the chosen formalization of intension. Sec-
tion 5.1 states the pattern structure (see [5]) for building the lattice of windowed
IGs over a PCF, which contains the formalization of intension in its definition.
From there, any general algorithm for pattern structures can be used to build
the lattice. Section 5.2 provides an example and illustrations.

Finally, Sect. 6.1 shows that the Relational Concept Analysis (RCA) algo-
rithm, used with the wide scaling operator, generates lattices of rooted trees,
which form a subclass of conjunctive queries. It is shown that essentially the
same lattices can be generated from projections [5] of the pattern structure of
Sect. 5.1.

2 Intension Graphs and Power Context Families

2.1 Intension Graphs

A simple relational graph is a pair (V,E) consisting of a set V of vertices and a
set E ⊆ ⋃

k≥1 V
k of edges. The edges in E(k) := E ∩ V k are said to have arity

k (k ≥ 1).

Definition 1. An intension graph over a family (Mk)k∈N of attribute sets is a
triple (V,E, κ), where (V,E) is a simple relational graph and κ is a map defined
on V ∪ E with κ(V ) ⊆ P(M0) and κ(E(k)) ⊆ P(Mk) \ {∅} for k ≥ 1.

A homomorphism ϕ : (VG, EG, κG)→ (VH , EH , κH) of intension graphs over
the same family M of intents is a map ϕ : VG → VH , extended to V k, k ≥ 1, by
setting

ϕ((v1, . . . , vk)) := (ϕ(v1), . . . , ϕ(vk)), (1)

which preserves edges and intents, i.e.

ϕ(e) ∈ EH , (2)

κG(u) ⊆ κH(ϕ(u)) (3)

must hold for all e ∈ EG and u ∈ VG ∪ EG. We define IGM as the category of
intension graphs over M .
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2.2 Power Context Families

Definition 2. A power context family is a sequence (Ki)i∈N of formal contexts
Ki =: (Gi,Mi, Ii) such that Gi ⊆ (G0)i for all i ≥ 1. We say that (Ki)i∈N is
a power context family over the family (Mi)i∈N of attribute sets if, in addition,
gIk 6= ∅ for all g ∈ Gk, k ≥ 1.

A homomorphism ϕ : ((Gi,Mi, Ii))i∈N → ((Hi,Mi, Ji))i∈N of power context
families over the same family (Mi)i∈N of attribute sets is a map ϕ : G0 → H0,
extended to (G0)k, k ≥ 1, by setting

ϕ((g1, . . . , gk)) := (ϕ(g1), . . . , ϕ(gk)), (4)

which preserves incidences, i.e.

gIkm⇒ ϕ(g)Jkm (5)

must hold for all k ∈ N, g ∈ Gk and m ∈Mk. We define PCFM as the category
of power context families over M .

2.3 Isofunctors

Let (Mi)i∈N =: M be a family of attribute sets. We may represent a power
context family (Ki)i∈I in PCFM by an intension graph

igM ((K)i∈N) := (G0,
⋃

k≥1
Gk, {u 7→ uIk | (k, u) ∈

⋃

k∈N
{k} ×Gk}). (6)

in IGM . Conversely, each intension graph G in IGM is represented in PCFM
by the power context family

pcfM (G) := ((E
(k)
G ,Mk,3(k)G ))k∈N,

where u 3(k)G m :⇔ m ∈ κ(u).
(7)

It is easy to see that pcfM (igM (~K)) = ~K and igM (pcfM (G)) = G for all ~K ∈
PCFM and G ∈ IGM . Moreover, every homomorphism ϕ : G→ H of intension
graphs is also a homomorphism ϕ : pcfM (G) → pcfM (H) and vice versa. This
means that the categories IGM and PCFM are essentially the same.

2.4 Interpretations

Power context families can be used to model factual knowledge about objects
and their relations to each other. The objects are collected in a set G0, and the
formal contexts (G0,M0, I0) and (G1,M1, I1) describe the objects by attributes.
Finally, the contexts (Gk,Mk, Ik), k ≥ 2, describe how the objects are related
to each other.

Intension graphs can be used to model patterns. The nodes describe some
unspecified objects, and the map κ describes them in terms of attributes. An
edge is used to indicate that the objects involved are related in some way, and
the map κ specifies the relation(s) between the objects. A pattern match is
formalized by the following definition:
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Definition 3. Let G ∈ IGM and ~K ∈ PCFM . A realization ρ : G → ~K is a

map ρ : VG → G0 with ρ(u) ∈ κ(u)Ik for all u ∈ E(k)
G and k ∈ N.

Since IGM and PCFM are isomorphic, we may represent patterns and data in
the same category. A realization then becomes a homomorphism:

Proposition 1. Let G ∈ IGM and ~K =: (Gi,Mi, Ii)i∈I ∈ PCFM . A map

ϕ : VG → G0 is a realization ϕ : G→ ~K iff it is a homomorphism ϕ : G→ ig(~K).

Some remarks are in order why intension graphs and power context families were
defined the way they are. First, if edge labels of intension graphs were permitted,
we could create more specific patterns by adding edges with empty labels. This
could be justified by saying that an edge with an empty label means that the
incident vertices are related in some unspecified way. However, it seems better
to model this explicitly by adding “is related” attributes. Adding empty rows
to a context (Gk,Mk, Ik), k ≥ 1, of a power context family ~K, on the other
hand, results in an equivalent power context family (as per the homomorphism
definition). To make PCFM and IGM isomorphic, empty rows are not permitted
in contexts (Gk,Mk, Ik), k ≥ 1.

3 Graph Operations and Graph Construction

The main result of Sections 3 and 4 is the definition of the product and the
sum for IGs and windowed IGs. These operations define infima and suprema in
the respective morphism preorders. Moreover, in category theoretical terms, the
stated operations realize (categorical) products and coproducts[1]. This means
that, given graphs G1 and G2, there are morphisms π1 : G1 × G2 → G1, π2 :
G1 × G2 → G2 such that for any other graph X and morphisms ϕ1 : X → G1,
ϕ2 : X → G2 there is a unique ϕ : X → G1×G2 with ϕ1 = π1◦ϕ and ϕ2 = π2◦ϕ
(Fig. 1), and likewise for the coproduct (Fig. 2). Infinite (co-)products are defined
accordingly. Every product is an infimum in the morphism preorder, but the
opposite does not hold: products are unique up to isomorphism[1], but infima are
only unique up to hom-equivalence (i.e. equivalence in the morphism preorder).
The stronger product property is not needed in this paper, but when looking
for infima of patterns compared by morphisms, one may check for categorical
products as they can often be derived from well-known products. It may seem
unfortunate that in Fig. 1 the infimum G1 ×G2 is drawn above G1 and G2, but
this arrangement seems to be prevalent in drawings of categorical products and
is also in line with how patterns are arranged in the concept lattice.
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3.1 Graph Operations

The product of a family ((Vi, Ei, κi))i∈I of intension graphs is the intension graph

×i∈I(Vi, Ei, κi) =: (V,E, κ) given by

V :=×
i∈I

Vi, (8)

(v1, . . . , vk) ∈ E(k) :⇔ ((v1(i), . . . , vk(i)))i∈I ∈×
i∈I

E
(k)
i

and
⋂

i∈I
κi((v1(i), . . . , vk(i))) 6= ∅,

(9)

κ(u) :=
⋂

i∈I
κi(u) (10)

for u ∈ V ∪ E and v1, . . . , vk ∈ V , k ≥ 1. Given a set X, an intension graph G
and a bijection ϕ : VG → X, we call the graph

ϕ ◦G := (ϕ ◦ VG, ϕ ◦ EG, κG ◦ ϕ−1) (11)

a renaming of G (cf. (1)). This amounts to a renaming of graph nodes. The
union of graphs G and H with VG ∩ VH 6= ∅ is the graph

G1 ∪G2 := (VG1 ∪ VG2 , EG1 ∪ EG2 , κG1 ∪ κG2), (12)

and the disjoint union or sum of two arbitrary graphs G1 and G2 is given by

G1 tG2 := (ϕ1 ◦G1) ∪ (ϕ2 ◦G2), (13)

where ϕi(v) := (i, v) for i ∈ {1, 2} and v ∈ VGi . The disjoint union is the
coproduct in IGM . Now let G ∈ IGM and θ ⊆ VG×VG an equivalence relation.
The quotient of G w.r.t. θ is the graph

G \ θ := (VG \ θ,EG \ θ, κθ), (14)

where E \ θ := {([v1], . . . , [vn]) | (v1, . . . , vn) ∈ EG}, (15)

and κθ([u]θ) :=
⋃

xθu

κ(x) (16)
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for u ∈ VG. The operation can be visualized as a merging of nodes within the
same graph. For an arbitrary relation θ ⊆ VG×VG, we define V \θ := V \θ̄, where
θ̄ is the smallest equivalence relation with θ ⊆ θ̄. Finally, for graphs G,H ∈ IGM

and θ ⊆ VG × VH , we define the amalgam

G1 +
θ
G2 := (G1 tG2) \ {(ϕ1(x), ϕ2(y)) | (x, y) ∈ θ}, (17)

where ϕ1 and ϕ2 are given as in (13). The amalgam can be visualized as a
merging of two graphs by their nodes.

3.2 Graph Construction

An intension graph G ∈ IGM with |VG| < ∞ is called finite. For attribute sets
B ⊆M0 and R ⊆Mk,k ≥ 1, we define the following structurally minimal graphs.

EB(x) := ({x}, ∅, {x 7→ B}) (18)

SR(x1, . . . , xn) := ({x1, . . . , xn}, {(x1, . . . , xn)}, κR),

where κR := {(x1, . . . , xn) 7→ R, x1 7→ ∅, . . . , xn 7→ ∅})
(19)

Every finite G ∈ IGM can be constructed from these graphs in a finite number
of steps, using the amalgam and renaming operations.

4 Windowed Intension Graphs

Definition 4. A windowed intension graph is a pair (α,G) consisting of an
intension graph G and a partial map α : N 9 VG.

A homomorphism ϕ : (α1, G1) → (α2, G2) of windowed intension graphs is a
homomorphism ϕ : G1 → G2 with ϕ ◦ α1 ≤ α2.

While a pattern match for an intension graph G in a power context family
~K has been defined by a realization ρ : G→ ~K, the set

(α,G)� := {α ◦ ϕ | ϕ : G→ ~K} (20)

defines the set of all pattern matches for the windowed intension graph (α,G).
A finite windowed intension graph corresponds to a primitive positive formula
(pp formula), i.e. a predicate logical formula which is built from atoms using
conjunction (∧) and existence quantification (∃) only (atoms may contain the
equals sign). For finite graphs, the (·)� operation can be inductively defined,
starting with

(id{0}, EB(0))� = BI0 , B ⊆M0, (21)

(id{1,...,n},SR(1, . . . , n))� = RIn , R ⊆Mk, k ≥ 1, (22)

which correspond to the select operation on databases, and proceeding with
similar rules for the join and project operations.
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When viewing a windowed intension graph (α,G) as a pp formula, the set
α−1(VG) corresponds to the free variables, and the set VG \α(N) corresponds to
the existentially quantified variables.

Let us denote by CSn the set of all primitive positive formulas in the free
variables x0, . . . , xn−1 for a given signature S. The lattice of all n-ary relations
which can be defined in a given S-structure by formulas in CSn can be defined as
the concept lattice of the context ((G0)n, CSn , |=), where |= is the satisfaction re-
lation. In Sect. 5.1, an equivalent construction is done using windowed intension
graphs as patterns over a power context family.

4.1 Product and Sum

The product of a family of windowed intension graphs is given by

×
i∈I

(αi, Gi) := (〈~α〉,×
i∈I

Gi), (23)

〈~α〉(n) :=

{
(αi)i∈I if αi(n) is defined for all i ∈ I,
undefined otherwise

. (24)

The sum of windowed intension graphs is given by

(α1, G1) + (α2, G2) := ([α1, α2], G1 +
θ(α1,α2)

G2), (25)

where

θ(α1,α2) := {(α1(k), α2(k)) | k ∈ N ∧ α1(k) defined ∧ α2(k) defined }, (26)

[α1, α2](k) :=





[(1, α1(k))]θ(α1,α2)
if α1(k) is defined,

[(2, α2(k))]θ(α1,α2)
if α2(k) is defined,

undefined otherwise

. (27)

The sum can also be defined for arbitrary families (αi, Gi)i∈I , but this is even
more tedious and not needed in the following. We denote by IGX

M the category of
all windowed intension graphs where the first component has domain of definition
X.

5 Pattern Concepts

5.1 Concept Lattices of Power Context Families

Let ~K ∈ PCFM and n ∈ N. We want to create the lattice which has as its
extents all n-ary relations definable by windowed intension graphs (α,G), where
α is defined on n := {0, . . . , n − 1} (i.e., α is an n-tuple). The most specific
description for an n-tuple α is the windowed intension graph

δn~K(α) := (α,∆), (28)
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where ∆ := ig(~K). We state the pattern structure as a triple ((G0)n, IGn
M , δ

n
~K),

where the second component is a category instead of, as usual, a semilattice. As
noted before, the infimum operation in the morphism preorder is realized - up
to pattern equivalence - by the categorical product (Sect. 4.1).

The Galois connection which arises from the pattern structure can be stated
as follows:

A� :=×
λ∈A

(λ,∆), (29)

(α,G)� := {λ ∈ (G0)n | ∃ϕ ϕ : (α,G)→ (λ,∆)}. (30)

The definitions in (20) and (30) coincide. The pattern concepts are the pairs
((α,G)�, (α,G)��) for G ∈ IGM and α ∈ (G0)n. The same concepts arise as the
pairs (A��, A���) for A ⊆ (G0)n; the patterns A� and A��� are hom-equivalent,
but generally not identical.

5.2 Example

We define a family M := ({a, b}, ∅, {r, s}, ∅, . . . ) of attribute sets. Figure 4 shows

a power context family ~K over M. The intension graph ig(~K) is shown in Fig. 5.
It has three components, which are individually listed in Fig. 6 as components
C1, C2 and C3.

Let us construct the concept lattice for patterns in IG1
M (Fig. 7). First

of all, a pattern in IG1
M can be stated as (x,G) with x ∈ VG (by writing

(α(0), G) instead of (α,G)), and we may alternatively state this as (x,C), where
C is the component of x. The object intents, given by δ1~K, are the patterns

(1, C1),(2, C3),(3, C3),(4, C3),(5, C2) and (6, C2). In Fig. 7, they can be found di-
rectly on top of the pattern ((), C0) for the bottom concept, which is generated
by the empty product. The product C1 × C3 has a single component, which is
denoted C5 (Fig. 6). This yields (1, C1)× (j, C3) = ((1, j), C5) for j = 2, 3, 4. As
we can see, when we multiply intension graphs, several products of windowed
intension graphs are obtained at once. In this case, all three products are hom-
equivalent, and yield the topmost circle pattern in Fig.7.

Let us generate all 2-generated concepts in lectic order. The next concept
would be ({1, 5}��, {1, 5}�) up to hom-equivalence. Formally, Sect. 5.1 states
the intent as {1, 5}���, but this is not practically relevant. The product C1×C2

provides {1, 5}� and {1, 6}�, which are different patterns (the co-atoms in Fig. 7)
with the same underlying component C7. To obtain {2, 3}�, we compute C3×C3,
which is disconnected (C3×C3

∼= C3tC4tC4). The new component C4 yields the
three remaining circle patterns in Fig. 7. Computing {2, 5}� leads to C3 ×C2 =
C6 t C8, which gives six new pattern concepts, and finally {5, 6}� (the only
missing combination) yields the top concept. There are two more patterns, which
are 3-generated and have undelying component C10.

All patterns produced were minimal (i.e. they have no proper hom-equivalent
subpattern). The reason for this is that the nodes in the generating patterns
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Fig. 4. Power context family Fig. 5. Intension graph

Fig. 6. Components

Fig. 7. Concept lattice (left), tree
∧

-sublattices (right)
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have indegree and outdegree bounded by 1. Otherwise it may happen that a
component contains two concepts (i.e. nodes), say X and Y , such that X is
necessary to describe Y , but a minimal description of Y does not contain X,
which has to be taken care of during lattice construction. Another point is that
hom-equivalent patterns need to be discovered, which generally requires homo-
morphism checks. The inherent complexity can be avoided if patterns are re-
stricted to trees (see Sect.6). An implementation of lattice construction, which
currently uses a variant of Ganter’s NextConcept algorithm [6], is available at
https://github.com/koetters/cgnav.

6 Relational Concept Analysis and Tree Patterns

6.1 Relational Concept Analysis

Relational Concept Analysis uses relational scaling to express relations between
objects by means of formal attributes. A number of scaling operators are defined,
but only the wide scaling operator is covered here. The RCA algorithm builds a
lattice from a Relational Context Family (RCF), which can be seen as a many-
sorted PCF with binary relations only. We only deal with the one-sorted case,
because the general case is implied. In this case, an RCF can be likened to a PCF
with two contexts K0 and K2. The RCA algorithm definies an iterative procedure
which incrementally adds new attributes to K0. The sequence of contexts can
be described as follows:

K(0) := K0, (31)

K(i+1) := K0 | (G0,M2 × B(K(i)), J (i+1)), (32)

where gJ (i+1)(r, C) :⇔ ∃h : h ∈ ext(C) ∧ (g, h) ∈ r. (33)

Consider the PCF from Fig. 2. To obtain K(1), we first have to generate B(K(0)).
The concept lattice consists of the four black nodes shown in the miniature
lattice in Fig. 7. Relational scaling produces eight new attributes. Fig.8 shows
the context K(1). The left tree in Fig. 9 represents the intent of the object 2 in
K(1) by a tree pattern. The neighbors of the black node are supposed to represent
concepts of B(K(0)), and the full tree pattern is obtained by substituting these
with their pattern intents (this adds two occurrences of a). The right tree in
Fig. 9 represents a minimal hom-equivalent subpattern. The lattice B(K(1)) can
be generated by intersecting all object intents (as attribute sets) or alternatively,
by computing the tree products. The lattice B(K(2)) consists of the gray nodes
in addition to the black nodes (Fig. 7). The context K(3) is a fixed point of the
RCA algorithm, the final lattice additionally contains the dotted nodes. The
white nodes are not discovered by the RCA algorithm (although five of them
can be discovered by adding r−1 and s−1 to K2). The tree intents of the objects

in K(i) can be obtained directly from igM (~κ) using the splice(i) operation from
Sect. 6.3. It is also shown that splicei is a pattern projection(cf.[5]), which enables
the use of pattern structure algorithms for RCA. The rest of the section proves
the relevant claims.
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> := ((5, 6), C9) Ta := ((3, 4, 6), C10)
Tb := ((2, 6), C8) ⊥ := (6, C2)

Fig. 9. Equivalent Object Patterns

6.2 Rooted Trees

Definition 5. A rooted tree is a windowed intension graph which can be con-
structed by the following rules:

(RT1) For a given set B ⊆ M0 of attributes, the windowed intension graph
(0, EB(0)) is a rooted tree with

depth((0, EB(0))) := 0. (34)

(RT2) For a given set B ⊆ M0 of attributes, an index set I 6= ∅, a family
(Ri)i∈I of attribute sets Ri ⊆M2, Ri 6= ∅, and a family (xi, Ti)i∈I of rooted
trees such that supi∈I depth((xi, Ti)) <∞, the windowed intension graph

(x, T ) := (0, EB(0)) +
∑

i∈I
(0,SRi(0, 1) +

{(1,xi)}
Ti) (35)

is a rooted tree with

depth((x, T )) := 1 + max
i∈I

depth((xi, Ti)). (36)

A rooted tree is called thin if it can be constructed by rules (RT1) and (RT2′),
where (RT2′) is obtained from (RT2) by adding the additional requirement that
|Ri| = 1 for all i ∈ I.

We denote by ItM,n the subcategory of IGM that consists of the thin rooted
trees of depth at most n.

Proposition 2. Let n ∈ N. The concept extents of B(K(n)) are precisely the
sets (x, T )� described by thin rooted trees (x, T ) of depth ≤ n.

Proof. This is proved by induction over n ∈ N. For n = 0, the claim follows
from (21). If T is a thin rooted tree with depth(T ) = n + 1, there is a family
(xi, Ti)i∈I of thin rooted trees of depth ≤ n and a family (ri)i∈I of attributes
in M2, such that (x, T ) = (0, EB(0)) +

∑
i∈I(0,S{ri}(0, 1) +

{(1,xi)}
Ti). By the
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induction hypothesis, there exists a family (Ci)i∈I of concepts Ci ∈ B(K(n))
with (xi, Ti)

� = ext(Ci). Then

(x, T )� =((0, EB(0)) +
∑

i∈I
(0,S{ri}(0, 1) +

{(1,xi)}
Ti))

� (37)

=B′ ∩
⋂

i∈I
r−1i ((xi, Ti)

�) (38)

=B′ ∩
⋂

i∈I
r−1i (ext(Ci)) (39)

=(B ∪ {(ri, Ci) | i ∈ I})′. (40)

This shows that (x, T �) is a concept extent in B(K(n+1)). Conversely, a concept
extent in B(K(n+1)) is defined by an attribute set as in (40), and the induction
hypothesis is used in (39) to obtain the family (xi, Ti)i∈I for given (Ci)i∈I . ut

6.3 Graph Splicing

A graph G ∈ IGM can be unfolded into a (possibly infinite) tree, starting at any
given vertex which becomes the root of the tree. It is easy to see that, among
all trees more general than G, the unfolding is the most specific one. In other
words, the unfolding is a kernel operation (the dual of a closure operation).
This implies that an

∧
-sublattice is obtained if patterns are restricted to trees.

A similar operation constructs a thin rooted tree from a graph: In addition to
unfolding, every edge carrying multiple relation attributes is spliced into several
edges, each carrying exactly one of the relation attributes. The operation is
formalized by the following inductive definition, where G ∈ IGM and x ∈ VG:

splice(0)(x,G) := (x, Eκ(x)(x)), (41)

splice(i+1)(x,G) := (x, Eκ(x)(x)) +
∑

(x,y)I2r

(x,S{r}(x, y) +
{(y,ỹ)}

T (i)
y ),

where (ỹ, T (i)
y ) := splice(i)(y,G)

(42)

The following proposition states, in category theoretical terms, that the splice
operation maps each (x,G) ∈ IG1

M to its coreflection in ItM (cf. Fig. 3). As can
be seem from Fig. 3, this implies that splicing is a kernel operation (or pattern
projection). This means that the pattern structure (G0, ItM , splice ◦δ1~K) creates
the concepts of the RCA algorithm.

Proposition 3. For each (x,G) ∈ IG1
M , there exists a morphism ϕ(x,G) :

splice((x,G)) → (x,G) such that for every (y, T ) ∈ ItM and ϕ : (y, T ) →
(x,G) there exists a unique morphism ψ : (y, T ) → splice((x,G)) such that
ϕ = ϕ(x,G) ◦ ψ.

Proof sketch: We inductively prove a unique morphism ψ(i) : splice(i)((y, T ))→
splice((x,G)). In the induction step, the image of each neighbor of the root node
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is uniquely determined. The union of the ψ := ψ(i) is well-defined (because of the
uniqueness). Since splice((x, T )) = (x, T ) holds, ϕ is the required morphism. ut

From a given graph G ∈ IG1
M , we can determine for each x ∈ VG the extent

ext∆(x) in splice((x,G)) without actually splicing the graph. Let us denote this
as the tree extent tex∆(x) of x in G. The tree extent can be computed as follows:

tex
(0)
∆ (x) := κG(x)Ik for x ∈ E(k)

G , (43)

tex
(i+1)
∆ (x) := tex

(0)
∆ (x) ∩

⋂

(x,y)I2r

r−1(tex
(i)
∆ (y)). (44)

This can be proven by inductively showing splice(i)((x,G))� = tex
(i)
∆ (x).

7 Related Work

Power context families and concept graphs have been introduced by Rudolf Wille
in [11]. Concept graphs have been presented as a mathematical formalization of
Conceptual Graphs [10]. Different kinds of concept graphs are presented in [12]
but, to the knowledge of the author, abstract concept graphs mentioned in in-
troductory paper [11] are the only kind of concept graphs defined without a
realization. Abstract concept graphs use symbols as node labels rather than sets
of attributes.

In [8], windowed structures have been introduced as triples (X, ν,G), and a
Galois connection into a complete lattice of data tables (where the infimum is re-
alized by the join for database tables) has been presented. A follow-up paper [9]
addresses the connection to logic, features sorts, uses a “relational structure with
concept labels” hybrid and shows the connection to pattern structures by rep-
resenting extensions as sets of partial interpretations. Pattern structures were
introduced in [5], and the use of Conceptual Graphs as patterns is suggested
in there. The representation of conjunctive queries (and thus pp formulas) by
graphs, and of entailment by graph homomorphism, is credited to [2]. In [3],
these relationships are stated for λ-BGs, which are Basic Conceptual Graphs
with distinguished concepts given by a mapping λ, and this representation di-
rectly corresponds to the windowed abstract concept graphs (and their homo-
morphisms) in the paper at hand. Moreover, in [3, Chapter 8], the categorical
product is used to describe the least generalization of Conceptual Graphs. The
Projected Graph Patterns (PGPs) in [4], their inclusion and intersection, cor-
responds to λ-BGs and windowed abstract concept graphs and their respective
notions of homomorphism and product. In [4], as in [8], concept lattices are
generated, with intents realized using the respective formalizations.

Relational Context Families and the construction algorithm are described
in [7], and the RCA algorithm has been described for different kinds of inter-
object relations which are not covered here.
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8 Conclusion

The paper has introduced windowed intension graphs as a formalization of con-
junctive queries. Intension graphs correspond to concept graphs without the
realization component. Some notation has been introduced which establishes
connections to logic and database theory. The lattices generated by the RCA
algorithm have been characterized as

∧
-sublattices of conjunctive queries. The

results concerning rooted trees still have to be implemented and compared with
the RCA algorithm. While a bound for the maximum number of iterations of
the RCA algorithm can be given by |G|, the pattern structures algorithms might
benefit from a better bound computed in advance from the context family.
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Abstract. A comparison of different treatment strategies does not al-
ways result in determining the best one for all patients, one needs to
study subgroups of patients with significant difference in efficiency be-
tween treatment strategies. To solve this problem an approach to sub-
groups generation is proposed, where data are described in terms of a
pattern structure and pattern concepts stay for patient subgroups and
their descriptions. To find the most promising pattern concepts in terms
of the difference of treatment strategies in efficiency a version of CbO al-
gorithm is proposed. An application to the analysis of data on childhood
acute lymphoblastic leukemia is considered.

Keywords: pattern structure, subgroup analysis, acute lymphoblastic
leukaemia

1 Introduction

Randomized controlled trial (RCT)[1] is a common approach in evidence-based
medicine to prove the superiority of a disease treatment over another one. There
are three main types of hypotheses which can be tested with the help of RCT:
superiority, noninferiority or equivalence. The main goal of all intervention, drug,
or therapy inventions is to find a better way of treating patients. So, superiority
trials are possibly the most popular ones, and they are the subject of interest
of this paper. A superiority trial allows physicians to find the optimal treat-
ment and improve the curability of the disease. However if comparing treatment
strategies are similar enough it is a big success to find and prove the superiority
of any of them for all patients. But the effect of treatment strategies may de-
pend on patients initial features (physiological characteristics and/or results of
diagnostics). For example, if we compare dosages of a toxic drug a small dosage
may be more suitable for patients with light disease manifestation because it
throws off a disease and reduces the negative consequences of toxicity while for
patients with intense disease manifestation a small dosage is not enough to cure
them of the disease. The question is how to find such subgroups of quite similar
patients where the efficiency difference of treatment strategies is significant.

Several approaches were proposed in [2–11]. Most of them [5–11] are based on
the idea of decision or regression trees which locally optimize some measure at
every iteration of the algorithm. This approach is more suitable when we operate

c© Marianne Huchard, Sergei O. Kuznetsov (Eds.): CLA 2016, pp. 217–228,
ISBN 978-5-600-01454-1, National Research University Higher School of Economics,
2016.



on the big datasets or constantly increasing dataset because they allow to find
some subgroups quickly. In the case of treatment optimization the datasets, as
a rule, are not very big and do not increase in size rapidly. Moreover, collecting
such datasets demands a lot of time and efforts. So, it is more important to carry
out more detailed analysis of the data then to make it fast. Also, in RCT on
cancer, heart conditions or chronic diseases the outcome of the therapy can be
censored, while only few papers like [9, 11] report on analysis of censored data.
In this paper we propose a universal approach to finding subgroups of patients
with significantly different responses to different treatment strategies, which is
not biased by any local optimization criterion. Within this approach subgroups of
patients are generated, which are determined by subsets of patients’ features.The
approach in based on computing closed patterns [14–17] that satisfy criteria of
treatment efficiency. The approach was proposed for the analysis of the database
of randomized controlled trial on childhood acute lymphoblastic leukemia (ALL)
[12, 13] which was performed in several hospitals in Russia and Byelorussia. In
this dataset each patient under study is assigned one of the studied treatment
strategies, he/she is described by a set of initial features that can be nominal or
numerical, and some outcome which is used to estimate treatment efficiency.

The rest of the paper is organized as follows. In section 2 we recall basic
definitions of pattern structures and give examples of pattern structures [14–17]
relevant to the analyzed data. In section 3 a version of Close-by-One (CbO) algo-
rithm [18] performing on the attributes is proposed. Section 4 presents stopping
criterion added to the version of CbO to generate only subgroups with the differ-
ence in the efficiency of treatment strategies. Section 5 presents an application
of the proposed approach to the ALL dataset, and we conclude in section 6.

2 Pattern Structures

2.1 Main Definitions

In this section we recall pattern structures and examples of pattern structures
used for nominal and numerical features.

Let G be a set (of objects), (D,u) be a meet-semilattice (of all possible
object descriptions), and δ : G→ D be a mapping. Then (G, (D,u), δ) is called
a pattern structure, provided that the set δ(G) = {δ(g) | g ∈ G} generates
a complete subsemilattice (Dδ,u) of (D,u), i.e. every subset X of δ(G) has
an infimum ⊔X in (D,u). Elements of D are called patterns and are naturally
ordered by subsumption relation v: c v d⇔ cud = c, where c, d ∈ D. Operation
u is also called a similarity operation. If (G, (D,u), δ) is a pattern structure we
define the derivation operators which form a Galois connection between the
powerset of G and (D,u) as:

A� = ⊔g∈A δ(g) for A ⊆ G
d� = {g ∈ G | d v δ(g)} for d ∈ D (1)

The pairs (A, d) satisfying A ⊆ G, d ∈ D, A� = d, and A = d� are called pattern
concepts of (G, (D,u), δ), with pattern extent A and pattern intent d. Pattern
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concepts are ordered with respect to set inclusion on extents. The ordered set of
pattern concepts makes a lattice, called pattern concept lattice. Operator (·)��
is an algebraical closure operator on patterns, since it is idempotent, extensive,
and monotone.

If objects are described by binary attributes from set M , then D = ℘(M),
the powerset of M , and δ(g) is prime operator (·)′ in the context (G,M, I):
δ(g) = {m ∈M | gIm}, and d1ud2 = d1∩d2 where d1, d2 ∈ D. So, subsumption
corresponds to set inclusion: d1 v d2 ⇔ d1 u d2 = d1 ⇔ d1 ∩ d2 = d1 ⇔ d1 ⊆ d2.

So, if all patients’ initial features are binary we can use them as binary
attributes directly. However we also aim at dealing with nominal initial features.
Consider patients are described by k initial features {ψ1, ..., ψk}, all of them
are nominal (binary is a particular case) and their values are coded as natural
numbers. So, if ψi takes li values we assume that the range of ψi is {1, ..., li}. For
each ψi we construct li binary attributes {β1

i , ..., β
li
i } such that βji : G→ {0, 1}

and βji (g) : g → ψi(g) = j where g ∈ G, j = 1, ..., li. As a result we get∑
i=1,...,n li binary attributes to which pattern structures can be applied as it is

shown above.

2.2 Pattern Structures on Intervals

To operate with numerical features interval pattern structures [15–17] can be
applied. Let us consider each patient is described by n numerical and no nominal
initial features. In our notation G corresponds to the set of patients. So, let
{ϕ1, ϕ2, ..., ϕn} be a set of functions represented patients’ initial features such
that ϕi : G→ R for i = 1, ..., n. For each feature ϕi we construct a corresponding
interval attribute αi : G → [R,R] such that if ϕi(g) = x for g ∈ G, then
αi(g) = [x, x], where x ∈ R. These attributes are used for pattern structures
construction.

Each object is described by a n-dimensional tuple of intervals. Let a and b
be tuples of n intervals, so a = 〈[vi, wi]〉i=1,...,n and b = 〈[xi, yi]〉i=1,...,n, where
vi, wi, xi, yi ∈ R ∀i = 1, ..., n. In this case the similarity operation u is defined
by the meet of tuple components:

a u b = 〈[vi, wi]〉i=1,...,n u 〈[xi, yi]〉i=1,...,n = 〈[vi, wi] u [xi, yi]〉i=1,...,n, (2)

where [vi, wi] u [xi, yi] = [min(vi, xi),max(wi, yi)].
Hence, subsumption on tuples of interval is defined as:

a v b⇔ [vi, wi] v [xi, yi]i=1,...,n ⇔ [vi, wi] u [xi, yi] = [vi, wi]i=1,...,n ⇔
⇔ [min(vi, xi),max(wi, yi)] = [vi, wi]i=1,...,n ⇔ [vi, wi] ⊇ [xi, yi]i=1,...,n.

(3)

For example, 〈[2, 6], [4, 5]〉 v 〈[3, 4], [5, 5]〉 as [2, 6] v [3, 4] and [4, 5] v [5, 5].

2.3 Pattern Structures on Mixed Tuples

In the previous sections we consider separately the cases of nominal and nu-
merical initial features. However, the situation when patients have both nominal
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and numerical initial features seems more natural. As it is described above we
associate the set of binary attributes with each nominal feature and an interval
attribute - with each numerical one. So, d ∈ D is a tuple, where components are
intervals and binary attributes. Let us have k binary and n interval attributes.
Assume d = 〈α, β〉 where α is the tuple of intervals of length n, and β is the sub-
set of binary attributes. If d1, d2 ∈ D, d1 = 〈α1, β1〉, and d2 = 〈α2, β2〉 similarity
operator can be set as d1 u d2 = 〈α1 uα2, β1 uβ2〉 where similarity operators for
the tuples of intervals and the sets of binary attributes are defined above. The
subsumption is also defined by subsumption on the tuples of intervals and the
sets of binary attributes:

d1 v d2 ⇐⇒ d1 u d2 = d1 ⇐⇒ 〈α1, β1〉 u 〈α2, β2〉 = 〈α1, β1〉 ⇐⇒
⇐⇒ α1 u α2 = α1, β1 u β2 = β1 ⇐⇒ α1 v α2, β1 v β2. (4)

3 Pattern Concepts Generation

Pattern concepts can be computed by Close by One (CbO) algorithm. It pro-
duces a tree structure on pattern concepts where edges represent a subset of
lattice edges. For the following analysis we do not need the whole lattice but
the tree-structure provided by CbO is helpful for implementation of stopping
criterion. Considering the top of the lattice is the pair (G,G�), and the bottom
is (∅, ∅�) CbO starts from the bottom and proceeds “object-wise”. However,
when the number of objects is larger than the number of attributes processing
top-down allows one to reduce computation time. Moreover, for the given prob-
lem we need to generate pattern concepts with as large extents as possible to
detect the difference in treatment efficiency. So, it is more reasonable to start
generation process from the top of the lattice. As we operate on descriptions
consisting from interval and binary attributes classical CbO must be adapted to
such descriptions. For this purpose a version of CbO is proposed below. The idea
is to order elements of descriptions, and start to reduce descriptions by changing
its elements in this order.

Let objects be described by n interval and k binary attributes. So, we can
rewrite description as d = 〈v1, w1, ..., vn, wn, b1, ..., bk〉, where vi and wi are the
left and right bounds of the i-th interval attribute for i = 1, ..., n, and bj indicates
whether description d contains the j-th binary attribute for j = 1, ..., k. So, if
bj is 0 δ(g) does not contain the j-th binary attribute for all g ∈ d�, and if
bj is 1, then δ(g) may or may not contain the j-th binary attribute for all
g ∈ d�. In other words, 1 u 0 = 0 or 0 v 1. The definition of similarity operator
remains the same: we take minimum of left bounds, maximum of right bounds,
and set intersection, which in the given notation can be written as element-wise
conjunction of indicator vectors:

d1 u d2 = 〈〈min(v1,i, v2,i),max(w1,i, w2,i)〉i=1,...,n, 〈b1,j ∧ b2,j〉j=1,...,k〉 . (5)

The introduced version of CbO starts from the most general description
and specifies it by reducing intervals and adding binary features. For interval
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reduction it is necessary to choose some step value si for each interval attribute
(i = 1, ...n,). If we aim at some sort of scaling we can set these values by ourselves,
or if scaling is unwanted si is set to the smallest difference between values of the
initial feature corresponding to the i-th interval attribute.

Further we denote dall = ⊔g∈G δ(g), min(d1, d2) denotes the minimum po-
sition of unequal elements of tuples d1 and d2 in element-wise comparison. Let
suc(d) denote the set of all children of the node corresponding to the description
d. Let prev(d) return the parent of d, address(d) return the address of d, and
nexti(d) store the position of the description tuple d which must be changed
at the next algorithm returning to d. Let ÷ denote integer division, % denote
residue of division, and [·] be an operator of taking the element of the tuple.
Function AddConcept set required links between tree nodes when a new node is
added. Function OneIteration changes the description dcurr given as argument
in position nexti(dcurr) and takes closure of the changed description by (·)��.
If min of the closure and dcurr is not less than nexti(dcurr) then the function
returns the closure, otherwise it returns dcurr.

def AddConcept(parent, child)
1. suc(parent)← address(child)
2. prev(child) := parent
3. nexti(child) := nexti(parent)

def OneIteration(dcurr)
1. dnew := dcurr
2. i := nexti(dcurr)
3. if i ≤ 2n then
4. q = i÷ 2
5. r = i%2
6. dnew[i] := dnew[i]− sq(2r − 1)
7. dadd := dnew

��

8. if dnew[2q] ≤ dnew[2q + 1] and min(dcurr, dadd) ≥ i then
9. AddConcept(dcurr, dadd)

10. return dadd
11. else return dcurr
12. else
13. dnew[i] := d[i] ∧ 1
14. dadd := dnew

��

15. if dnew[i] 6= d[i] and min(d, dadd) ≥ i then
16. AddConcept(dcurr, dadd)
17. return dadd
18. else return dcurr

0. d := dall, nexti(d) := 1, prev(d) := ∅, suc(d) := ∅
1. until d = dall and nexti(d) > 2n+ k do
2. until nexti(d) > 2n+ k do
3. dadd:=OneIteration(d)
4. if d 6= dadd then

Pattern Structures for Treatment Optimization in Subgroups of Patients 221



5. d := dadd
6. output(d, d�)
7. else nexti(d) := nexti(d) + 1
8. d := prev(d)

Lines 7 and 14 of function OneIteration has complexity O((2n+ k)|G|), and
all lines 3–8 of the main part of the algorithm are performed at most in this
time. The loop starting at line 2 is repeated 2n|G|+ k times at worst (as in the
worst case each boundary of all interval attributes can take |G| values), while the
loop starting at line 1 is repeated |L| times exactly, where |L| is the number of
pattern concepts. So, the algorithm has complexity O((2n+k)|G|(2n|G|+k)|L|).
The complexity is higher than that of CbO, O((2n+ k)|G|2|L|), but in practice
our algorithm may become faster when n and k are small, and the number of
numerical values in data is less than |G|.

4 Stopping Criterion

As it is mentioned above it may not be required to generate all pattern concepts,
and the version of CbO may stop when subgroups with difference in treatment
efficiency and maximal possible extent are generated. To estimate the difference
in efficiency for some description d we define a difference measure which depends
on the sets of outcomes of patients who match d and have received the same
treatment, and if the value of this measure satisfies some criterion of significance
the proposed version of CbO stops to generate specification of the description
which is currently in work.

Let p be the number of comparing treatment strategies, and d is the de-
scription currently processed by the algorithm. Assume Qi = {outcome(g) | g ∈
d�, treatment(g) = i} for all i = 1, ..., p, where outcome(g) is the outcome of g,
and treatment(g) is the treatment assigned to g. So, |Qi| denotes the number of
patients received treatment i. We define difference measure µ which takes the sets
of outcomes corresponding to each treatment strategy and returns the estima-
tion of difference, and set threshold ε.The criterion looks like if µ(Q1, ..., Qp) > ε
the algorithm does not generate the children of the currently processed node and
returns to its parent node.

Except the stopping criterion itself several additional restrictions are neces-
sary. So, if a subgroup does not contain patients per each of p treatment strate-
gies we are not able to compute µ and need to return to the parent subgroup
without generating children nodes, since the antimonotonicity of operator (·)�
ensures this property for all descendants of the current node. Also, it may be
important to result in descriptions with approximately equal number of patients
per treatment strategy in corresponding subgroups. Therefore, additional pa-
rameter λ ∈ [0, 1] is provided to control the ratio of each treatment strategy in
a subgroup (see line 4 in function Restrictions). If λ is set to one this restriction
is deactivated, if it is set to zero the numbers of patients per each treatment
strategy must be equal. Let outc(d) be 〈Qi〉i=1,...,n, outc(d)[i] be Qi, and | · |

222 Natalia Korepanova and Sergei O. Kuznetsov



return the power of the set. Function Restrictions checks fulfillment of these re-
strictions for a particular description. Let isempty(d) be False if the subgroups
corresponding to description d do not contain patients from every treatment
strategy, and True otherwise. Let also notBalanced(d) be False if the subgroup
corresponding to d is not balanced (do not satisfy restriction on proportion of
treatment strategies in the subgroup), and True otherwise.

def Restrictions(d)
0. isempty(d) := False, notBalanced(d) := False
1. for j from 1 to p do
2. isempty(d) := isempty(d) ∨ (|outc(d)[j]| = 0)

3. share := |outc(d)[j]|
|d�|

4. notBalanced(d) := notBalanced(d) ∨ ( 1−λ
p ≥ share) ∨ (share ≥ 1+λ

p )

0. d := dall, nexti(d) := 1, prev(d) := ∅, suc(d) := ∅
1. Restrictions(d)
2. until d = dall and nexti(d) > 2n+ k do
3. if isempty(d) then
4. d := prev(d)
5. continue
6. if notBalanced(d) or µ(outc(d)) ≤ ε then
7. dadd:=OneIteration(d)
8. if d 6= dadd then
9. d := dadd

10. Restrictions(d)
11. else nexti(d) := nexti(d) + 1
12. else
13. output(d, d�)
14. d := prev(d)

The algorithm outputs the set of maximal size subgroups (i.e. maximal ex-
tents) with significant difference in treatment efficiency. Since we do not con-
struct the whole pattern lattice the resulting set may contain subgroups which
subsumed under the other subgroups from this set. Smaller subgroups should be
excluded from the output by post-processing.

5 Application to ALL Dataset

5.1 Dataset

The dataset consists of more than 2000 patients from 1 to 18 years old with newly
diagnosed ALL. All of them were included into the standard risk group (SRG) or
into the intermediate risk group (ImRG) of randomized clinical trial MB-ALL-
2008 [19]. The protocol of this trial contains three stages of treatment for SRG
and ImRG: induction (36 days), consolidation (25 weeks), and maintenance (2-3
years). In this paper we only focus on the induction stage. Induction therapy
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aims at bringing a patient into remission and is very toxic. At this stage of
treatment patients from SRG and ImRG are randomized into 3 and 2 treatment
strategies correspondingly. Let us code them as T1, T2, and T3 in SRG and T4
and T5 in ImRG. SRG and ImRG parts of the dataset may be considered as two
independent datasets because SRG and ImRG therapies differ considerably.

Each patient from the dataset is described by the set of initial features,
treatment strategy which he or she was assigned at randomization, and outcome
features. From all initial features 8 were chosen for the analysis: sex (male or
female), age (in years from the birth date to the start of the therapy), initial
white blood count (per nl) (WBC), immunophenotype (B- or T-ALL), central
nervous system (CNS) status (normal, cytosis is less than 5 per mcl and blast
cells, neuroleukemia), liver enlargement (in cm), spleen enlargement (in cm),
mediastinum status (normal or pathological). As for outcome features of the
dataset each outcome feature consists of two parts: the result of the therapy
and time from the beginning of the therapy to the date when the result was
fixed (in years). In this dataset we have two such features. One of them is fixing
the time before patient’s death.This feature has three possible states: alive, lost
to follow-up or death. When a patient is alive or lost to follow-up we say that
censoring happened because we cannot measure exactly the time before death.
The other outcome feature represents the time before a negative event . This
feature can possess the following states: alive in remission, lost to follow-up,
death in remission, secondary tumor, relapse or metastases, nonresponse to the
therapy or disease progression, or death in induction. Alive in remission and lost
to follow-up events correspond to censoring. Two types of outcomes are used for
different variants of treatment efficiency estimation which are presented below.

Finally, we exclude patients with missed values from the further analysis and
result in 1221 SRG patients: 387, 366, and 368 patients received T1, T2, and
T3 respectively. 929 patients in ImRG: 467 and 462 patients received T4 and T5
respectively.

5.2 Data Preprocessing

As it was shown above the initial features of the patients should be transformed
into the tuple of interval and binary attributes. Age, WBC, liver enlargement,
and spleen enlargement are numerical features, so for each of them an interval
attribute is created. Moreover, we scale them a little to obtain subgroup descrip-
tions which make sense for physicians. For example, it is not correct enough in
medical terms that one treatment is more effective for patients, let’s say, up to
5.4 years old. Similar limitations should also be applied to other 3 numerical
features. To answer these limitations we propose the following way of interval
attributes construction:

1. Let one set the steps of interval reduction in CbO to sage = sliver = sspleen =
1 and sWBC = 10.

2. For each name ∈ {age, liver, spleen,WBC} and for every g ∈ D, where D
is the set of all patients, if name(g) = x then the value of the corresponding
interval attribute is set to [sname · bx/snamec, sname · dx/snamee].
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All nominal features (sex, immunophenotype, CNS status, and mediastinum
status) are converted to the set of binary attributes in the way presented in
section 2.1. For instance, we construct two binary attributes corresponding to
sex: one indicating males and another indicating females.

5.3 Methodology of Generating Hypotheses

The algorithm of subgroup descriptions generation is proposed in Section 4. It
requires to set the difference measure. For the data of the childhood ALL we
choose log-rank statistics [20]. As it is a statistical method of detecting the differ-
ence between two (or several) survival curves [20–22] the threshold is naturally
chosen to satisfy 95% level of confidence of log-rank test. So, if p-value of two-
sided log-rank test is less than 5%, we output current description as a potential
subgroup description and do not generate its children, otherwise we continue
to generate children descriptions in accordance with the introduced algorithm.
Finally, from the set of potential subgroup descriptions we delete descriptions
subsumed under other potential subgroup descriptions.

As in SRG three treatment strategies (T1, T2, T3) are compared, the algo-
rithm selected those subgroups where the difference between any pair of the
treatment strategies is significant. Assume one of descriptions we get is d. For
the subgroup described by this description we should compare every pair of
treatment strategies: T1 and T2, T1 and T3, and T2 and T3. For each pair where
log-rank test detects the difference with confidence 95% and power 80% we make
a hypothesis. For instance, if pair Ti and Tj satisfies these requirements then a
hypothesis says that treatment strategies Ti and Tj affect patients described by
d differently. At the same time if the survival curve for Ti, for instance, is located
above the survival curve for Tj we can even say that Ti is better for patients
described by d than Tj . For patients from ImRG only two treatment strategies
are compared. Therefore it is enough to estimate power, and if it is more than
80% we make a hypothesis in the same way.

5.4 Summary of Results

The proposed algorithm was run to compare separately overall survival (OS)[23],
event-free survival (EFS)[24], and relapse-free survival (RFS)[25] in each risk
group with λ set to 1

3 and 1
5 for SRG and ImRG respectively. We also add

restrictions on the size of the subgroups: not less than 20 and 200 patients per
each treatment strategy for SRG and ImRG, respectively (the choice is explained
by the greater number of patients per treatment and possible descriptions for
ImRG). So, as a result three sets of subgroup descriptions were obtained for each
risk group (SRG and ImRG), one per each type of survival.

The results of experiments for SRG are presented in Table 1. OS, EFS, and
RFS stand for three types of survival described above, CbO stands for the pro-
posed approach, and IT stands for Interaction Tree from [9]. To construct an
interaction tree the same restriction on the size of subgroups (i.e. leaves) was
set: not less than 20 patients per each treatment strategy. Performing IT with
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pruning results in no subgroups, therefore we compared to unpruned trees. To
estimate subgroups in each of them paired logrank test p-values for every pair of
compared treatment strategies are estimated. We have also performed bootstrap
sampling on 1000 samples, and for each subgroup we estimate p-value median
and 0.95 unpivotal confidence interval for the difference between long-term sur-
vival estimations for every pair of compared treatment strategies. We count the
number of subgroups where the result of comparison of even one pair of com-
pared treatment strategies in this subgroups satisfies restrictions at the heading.
So, p corresponds to p-value of paired logrank test, pm is a median estimated
by bootstrap, dl and dr are the left and the right boundaries of 0.95 bootstrap
confidence interval for the difference in long-term survival.

Table 1. Number of subgroups obtained for SRG corresponding to different types of
survival and applied apprioach to subgroup detection.

survival
type

censoring
rate

approach
number of
subgroups

p < 0.05 pm < 0.05
p < 0.05 &
pm < 0.05

p < 0.05 &
dl · dr > 0

p < 0.05 &
pm < 0.05 &
dl · dr > 0

OS 0.945
CbO 67 55 50 49 50 46
IT 10 1 1 1 1 1

EFS 0.923
CbO 166 101 104 100 87 87
IT 12 1 0 0 0 0

RFS 0.963
CbO 89 54 47 45 21 20
IT 11 1 1 1 1 1

For ImRG we obtained 2559 and 153 subgroups based on OS and EFS re-
spectively and no subgroups based on RFS since the superiority of T5 over T4 in
RFS holds for the whole set of ImRG patients. Moreover, all obtained subgroups
based on OS and EFS confirm that T5 is better than T4. For this reason we did
not carry out an experiments on ImRG by applying Interaction Trees.

5.5 An Example of Generated Hypotheses

Given all hypotheses for ImRG propose the superiority of T5 over T4 it is more
interesting to look at the hypotheses for SRG. Short-term estimation of the treat-
ment strategy efficiencies carried out by physicians shows that T1 is significantly
worse than T2 and T3 for all patients from SRG while long-term estimations
show no significant difference. However, by applying the proposed algorithm we
found several subgroups where T1 is better than T2 and T3 in long-term. For
instance, the description was obtained on the basis of difference in OS: 4 ≤ age ,
3 ≤ liver enlargement ≤ 7, and normal mediastinum status. Testing T1 vs T2 and
T1 vs T3 we got p-values 1.4% and 1.9% and power estimations 86% and 94%.
There are approximately 60 patients per treatment strategy in the subgroup.
OS curves for the patients which can be described by even one of these descrip-
tions is presented in Fig. 1. Confidence intervals of p-values obtained from 1000
sample bootstrap: [0.3%, 1.6%] and [0.7%, 1.7%]. So, the advantage of strategy
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T1 over T2 and T3 for patients matching the description seems confident and
independent from the certain data.

Fig. 1. OS curves for subgroups showing the superiority of T1 over T2 and T3.

6 Conclusion

In this paper we have introduced an approach to solving the problem of deter-
mining relevant subgroups of patients for therapy optimization. The approach
is based on representing data by numerical pattern structures and applying the
version of CbO algorithm. The algorithm computes the pattern lattice top-down
(starting with the most general descriptions) and its stopping criterion allows
one to generate subgroups with significant differences in the efficiency of treat-
ment strategies containing the maximal possible number of patients to satisfy
statistical power restrictions. This approach allows one to avoid binarization or
using similarity measures on patients, which can result in artifacts. The approach
is also not biased by local optimization heuristics used for constructing decision
trees and random forests. The situations when various subgroups are not disjoint
will be the subject of further study.
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Abstract. In a former paper, the algorithm NextClosures for computing the
set of all formal concepts as well as the canonical base for a given formal context
has been introduced. Here, this algorithm shall be generalized to a setting
where the data-set is described by means of a closure operator in a complete
lattice, and furthermore it shall be extended with the possibility to handle
constraints that are given in form of a second closure operator. As a special
case, constraints may be predefined as implicational background knowledge.
Additionally, we show how the algorithm can be modified in order to do parallel
Attribute Exploration for unconstrained closure operators, as well as give a
reason for the impossibility of (parallel) Attribute Exploration for constrained
closure operators if the constraint is not compatible with the data-set.

Keywords: Formal Concept Analysis, Implication, Canonical Base, Con-
straint, Closure Operator, Parallel Computation, Parallel Exploration

1 Introduction

Recently, in [18, 20] a parallel algorithm for the computation of canonical bases (and
the set of formal concepts as a byproduct) for formal contexts has been introduced.
Furthermore, in [18, 19] some extensions have been provided that allow for the parallel
exploration of canonical bases by means of experts. However, not all data-sets occurring
in practical applications can efficiently be described as a formal context. Henceforth,
it can be useful to describe a generalization of the NextClosures algorithm which allows
to compute canonical bases for implications valid in a closure operator in a complete
lattice. Of course, powersets are always complete lattices, and the composition of the
two derivation operators of a formal context is a closure operator in the powerset lattice
– hence this is indeed a generalization. Since the algorithm proceeds in a level-wise order
that is compatible with the set-theoretic subset ordering, the generalization presupposes
a strict order-homomorphism of the underlying lattice into the ordered set (N,≤) of the
natural numbers with their usual ordering (called a quasi-rank function). Furthermore,
this paper presents some possible applications, e.g., in Formal Concept Analysis [13],
for interpretations in Description Logics [2], and for Pattern Structures [12].
First, the notion of a closure operator in a complete lattice is defined, and it is

proven that the set of all closure operators in a fixed complete lattice forms a complete
lattice itself. Consequently, it is possible to construct infima and suprema of sets of
closure operators. As applications, we discuss what it means for implications to be
valid in infima and suprema, and furthermore generalize the notion of C-implications
(constrained implications, where C is a closure operator) in [4] from the special case
of Formal Concept Analysis to the more general case of closure operators.

c© Marianne Huchard, Sergei O. Kuznetsov (Eds.): CLA 2016, pp. 231–242,
ISBN 978-5-600-01454-1, National Research University Higher School of Economics,
2016.



In [24], Stumme introduced an extension of Ganter’s Attribute Exploration [10, 11]
that can handle background knowledge in form of an implication set. A further gen-
eralization [9] allows for arbitrary propositional background knowledge. The input data
is given as a formal context K = (G,M,I) as well as an implication set L ⊆ Imp(M)
that is valid in K. Then by generalizing the notions of pseudo-intents and canonical
bases, it is possible to compute a minimal extension of L which is sound and complete
for K. This minimal extension is called canonical base of K relative to L. However, it
has not been addressed what can be done in the case where L is not valid in K. There
are at least two possibilities to handle such cases. One may either compute a base for
the implications that are valid in K as well as are entailed by L, or one can compute
a base for the constrained implications of (K,L). We will discuss some details here,
and provide solutions by utilizing infima and suprema of closure operators in lattices.

Higuchi has shown in [16] that the set of all closure operators on a set constitutes
a complete lattice. More generally, this is also true for the set of all closure operators
in a complete lattice. The order of closure operators is defined as follows: A closure
operator φ is smaller than another closure operator ψ if each closure of ψ is also a
closure of φ, i.e., if φ is more fine-grained than ψ which means that each closure of
ψ can be expressed as an infimum of closures of φ. Furthermore, it is easy to verify
that implications are valid in an infimum of two closure operators if, and only if, they
are valid in each of the closure operators. The dual case considers implications valid
in suprema, which are exactly those implications valid for all models that are closures
of all involved closure operators. In general, one may think of infima describing unions
of data-sets, and suprema as describing intersections (or mergings) of data-sets.

The last case investigated in this document considers the constrained implications.
As input two closure operators are necessary, one describing the data-set and the other
one describing the constraints to be met. Then a base for all those implications may be
computed, for which both premise and conclusion is a closure of the constraining closure
operator, and all common closures of both closure operators are models. In particular,
we will show an application where we have some implications which have been proven
to be correct, and a possibly faulty data-set. As a result, we may construct implications
that are compatible with the background knowledge, and furthermore are valid w.r.t. all
closures of the data-set which are also models of the background implications.

This document is structured as follows. In Section 2, the notion of a closure operator
in a complete lattice is defined, and it is shown that the set of all closure operators
constitute a complete lattice itself, i.e., we present an order on closure operators as
well as give the equations for the corresponding infimum and supremum operations.
Then in Section 3, we consider implications in a complete lattice and define the notion
of validity w.r.t. closure operators, as well as entailment for implication sets. Next,
Section 4 generalizes the parallel NextClosures algorithm from [20] to the case of closure
operators (with constraints) in complete lattices. Proofs are ommited, as on the one
hand they have already been given in [18], and on the other hand could be generalized
from those given in [19, 20] without too much effort. Before finishing this document with
some conclusions in Section 6, several possible applications are described, in particular,
in Formal Concept Analysis, in Description Logics, and for Pattern Structures.

232 Francesco Kriegel



2 The Complete Lattice of Closure Operators in a
Complete Lattice

Throughout the whole section, we assume that M = (M,≤,∧,∨,>,⊥) is a complete
lattice, i.e., M is a set; ≤ is an order relation on M , i.e., it is reflexive, antisymmetric,
and transitive; for each subset X ⊆M ,

∧
X is the infimum of X, i.e.,

∧
X ≤ x for all

x ∈ X, and y ≤ x for all x ∈ X implies y ≤ ∧
X; dually,

∨
X is the supremum of X;

> is the greatest element and ⊥ is the smallest element, i.e., ⊥ ≤ x ≤ > for all x ∈M .
We set x∧ y :=

∧{x, y} as well as x∨ y :=
∨{x, y}. For x ∈M , its (prime) ideal is

↓x := {y ∈M | y ≤ x}, and its (prime) filter is ↑x := {y ∈M | x ≤ y }. For further
information on (complete) lattices, the interested reader is referred to [5, 7, 13, 14].
A closure operator in M is a mapping φ : M → M that is extensive, monotone,

and idempotent, cf. [6, 7, 16]. ClOp(M) denotes the set of all closure operators in M .
An element x ∈ M is a closure of φ if x = xφ, and we shall denote the set of all
closures of φ by Clo(φ). Furthermore, it is well-known that the following statements
are equivalent characterizations of a closure operator φ:

1. x ≤ xφ, x ≤ y⇒ xφ ≤ yφ, and xφφ = xφ, for all x, y ∈M .
2. x ≤ yφ ⇔ xφ ≤ yφ for all x, y ∈M .
3. x∨ yφφ ≤ (x∨ y)φ for all x, y ∈M .
4. x ≤ xφ, and (x∨ y)φ = (xφ ∨ yφ)φ, for all x, y ∈M .

It is easy to verify that the following statements hold for a closure operator φ:

1. (x∧ y)φ ≤ xφ ∧ yφ for all x, y ∈M .
2. (xφ ∧ yφ)φ = xφ ∧ yφ for all x, y ∈M .

A closure system in M is a
∧
-closed subset of M . A subset P ⊆ M is a closure

system in M if, and only if, {p ∈ P | x ≤ p} = ↑x∩ P has a smallest element for all
x ∈M . Then there is a one-to-one correspondence between closure operators and closure
systems as follows. For each closure operator in M , the set of its closures is a closure
system in M . Vice versa, if P is a closure system in M , then φP : x 7→ ∧

(↑x ∩ P)
is a closure operator in M . The operations are mutually inverse.
It turns out that the set of all closure operators in a complete lattice constitutes

a complete lattice itself, see also [16, 23]. Indeed, closure operators can be ordered by
�, where φ � ψ if Clo(φ) ⊇ Clo(ψ). This condition is equivalent to both φ ◦ ψ = ψ
and φ ≤ ψ (w.r.t. pointwise order, i.e., xφ ≤ xψ for all x ∈M). Obviously, the smallest
closure operator is given by the identity mapping ⊥ : x 7→ x, and the greatest closure
operator is given by the constant mapping > : x 7→ >. If Φ is a set of closure operators
in M , then its infimum

c
Φ and supremum

b
Φ are given by the following equations:

k
Φ : x 7→

∧
{xφ | φ ∈ Φ},

and
j
Φ : x 7→

∧
{y | x ≤ y and y = yφ for all φ ∈ Φ}.

Of course, all complete lattices are (isomorphic to) a formal concept lattice, cf. [13].
In particular, the lattice of closure operators is isomorphic to the concept lattice of
(ClOp(M),ClOp(M),�), but also to the concept lattice of the smaller formal context
(ClOp(M),M,C) where φ C x if x is a closure of φ. The corresponding isomorphisms are

φ 7→ (↓φ,Clo(φ)) and (Φ,X) 7→
j
Φ : x 7→

∧
(↑x∩X).
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3 Implications in Closure Operators

An implication in M is an expression of the form p → c with premise p ∈ M and
conclusion c ∈M . An element m ∈M is a model of p→ c if p ≤ m implies c ≤ m.
It is valid in φ if all closures of φ are models of p→ c, and we shall denote this by
φ |= p → c. Furthermore, it can easily be shown that φ |= p → c is equivalent to
c ≤ pφ. We shall denote the set of all implications inM by Imp(M). For an implication
set L∪ {p→ c} ⊆ Imp(M), we say that L entails p→ c, symbolized as L |= p→ c,
if each model of L, i.e., each model of all implications in L, is a model of p→ c. For
each element x ∈M , there is a smallest element xL above x that is a model of L, and
the corresponding closure operator satisfies xL =

∨{xL,n | n ≥ 1} where

xL,1 := x∨
∨
{ c | ∃p : p→ c ∈ L and p ≤ x},

and xL,n+1 := (xL,1)L,n for each n ∈ N.

Then, L entails p→ c if, and only if, c ≤ pL. Additionally, we define a similar closure
operator L∗ where p ≤ x is replaced with p � x in the definition of xL,1. For an
implication set L, we symbolize by L�k the subset consisting of all implications from
L the premises of which have a quasi-rank not exceeding k.

A pseudo-closure of φ is an element p ∈M which is not a closure of φ, but contains
the closure of each strictly smaller pseudo-closure. PsClo(φ) denotes the set of all pseudo-
closures of φ, and then Bcan(φ) := {p→ pφ |p ∈ PsClo(φ)} constitutes an implicational
base for φ, i.e., for all implications p→ c ∈ Imp(M), φ |= p→ c if, and only if, Bcan(φ) |=
p→ c. We call Bcan(φ) the canonical base of φ, and furthermore it can be shown that it
is a minimal implicational base, i.e., there is no base of smaller cardinality. Algorithm 1
can be utilized to compute the canonical base of φ, for which the constraining closure
operator ψ must be set to the identity mapping ⊥ that imposes no constraints at all.

3.1 Implications in Infima

As we have seen in Section 2, the infimum of two closure operators φ and ψ in a
complete lattice M is given as φfψ : x 7→ xφ ∧ xψ. The corresponding closure system
is the smallest that contains all closures of φ as well as all closures of ψ. Consequently,
an implication is valid in the infimum if, and only if, it is valid in both closure operators.
For formal contexts K1 and K2, the infimum of their intent closure operators can be
obtained as the intent closure operator of the subposition K1

K2
. In general, the infimum

somehow corresponds to the union of two data-sets.
Using the infimum operation it is furthermore possible to construct implicational

bases from streams. Suppose that (φn)n∈N is a sequence of closure operators in M
such that φn is only available at time point n, i.e., we do not have access to the whole
sequence at once, but only to the most recent closure operator. However, for each time
point n ∈ N, it is desired to have a base for the implications that are valid in all closure
operators φ` with ` ≤ n. This can easily be achieved as follows:

1. Set B0 := Bcan(φ0).
2. Set Bn+1 := Bcan(Bn f φn+1) for each n ∈ N.
By construction, then each Bn is an implicational base for

cn
`=0 φ`, i.e., for the

implications which are valid in φ0, . . . , φn.
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3.2 Implications in Suprema

Consider two closure operators φ and ψ in a complete latticeM . Then, their supremum
φg ψ maps each element x ∈M to the smallest element of M that is greater than x,
and both a closure of φ and ψ. The corresponding closure system is the smallest that
contains the intersection Clo(φ) ∩ Clo(ψ). Hence, the supremum corresponds to the
intersection (or merging) of data-sets. An implication is valid in φg ψ if, and only if,
it has all common closures of φ and ψ as models. Note that there may be implications
valid in φ g ψ which are neither valid in φ, nor valid in ψ.

3.3 Constrained Implications

As a special case of implications being valid in a supremum, we consider so-called
constrained implications. This notion has first been defined by Belohlávek and Vychodil
in [4] for formal contexts. Consider a formal context K = (G,M,I) and a closure
operator C on M , then a C-implication over M is an implication the premise as well
as the conclusion of which are closures of C. Furthermore, a C-implication is valid in
K if it has as models all intents of K that are closures of C. We can generalize this
to the case of closure operators in complete lattices as follows.

Again, suppose that φ and ψ are closure operators in a complete lattice M . We then
call the pair (φ,ψ) a closure operator with constraint where φ is the constrained, and ψ
is the constraining closure operator. An implication p→ c is constrained by ψ if both
its premise p and conclusion c are closures of ψ. Furthermore, p→ c is valid in (φ,ψ)
if it has all closures of the supremum φg ψ as models, i.e., if φg ψ |= p→ c. In order
to construct bases for constrained implications in a closure operator with constraint,
we shall adapt the notions of pseudo-closures and the canonical base accordingly. An
element p ∈M is a pseudo-closure of (φ,ψ) if p is not a closure of φ, but a closure
of ψ, and furthermore qφgψ ≤ p for all pseudo-closures q � p of (φ,ψ). Then, the set
Bcan (φ,ψ) := {p→ pφgψ | p ∈ PsClo(φ,ψ)} is a minimal implicational base of (φ,ψ)
where PsClo (φ,ψ) denotes the set of all pseudo-closures of (φ,ψ).

Comparing the two approaches for computing implications in a supremum, the first
one in Section 3.2 only restricts the possible models, in particular, only closures of φ
are considered that are also closures of ψ. The second approach in Section 3.3 also
imposes constraints on the implications, i.e., only implications are considered where
both premise and conclusion are closures of ψ.

4 A Generalized NextClosures Algorithm

Let M be a complete lattice. Throughout the whole section, we assume that there is a
strict order-preserving function |·| : (M,≤)→ (N,≤), i.e., x � y implies |x| � |y| for all
x, y ∈M . W.l.o.g. |⊥| = 0. (If |⊥| = n for n > 0, then || · || : x 7→ |x|−n is also a strict
order-homomorphism, and ||⊥|| = 0.) Then | · | is a quasi-rank function on (M,≤), and
we say that an element x ∈M has quasi-rank |x|. In particular, for all graded complete
lattices, the corresponding rank function |·| is a quasi-rank function such that furthermore
|x|+1 = |y| if x is a lower neighbor of y. For our purposes, we do not need the additional
property that the ranks of neighboring elements only differ by an amount of 1.
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Consider two closure operators φ and ψ inM . Then the set containing all closures of
φg ψ and all pseudo-closures of (φ,ψ) is a closure system inM , and the corresponding
closure operator is (φ,ψ)

∗ := Bcan (φ,ψ)
∗. Our aim is to find an automatic method for

constructing all closures of (φ,ψ)
∗. The following Algorithm 1 has been introduced in [18],

and the special case of φ being the intent closure operator induced by a formal context,
and the constraining closure operator ψ being the identity ⊥ (i.e., no constraints are
given), has been handled in [20]. The proof is left out here, as it can be found in [18], or can
be generalized from the proof in [20]. We will describe Algorithm 1 in the following text.

According to the definition of a pseudo-closure, for all elements p ∈M , it suffices to
know all strictly smaller pseudo-closures q � p in order to correctly determine whether p
is pseudo-closed. Hence, we may compute them in a level-wise approach w.r.t. increasing
quasi-rank, since if we have computed all pseudo-closures q where |q| � |p|, then
we can find those pseudo-closures with q � p among them. In particular, if L is a
set of ψ-implications that contains exactly all implications p → pφgψ where p is a
(φ,ψ)-pseudo-closure with quasi-rank not exceeding k, and some arbitrary implications
with premise quasi-rank k + 1, then the closure operators (φ,ψ)

∗ and L∗ coincide on
all elements with a quasi-rank of at most k + 1, i.e., |x| ≤ k + 1 implies x(φ,ψ)

∗
= xL

∗
.

Furthermore, it can be proven that the following statements are satisfied:

1. If p ∈ M is a (φ,ψ)-pseudo-closure, then there is neither a φg ψ-closure nor a
(φ,ψ)-pseudo-closure strictly between p and pφgψ.

2. Ifm ∈M is a φg ψ-closure, then the next φg ψ-closures or (φ,ψ)-pseudo-closures
are of the form n(φ,ψ)

∗
for upper neighbors n �m.

3. If x, y ∈M with x � y are neighboring (φ,ψ)
∗-closures, then y = z(φ,ψ)

∗
for all

upper neighbors z � x with z ≤ y.

Algorithm 1. NextClosures
Input: a complete lattice M = (M,≤,∧,∨,>,⊥)
Input: a quasi-rank function | · | : (M,≤)→ (N,≤)
Input: a closure operator with constraint (φ,ψ) in M
Initialize: a set I := ∅
Initialize: an implication set L := ∅
Initialize: a candidate set C := {⊥}
1 for k = 0,1, . . . , |>| do
2 for all c ∈ C with |c| = k do in parallel
3 if c = cL

∗
then

4 if c 6= cφgψ then
5 L := L∪ {c→ cφgψ}
6 I := I ∪ {cφgψ}
7 C := C∪ {d | cφgψ ≺ d}
8 else
9 C := C∪ {cL∗}
10 Wait for termination of all parallel processes.
Output: the set I of all (φ,ψ)-closures
Output: the canonical base L of (φ,ψ)
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Algorithm 1manages a setC of candidates, an implication setL, and a set I of closures.
Initially, ⊥ is the only candidate in C. Algorithm 1 is in state k if it has processed all
candidates with a quasi-rank≤ k, but none of quasi-rank> k. In state k,Ck denotes the
set of candidates, Lk denotes the implication set, and Ik denotes the set of closures. It
can be shown that the following invariants are always satisfied during Algorithm 1’s run:

1. Ck contains all pseudo-closures of (φ,ψ) with quasi-rank k+ 1, and all closures
of φg ψ with quasi-rank k+ 1 that are not already contained in Ik.

2. Ik contains exactly all closures of φg ψ with a quasi-rank not exceeding k.
3. Lk contains exactly all implications p → pφgψ for which the premise p is a

pseudo-closure of (φ,ψ) with a quasi-rank of at most k.
4. Between the states k and k + 1, the closure operators (φ,ψ)

∗ and L∗ coincide on
all elements with quasi-rank k + 1, i.e., an element with quasi-rank k + 1 is either
a closure of φg ψ or a pseudo-closure of (φ,ψ) if, and only if, it is a closure of L∗.

As a consequence, we obtain that in the final state |>|, Algorithm 1 outputs the
set of all closures of φg ψ as well as the canonical base of (φ,ψ).

4.1 A Generalized Parallel Attribute Exploration

As an extension, we suppose that the given closure operator only describes a part of
the data-set, and furthermore there is an expert available (very much in the same
way as for Attribute Exploration [10, 11] in the case of Formal Concept Analysis). The
exploration of a closure operator in a lattice is explained in full detail in [18], and the
special case of exploring a formal context is considered in [19] (including extensive
proofs). However, we will give a short summary here.
An expert in a lattice M is a partial mapping χ : Imp(M) →p M such that the

following conditions hold:

1. If χ(p → c) is defined, then the value is a counterexample against p → c, i.e.,
χ(p→ c) = m implies p ≤m and c 6≤m.

2. If χ(p→ c) is undefined, then all counterexamples of χ are models of p→ c, i.e.,
whenever χ(q→ d) = m, then p ≤m implies c ≤m.

We say that χ accepts p→ c if it does not provide a counterexample against p→ c,
i.e., χ(p → c) is undefined, and that χ refutes p → c otherwise. Furthermore, χ is
induced by a closure operator φ if for all implications p→ c, χ(p→ c) is undefined
if, and only if, p → c is valid in φ. The expert χ is optimal if it accepts p → c ∧ x
whenever it refutes p → c with counterexample x. For an arbitrary expert χ, it is
always possible to construct an optimal expert χ̂ that accepts the same implications
as follows: Let p → c be an implication. Then χ̂ accepts p → c if χ accepts p → c.
Otherwise, let c0 := c and n := 0. While χ rejects cn with counterexample xn, set
cn+1 := cn ∧ xn, and increase n. Eventually, define χ̂(p→ c) :=

∧n
k=0 xk.

As input the generalized Parallel Attribute Exploration requires a closure operator
φ, an expert χ, as well as an implication set L in M , such that there is an inaccessible
closure operator δ describing the domain of interest where χ is induced by δ, δ � φ,
i.e., Clo(φ) ⊆ Clo(δ), and L is valid in δ. W.l.o.g.we may assume that χ is optimal.
The goal is to compute an implicational base for the domain closure operator δ by
utilizing the background knowledge L, and querying the expert χ.
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In order to insert new closures into the closure operator φ, we define an operation
↓ : ClOp(M)×M → ClOp(M) by φ↓x := φf ρx where ρx(m) := x if m ≤ x, and
ρx(m) := > otherwise. It is readily verified that φ↓x is the greatest closure operator
below φ that has x as a closure. Then x |= y→ yφ implies yφ↓x = yφ. Furthermore, if
x is a model of all implications p→ pφ where p is a pseudo-closure of (φ,L) with |p| ≤ k,
then the pseudo-closures of (φ,L) and (φ↓x,L) with a quasi-rank of at most k are the
same. As a corollary, we get that then also the canonical bases of (φ,L) and (φ↓x,L) co-
incide for the implications the premises of which have a quasi-rank not exceeding k. By an
inductive application, it follows that Bcan(φ,L)�k = Bcan((φ↓x1, . . . , xn),L)�k if each xi
is a model of Bcan(φ,L)�k. This fact enables us to execute a parallel attribute exploration.

Algorithm 2. ParallelAttributeExploration
Input: a complete lattice M = (M,≤,∧,∨,>,⊥)
Input: a quasi-rank function | · | : (M,≤)→ (N,≤)
Input: a closure operator φ in M
Input: an expert χ in M
Input: a set L of background implications that are valid in φ
Initialize: an implication set B := ∅
Initialize: a candidate set C := {⊥}
1 for k = 0, . . . , |>| − 1 do
2 for all c ∈ C with |c| = k do in parallel
3 if c = cB

∗
and c = cL then

4 while c 6= cφ and χ(c→ cφ) = x do
5 φ := φ↓x
6 if c 6= cφ then
7 B := B ∪ {c→ cφ}
8 C := C∪ {d | d � cφ }
9 else
10 C := C∪ {cB∗gL}
11 Wait for termination of all parallel processes.
Output: the refined closure operator φ
Output: the canonical base B of φ relative to L

Algorithm 2 is in state k if it has processed all candidates of a quasi-rank not exceeding
k, but none of a greater quasi-rank. LetCk denote the set of candidates in state k, and let
Bk denote the implication set in state k. Furthermore, x1k, . . . , x

nk

k denote all counterex-
amples provided by the expert between states k and k+1, and φk is the closure operator in
state k, i.e., φk ↓x1k, . . . , xnk

k = φk+1. Then the following statements are always satisfied.

1. Ck contains all pseudo-closures of (φk+1,L) with quasi-rank k+ 1.
2. Bk consists of all implications p → pφgψ where p is a pseudo-closure of (φk,L)

with a quasi-rank of at most k, i.e., Bcan(φk,L)�k = Bk.
3. Between the states k and k+ 1, every element with quasi-rank k+ 1 is a closure of
B∗ if, and only if, it is either a closure of φk+1gL or a pseudo-closure of (φk+1,L).

As a corollary, we infer that in the final state |>|, Algorithm 2 returns a refinement of
φ that has the same closures as δ, and a minimal implicational base of δ relative to L,
i.e., a minimal superset of L that constitutes an implicational base of δ. Additionally,
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there is no algorithm that computes a minimal relative implicational base of δ, but
poses less questions to χ than Algorithm 2.

4.2 A Problem for the Exploration of Constrained Implicational Bases

A further generalization of Algorithm 2 to arbitrary closure operators ψ instead of
implication sets L valid in φ is not easily possible. We may only replace L by a closure
operator ψ such that ψ � φ, otherwise when receiving counterexamples from the expert,
they may not be inserted into the closure operator φ, but must be inserted into the
supremum φg ψ, since we cannot ensure that y(φ↓x)gψ = yφgψ if x is a ψ-model of
the ψ-implication y→ yφgψ. This is due to the fact that the lattice of closure operators
is not distributive, and this fact can be proven by means of [22, Lemmata 1 and 2].

5 Applications

In this section, we will present some applications of the generalized NextClosures
algorithm. It is trivial that there is an application for Formal Concept Analysis, since
the powerset of the attribute set constitutes a complete lattice, and the composition
of the derivation operators is a closure operator. Further applications can be found
for interpretations in Description Logics, and for Pattern Structures. We will shortly
describe each of the cases in the following subsections.

5.1 Application: Formal Concept Analysis

For each formal context K = (G,M,I), the mapping II : X 7→ XII is a closure
operator in the powerset ℘(M). The closure system induced by II is the set of all
intents of K, and thus it is easy to verify that an implication is valid in K if, and only if,
it is valid in II. Hence, Algorithm 1 can be utilized to compute both the set of intents
of K and the canonical base of K. If furthermore a constraining closure operator C
in ℘(M) is given, cf. [4] as well as Section 3.3, then Algorithm 1 is also applicable,
and computes all C-intents as well as a base of the C-implications.

As a special case, we may consider the case where the constraining closure operator
C is given by means of an implication set L ⊆ Imp(M), i.e., C : X 7→ XL assigns
to each attribute set X ⊆M the smallest superset that is a model of L. Then there
are two cases to consider: either K |= L, or K 6|= L.
First, assume that L is valid in K. Then each intent of K is a model of L, i.e.,
L � II, and thus II fL = L as well as II gL = II. Consequently, it is uninteresting
to consider the infimum or supremum. Furthermore, it can be shown that the canonical
base of K with constraint L from Section 3.3 coincides with the canonical base of
K relative to L from [9, 24], i.e., is a minimal extension of L which constitutes an
implicational base for K. However, both documents [9, 24] have not addressed the
remaining case where L is not valid in K.
Second, let K 6|= L. Then, an implication is valid in the infimum II f L if, and

only if, it is valid in K as well as is entailed by L. This is useful for the case where
a sequence (Kn)n∈N of formal contexts is observed, and for each time point n, a base
for the subposition of K0, . . . ,Kn shall be constructed. Note that this has already
been discussed in Section 3.1 for the general case.
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For the supremum, an implication is valid if, and only if, it has as models all intents of
K that are also models of L. Consider the case where K contains faulty objects, e.g., due
to wrong observations inserted to K, and where the implication set L has been manually
created or verified to ensure that all its implications are valid in the domain of interest.
Then, constructing implications that are valid in II gL is a suitable method, since
only those intents of K are allowed as models that are already models of L, i.e., satisfy
the existing implicational knowledge. A further restriction is imposed by also requiring
the premises and conclusions to be models of L, i.e., only considering implications that
are L-constrained. For both cases, Algorithm 1 can be used to compute a canonical
base in parallel. However, it remains to investigate whether the implications valid in
II g L, or the L-constrained implications of K, are more useful in practise.

5.2 Application: Pattern Structures

A pattern structure, as introduced by Ganter and Kuznetsov in [12], is a triple
(G, (M,u), δ) consisting of a set G of objects, a semi-lattice (M,u) of patterns, and a
description function δ : G→M , such that the set { δ(g)|g ∈ G} induces a complete sub-
semi-lattice (Mδ,u) of (M,u). Furthermore, then a galois connection between the pow-
erset℘(G) and the pattern lattice (M,v) (where x v y iff xuy = x) is given as follows:

A� :=
l
{ δ(g) | g ∈ A} for all A ⊆ G,

d� := {g ∈ G | δ(g) v d} for all d ∈M.

A pattern implication is a term x→ y where x, y ∈M , and is valid in (G, (M,u), δ)
if x� ⊆ y�. Since (·�, ·�) is a galois connection, it follows that the composition ·��
is a closure operator in the lattice of all descriptions. Hence, it is possible to apply the
generalized NextClosures algorithm for the case of pattern structures, too, provided
that there is a quasi-rank function | · | : (M,v) → (N,≤).

5.3 Application: Description Logics

As a special case of pattern structures, we consider interpretations in Description
Logics [2] as input data-sets. First, fix a finite signature (NC,NR), i.e., NC is a set of
concept names, and NR is a set of role names. An interpretation is a pair I = (∆I, ·I)
consisting of a non-empty set∆I, called domain, and an extension function ·I such that
AI ⊆ ∆I for all concept names A ∈ NC, and rI ⊆ ∆I×∆I for all role names r ∈ NR.
An EL⊥-concept description may be built according to the following inductive rule:

C ::= ⊥ | > | A | C uC | ∃ r.C.

Then, the extension function ·I is extended to all EL⊥-concept descriptions by means
of the following definitions:

⊥I := ∅,
>I := ∆I,

(C uD)I := CI ∩DI,
and (∃ r.C)I := {d ∈ ∆I | ∃e ∈ ∆I : (d, e) ∈ rI and e ∈ CI }.
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Please note that an implication between concept descriptions is rather called a gen-
eral concept inclusion. An implicational base for the closure operator ·II, where the
first ·I is the extension mapping, and the second ·I is the model-based most-specific
concept description mapping, is a base of GCIs for I, as it has been investigated
by Baader and Distel in [1, 8].

The set of all EL⊥-concept descriptions constitutes a bounded lattice. First we define
a quasi-order v, the subsumption order, by C v D if CI ⊆ DI for all interpretations
I. The corresponding equivalence relation is denoted as ≡. For simplicity, we do not
distinguish between equivalence classes and their representatives. The set of all equiv-
alence classes is a bounded lattice with the smallest element ⊥, the greatest element >,
and where the conjunction u is the infimum operation, and the least common subsumer
mapping t is the supremum operation. It is easy to verify that both u and t are
compatible with ≡, hence they are well-defined for the equivalence classes.

If we do not restrict the role-depth, and use descriptive semantics (as defined above)
instead of greatest-fixpoint semantics, then however the lattice of concept descriptions
is not complete, as there are infinitely many mutually distinct EL⊥-concept descriptions,
e.g., the concept descriptions (∃ r.)nA for n ∈ N, and conjunction is only allowed for
a finite number of concept descriptions. It turns out, that this is no restriction for the
application of Algorithm 1, since for finite interpretations (i.e., with a finite domain),
the canonical base is finite, and hence for the computation of closures w.r.t. the current
implication set in Algorithm 1 only finitary suprema are necessary.
For defining a quasi-rank function, we may first observe that the dual lattice of
EL⊥-concept descriptions is well-founded, i.e., there are no infinite strictly ascending
chains C0 vp C1 vp C2 vp . . ., cf.Baader and Morawska in [3, Proposition 3.5]. Hence,
a quasi-rank function could be defined by |C| := n where n is the maximal length of
a chain starting at C and ending at >. Since each concept description has only finitely
many subsumers (for a finite signature), there are only finitely many mutually distinct
chains in the interval [C,>], and thus | · | as above is well-defined. For the same reason,
the set of upper neighbors of an arbitrary concept description is computable.

6 Conclusion

In this document, the NextClosures algorithm has been generalized to arbitrary closure
operators in complete lattices, and has been extended to handle constraints that are
given in form of another closure operator. Furthermore, some exemplary applications
have been presented, e.g., in the field of Formal Concept Analysis, Description Logics,
and for Pattern Structures. While some experiments of an implementation specialized
to formal contexts as input structures have shown that there is an almost inverse
linear correlation between the computation time and the number of available processor
cores, experiments for other types of input structures are outstanding. A complexity
analysis taking into account the complexities of the lattice operations as well as of
the closure operator could be interesting.
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Abstract. Triadic formal concept analysis has become a popular re-
search direction, since triadic relations give natural models of many data
collections. In this paper we address the problem of selecting most inter-
esting concepts by proposing triadic stability indices.

1 Introduction

Triadic formal concept analysis (3FCA) was introduced by Rudolf Wille and
Fritz Lehmann [1] to model hierarchies of classes and dependencies arising from
ternary relations. Recently, several algorithms for computing frequent tricon-
cepts were proposed [2, 3]. It is noticed that some infrequent concepts are still
interesting, since they represent extraordinary or uncommon data. In this paper
we propose triadic stability for selecting interesting triadic concepts. Together
with exact stability indices we suggest their efficient approximations analogous
to ∆-stability introduced in [4].

2 Main definitions

2.1 Formal Concept Analysis

First, we briefly recall some basic definitions of the Formal Concept Analysis
(FCA) [5]. A formal context is a triple (G,M, I). G and M are sets of objects
and attributes respectively, and I is an incidence relation. It is defined as the
Cartesian product G ×M , i.e. (g,m) ∈ I if the object g ∈ G has the attribute
m ∈ M . The derivation operators (·)′ are defined for A ⊆ G and B ⊆ M as
follows:

A′ = {m ∈M | ∀g ∈ A : gIm}
B′ = {g ∈ G | ∀m ∈ B : gIm}

A′ is the set of attributes common to all objects of A, and B′ is the set of objects
sharing all attributes of B. The double application of (·)′ is a closure operator,
i.e. (·)′′ is extensive, idempotent and monotone. Subsets A ⊆ G, B ⊆ M such
that A = A′′ and B = B′′ are called closed.
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ISBN 978-5-600-01454-1, National Research University Higher School of Economics,
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A (formal) concept is a pair (A,B), where A ⊆ G, B ⊆ M and A′ = B,
B′ = A. A is called the (formal) extent, and B is called the (formal) intent of
the concept (A,B).

A concept lattice (or Galois lattice) is a partial ordered set of concepts,
the order 6 on the set of concepts is defined as follows: (A,B) ≤ (C,D) iff
A ⊆ C (D ⊆ B), a pair (A,B) is a subconcept of (C,D), while (C,D) is a
superconcept of (A,B). Each finite lattice has the highest element with A = G,
called the top element, and the lowest element with B = M , called the bottom
element.

2.2 Triadic Concept Analysis

In the case of a triadic relation one deals with a quadruple (G,M,B, Y ), called
a triadic context. G, M , B are sets and Y is a ternary relation between G, M
and B, i.e. Y ⊆ G ×M × B; the elements of G, M and B are called objects,
attributes and conditions respectively, and (g,m, b) ∈ Y is read: object g has
attribute m under condition b.

The dyadic derivation operators can be used to construct triadic concepts.
A triadic context can be represented as follows: K := (K1,K2,K3, Y ), where K1

is a set of objects G, K2 is a set of attributes and K3 is a set of conditions, and
each element of Ki may be seen as an instance of Peirce’s i-th category [1]. For
every triadic context one defines the following dyadic contexts:

K1 :=
(
K1,K2 ×K3, Y

(1)
)

with gY (1) (m, b) :⇔ (g,m, b) ∈ Y
K2 :=

(
K2,K1 ×K3, Y

(2)
)

with mY (2) (g, b) :⇔ (g,m, b) ∈ Y
K3 :=

(
K3,K1 ×K2, Y

(3)
)

with bY (3) (g,m) :⇔ (g,m, b) ∈ Y
For {i, j, k} = {1, 2, 3} and Ak ⊆ Kk, one defines K(i,j)

Ak
:=
(
Ki,Kj , Y

(i,j)
Ak

)
,

where (ai, aj) ∈ Y (i,j)
Ak

if and only if (ai, aj , ak) ∈ Y for all ak ∈ Ak.

Put differently, the context K(i) is a flattened representation of the original

triadic context, while K(i,j)
Ak

corresponds to the relation between elements of Ki

and Kj that belong to Ak.

(i)-derivation operator For {i, j, k} = {1, 2, 3} with j < k and for X ⊆ Ki and
Z ⊆ Kj ×Kk the (i)-derivation operators are defined by

X 7−→ X(i) := {(aj , ak) ∈ Kj ×Kk | (ai, aj , ak) ∈ Y for all ai ∈ X}

Z 7−→ Z(i) := {ai ∈ Ki | (ai, aj , ak) ∈ Y for all (aj , ak) ∈ Z}

(i, j,Xk)-derivation operators For {i, j, k} = {1, 2, 3} and for Xi ⊆ Ki, Xj ⊆ Kj

and Ak ⊆ Kk the (i, j,Xk)-derivation operators are defined by

Xi 7−→ X
(i,j,Ak)
i := {aj ∈ Kj | (ai, aj , ak) ∈ Y for all (ai, ak) ∈ Xi ×Ak}

Xj 7−→ X
(i,j,Ak)
j := {ai ∈ Ki | (ai, aj , ak) ∈ Y for all (aj , ak) ∈ Xj ×Ak}
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A triadic concept (triconcept) of K := (K1,K2,K3, Y ) is a triple (A1, A2, A3)

with Ai ⊆ Ki for i ∈ {1, 2, 3} and Ai = (Aj ×Ak)
(i)

for every {i, j, k} = {1, 2, 3}
with j < k. The sets A1,A2, and A3 are called extent, intent and modus of the
triadic concept respectively. We let T (K) denote the set of all triadic concepts
of K.

A triadic concept lattice has three maximal elements, namely ((K2×K3)(1),
K2,K3), (K1, (K1 × K3)(2),K3), and (K1,K2, (K1 × K2)(3)). For any two ele-
ments of a lattice one defines tree types of set inclusion/exclusion relations, which
satisfy the following antiordinal dependencies: (A1, A2, A3) �G (B1, B2, B3) iff
A1 ⊆ B1, A2 ⊇ B2, A3 ⊇ B3, (A1, A2, A3) �M (B1, B2, B3) iff A1 ⊇ B1, A2 ⊆
B2, A3 ⊇ B3 or (A1, A2, A3) �C (B1, B2, B3) iff A1 ⊇ B1, A2 ⊇ B2, A3 ⊆ B3.

3 Stability Indices For Triadic Concepts

Stability indices for formal concepts were introduced in [6, 7] and modified in [8].
We define stability indices for the triadic case in a similar way. We describe two
types of stability that correspond to the derivation operators defined above.

(i)-stability For a triadic concept (A1, A2, A3) the (i)-stability is defined by:

Stab(i) (A1, A2, A3) :=
|
{
X ⊆ Ai|X(i) = (Aj ×Ak)

}
|

2|Ai|

This index shows how much the binary relation on sets Xj and Xk is depen-
dent on particular elements of a subset Ai.

(i, j,Xk)-stability For a triadic concept (A1, A2, A3) the (i, j,Xk)-stability is
defined by:

Stab(i,j,Xk) (A1, A2, A3) :=
|
{
X ⊆ (Ai ×Aj) |X(k) = Ak

}
|

2|Ai|+|Aj |

The (i, j,Xk)-stability allows us to estimate the dependence of a subset Ak
on elements of the (Xi, Xj)-relation.

Example Below we consider a small examples of computing stability indices for
a concept. The formal context is given in the table 1.

Table 1. Triadic context

α β γ δ

a b c d a b c d a b c d a b c d

1 × × × ×
2 × × × × × × × ×
3 × × × × × × ×
4 ×
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Let us consider a triconcept C = ({2, 3} , {b, c} , {β, γ}) with (1) - stability
and (1, 3, X2)-stability.

Stab(1) (C) = 1
2 . Since the numerator is comprised by {3}(1) = ({b, c} × {β, γ})

and {2, 3}(1) = ({b, c} × {β, γ}).

Table 2. I ⊆M × C corresponding to all possible subsets of the extent {2, 3}

{∅} a b c d {2} a b c d {3} a b c d {2, 3} a b c d

α × × × × α × α × × α
β × × × × β × × × β × × × β × × ×
γ × × × × γ × × γ × × γ × ×
δ × × × × δ × × δ δ

Stab(1,3,X2) (C) = 3
8 . To compute this value one needs to check 16 subsets

of X1 × X3 and corresponding subsets of X2. The following sets occur in the
numerator: {∅, 2, 3, 23} × {∅, β, γ, βγ}.

{b, c} = ({2, 3} , {β, γ})(1,3,A2) = ({2, 3} , {γ})(1,3,A2) = ({3} , {γ})(1,3,A2)

({3} , {β, γ})(1,3,A2) = ({2} , {γ})(1,3,A2) = ({2} , {β, γ})(1,3,A2)

4 Estimates of stability

The problem of computing stability is #P -complete [6, 7], therefore, in practice,
when one deals with a big context and with the huge amount of generated
concepts, it is very difficult to apply these indices. That’s why, estimates of the
stability for dyadic concepts have been proposed [9, 4].

We have expanded the ∆-stability [4] for the case of triadic stability indices.
In this regard, it is important to note that the estimates derived from the di-
rect descendants of a triconcept can be useless owing to the defined quasiorders,
because the number of direct neighbors is usually small. In figure 1 the distri-
butions of the descendants number with respect to different inclusion/exclusion
relations are represented.

Fig. 1. The number of neighbors distributions

Instead of considering the set difference between (i)-th components of a tri-
concept and each direct descendant, we consider the set difference between (i)-th
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components of a triconcept c = (A1, A2, A3) and other, possibly, unclosed con-
cepts derived by adding new elements from Kj \Aj , j 6= i or Kj ×Kk \Aj ×Ak,
j, k 6= i. Put differently, the lower and upper bounds estimates of stability index
look as follows:

−log2
∑

d∈Enl(c)
2−∆(c,d) ≤ LStab (c) ≤ ∆min (c) ,

where ∆min (c) = mind∈Enl(c)∆ (c, d),

Enl (c) =
{
X | X = {Ak ∪ x} , x ∈ Kk \Ak, X(k) ⊆ (Ai ×Aj)

}

and ∆ (c, d) is the difference between |Aj | · |Ak| and the number of elements in
X(k) for estimates of (i, j,Xk)-stability.

Enl (c) =
{
X | X = {Aj ×Ak ∪ x} , x ∈ Kj ×Kk \Aj ×Ak, X(i) ⊆ Ai

}

and ∆ (c, d) is the difference between |Ai| and the number of elements in X(i)

for estimates of (i)-stability.

Example. Consider upper and lower bounds of stability estimates for C =
({2, 3} , {b, c} , {β, γ}) from the running example (Table 1). To get an estimate of
the (1)-stability we consider elements of the following set {a, b, c, d}×{α, β, γ, δ}\
{b, c}×{β, γ}. Subsets of A1 derived from those elements are {∅} and {2}, which
give us −log2(7 · 2−2 + 2−1) and 1 for lower and upper bounds, respectively. To
get estimates of (1, 3, X2)-stability one needs to expand the intent by elements
from {a, d}. Adding the first element a reduces the {2, 3}×{β, γ} to {2, 3}×{β},
while expanding the intent by d results in the empty set. Thus, the lower and
upper bounds take values 1.678 and 2, respectively.

5 Experimental Results

In this section we explore some empirical properties of the introduced indices
using synthetic data. We generated four groups of 100 random 10 × 10 × 10
contexts with densities 0.1, 0.2, 0.4, 0.6. The features of the data are given in
Figure 2.

Fig. 2. Parameters of lattices constructed on 10× 10× 10 contexts.

Stability for Triadic Concepts 249



The choice of a subset of indices for data exploration can be motivated by
the following properties: the indices should be pairwise uncorrelated (to avoid
biased results when combining indices) and efficiently computable (if possible).
The density function of an index may be a multimodal mixture of two or more
distributions. In this case one needs a special justification for the choice of a
threshold value separating two distributions.

We consider Pearson’s correlation between all pairs of stability indices and
cardinalities of sets that comprise a triadic concept (extent, intent, modus). In
Figure 3 the values of the coefficient are represented. The sizes of the extent,
intent and modus are denoted by |A1|, |A2|, |A3|, respectively. The sizes of dyadic
subcontexts are denoted in a similar way. The corresponding stability estimates
are referred to by the log prefix.

Fig. 3. The Pearson’s correlation coefficient among 100 contexts with the density 0.4

As can be seen from Figure 3, there is a correlation between (i)-stability and
|Aj | · |Ak|. The index of (i)-stability correlates less strongly with the estimates
of (j, k,Xi)-stability and the size of the set Ai. These types of correlation be-
come stronger as the density of a context increases. In fact, these indices can
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be replaced by the size of a particular set in the case of a dense context. A cor-
relation is observed between (i, j,Xk)-stability and its estimates, a less strong
correlation is observed between (i, j,Xk)-stability and |Ai| · |Aj |. It is important
to note that the strong correlation between (i, j,Xk)-stability and its estimates,
as well as very small correlation between (i, j,Xk)-stability and estimates of
(k)-stability remains the same with different context densities. The pairwise cor-
relation between stability indices is weak, hence it is preferable to use these
indices together.

For selecting interesting concepts based on values of an index it is important
to choose a correct threshold. This choice can be based on the distribution of
index values. Figure 4 shows that the distribution of values (2)-stability and
(1, 3, Xk)-stability (other (i)-stabilities and (i, j,Xk)-stabilities have similar dis-
tributions). The distribution of (i)-stability values allows us to identify a thresh-
old easily, since some picks exist in the distribution, while for (i, j,Xk)-stability
the distribution varies from density to density, in case of a dense context it mo-
tivates further study of the index and the way one selects thresholds for it. For
values of the lower bound of stability estimates the modes of the distribution
become less distinct or the distribution becomes unimodal (Figures 5,6). The
upper bound for (i)-stability estimate (or (i, j,Xk)) in most cases corresponds
to |Ai| (or |Ai| · |Aj |), since the closure of a superset of Aj ×Ak (or Ak) results
in the empty set.

Fig. 4. The distribution of values of (2)-stability and (1, 3, X2)-stability

Fig. 5. The values distribution of (2)-stability estimates

The lower bound of (i)-stability is also strongly correlated with the size of
set i. This is due to the fact that a big size of the set i leads to larger difference
between the sizes of Ai and (Xj×Xk)(i), where Xj×Xk is a superset of Aj×Ak,
and the sum under logarithm. The estimate of (i, j,Xk)-stability are correlated
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Fig. 6. The values distribution of (i, j,Xk)-stability estimates

with the corresponding indices. There is roughly the same correlation between
the estimate and the value |Ai| · |Aj |, which results from the bigger difference
between |Ai| · |Aj | and |Xi| · |Xj |, which correspond to a superset of Ak. The
upper and lower estimates of (i, j,Xk)-stability also correlate, in this case, the
correlation could be related to set-difference between the set Ai × Aj and the
volume of the rectangular subarea of Xi ×Xk for the corresponding superset of
Ak.

It is noteworthy that the calculation of stability estimates in practice could
take more time then the stability calculation itself. It is typical for (i)-stability,
where the number 2|Ai| is lower then the number of all possible subsets obtained
by adding elements from Kj ×Kk \Aj ×Ak.

6 Conclusion

In this paper we have introduced two stability indices for triadic concepts, based
on two derivation operators, and studied their empirical behavior. We have pro-
posed to compute stability using two derivation operators. We have studied
correlation of stability indices and their distributions, which is important in
practical data analysis. As it was shown, the introduced stability indices are not
pairwise correlated and therefore can be used in some combinations for selecting
interesting concepts. Moreover, (i)-stability correlates with |Ai|(for dense con-
texts) and |Aj ||Ak|, and hence these indices should not be combined together.

The values of (i)-stability for all concepts are characterized by the presence
of groups of values with high frequency, which facilitates selection of interesting
concepts based on threshold values, while the distribution of (i, j,Xk)-stability
does not give clearly defined groups of interesting concepts.

We have also introduced the estimates of stability indices, which correlate
both with the corresponding stability indices and some of stability estimates.
This is due to the fact that the estimates of (i)-stability (or (i, j,Xk)-stability)
are based on the elements from Kj × Kk \ Aj × Ak (or Kk \ Ak). Hence, the
choice between stability and its estimates must be guided by the comparison
of the sizes of sets involved in calculation, e.g. in the case of (i)-stability the
number of subsets 2|Ai|, most probably, will be less then the number of elements
in Kj ×Kk \Aj ×Ak.

The proposed indices characterize triconcepts differently, in general they do
not agree in the top-n selected concepts, which allow us to use either their
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combination to set up the strictest selection criteria, or to take some of them
depending on the meaning behind a stability index.
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Abstract. In this paper we discuss how biresiduations provide a unify-
ing paradigm for fuzzy formal concept analysis and mathematical mor-
phology. In particular we provide constructions of morphological oper-
ators such as dilation and erosion within the framework of convolution
algebras of action networks (also known as small covariant categories)
over join complete semirings. This unifies and generalizes previous contri-
butions in mathematical morphology, such as the work of Isabelle Bloch.
Further we show how decomposition, factorization, and hedges naturally
align themselves in the framework of fuzzy formal concept analysis.

Keywords: biresiduation, fuzzy formal concept analysis, hedges, fac-
torization, decomposition, linear algebra, complete monoids

1 Introduction

In our paper we outline the fundamental role of biresiduation in combination with
biadditivity for a common view on fuzzy FCA and mathematical morphology.
While the concept of biresiduation is an important paradigm of algebraic logic,
the concept of biadditivity is rooted in linear algebra (over complete monoids and
complete semirings). The close relationship between both approaches is reflected
in the bijective correspondence of the residuated complete lattices and the join
complete semirings on a fixed set. Our considerations yield a major application
for a better understanding of mathematical morphology: We achieve this by
constructing and investigating convolution algebras of action networks over join
complete semirings. Finally, as a tool for information reduction, we also discuss
the role of hedges on residuated complete lattices and their relationship with
substructures of join complete semirings, and more generally within the category
of biadditive setups.
Important literature for (fuzzy) FCA is given by [1,2,3,4,5], regarding factor
analysis, especially by [6], regarding hedges [7]. Belohlávek gives an overview on
approaches to fuzzy concept analysis in [8] which is an update of [9].
We assume the reader to be familiar with ordered sets and formal concept anal-
ysis as exposed in [5] and [1]. Profound information on residuation theory can
be found, for instance, in [10].

c© Marianne Huchard, Sergei O. Kuznetsov (Eds.): CLA 2016, pp. 255–266,
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Over the last two decades, major contributions to mathematical morphology go
back to Isabelle Bloch [11,12,13].
This paper is based on [14].

2 Biresiduation

One of the key concepts for accessing FCA and its generalizations is that of a
biresiduated map. We start by recalling the definition of a residuated map.

Definition 1 (residuated map, adjunction). Let P1 := (P1,≤) and P2 := (P2,≤)
be ordered sets. Then a map f : P1 → P2 is residuated from P1 to P2 if there
exists a map f+ : P2 → P1 such that

fp1 ≤ p2 ⇐⇒ p1 ≤ f+(p2).

Here, the map f+ is uniquely determined by f and is called the residual of f .
The pair (f, f+) is called an adjunction w.r.t. (P1,P2). In case P1 = P2, we will
say that (f, f+) forms an adjunction on P1.

Remark 1. A map between complete lattices is residuated if and only if it is
completely join preserving, that is, f(supX) = sup(fX) holds for all X ⊆ P1 in
the above setting.

The following definition is central for this paper.

Definition 2 (biresiduation). Let P1 := (P1,≤), P2 := (P2,≤), and P := (P,≤)
be ordered sets. Then a map

⊗ : P1 × P2 → P

will be called a biresiduation w.r.t. P := (P1,P2,P) if there exist maps

⊗→ : P1 × P → P2

⊗← : P × P2 → P1

such that

p1 ≤ (p
⊗← p2) ⇐⇒ (p1 ⊗ p2) ≤ p ⇐⇒ p2 ≤ (p1

⊗→ p)

holds for all p1 ∈ P1, p2 ∈ P2, and p ∈ P .
In case P1 = P2 = P, we say that ⊗ forms a biresiduation w.r.t. P. If in addition
(P,⊗, ε) is a monoid then (P,⊗, ε) will be referred to as residuated ordered set. If
in particular P forms a complete lattice, (P,⊗, ε) is a residuated complete lattice.

Remark 2. A biresiduation is characterized as a map ⊗ which is residuated in
both arguments. In particular a biresiduation is isotone in each argument.
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Example 1. Any two sets G and M give rise to a biresiduation as follows: The
map

⊗ : 2G × 2M → 2G×M , (A,B) 7→ A×B

is a biresiduation w.r.t. (2G,2M ,2G×M ), where 2G denotes the power set lattice
of G. This follows immediately since power set lattices are complete with the
supremum operation as set union. In particular for I ⊆ G×M we consider the
context (G,M, I): For all A ⊆ G and all B ⊆M we have

(A×B) ⊆ α ⇐⇒ A ⊆ (B
⊗→ α)

where
(B

⊗→ α) =
⋃
{H ⊆ G | H ×B ⊆ α} = B′.

Dually, we get

(α
⊗← A) =

⋃
{N ⊆M | A×N ⊆ α} = A′.

We have recaptured the derivation operators of classical formal concept analysis
as residuals of a specific biresiduation, the cartesian product.
Now, it is worth noting the connection between cartesian product and dyadic
product as used in linear algebra. We recall the definition of a dyadic product.
Given two n-dimensional vectors u,v over a semiring S we can define the dyadic
product as

u⊗ v := u · vT

where the second multiplication is simply matrix multiplication. If S is the well-
known boolean 2-element semiring, the dyadic product resembles exactly the
cartesian product. So, in a sense, the dyadic product generalizes the cartesian
product. From our point of view, this is key to understanding fuzzy concept
analysis in terms of biresiduations.

Example 2 (t-Norm). A binary operation ⊗ on the real unit interval [0, 1],
which is isotone in both arguments, is called t-Norm if for all a, b, c ∈ [0, 1] the
following hold:

(1) 1⊗ a = a

(2) a⊗ b = b⊗ a
(3) a⊗ (b⊗ c) = (a⊗ b)⊗ c

The t-norm ⊗ is left continuous if for all a ∈ [0, 1] and α ∈ [0, 1]I (where I is an
arbitrary index set) the following holds:

a⊗ (sup
i∈I

αi) = sup
i∈I

(a⊗ αi)
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From the terminology introduced above, a map ⊗ : [0, 1] × [0, 1] → [0, 1] is a
left continuous t-norm if and only if ([0, 1],≤,⊗, 1) forms a residuated complete
lattice. Among the various left continuous t-norms we point out the Gödel t-notm

⊗ : [0, 1]× [0, 1]→ [0, 1],

(a, b) 7→ min(a, b)

and the  Lukasiewicz t-norm

⊗ : [0, 1]× [0, 1]→ [0, 1],

(a, b) 7→ max(a+ b− 1, 0)

These t-norms will be used in our visualizations for mathematical morphology
in figure 1 and 2.

In the next section, we will highlight that residuals of a biresiduation play a
crucial role in FCA and its abstractions.

3 Abstract Concepts and Maximal Rectangles

Let P1 := (P1,≤),P2 := (P2,≤) and P = (P,≤) be ordered sets and ⊗ a biresid-
uation w.r.t. (P1,P2,P). We define

f ⊗ := P1 × P2

to be its set of formal rectangles. If α ∈ P then

K := (⊗, α)

is called an abstract context w.r.t. (P1,P2,P). Given such an abstract context we
can define the set of formal rectangles w.r.t. K as

f K := {(u,w) ∈ f ⊗ | u⊗ w ≤ α}.

On a formal rectangle, we can apply our biresiduation operation to yield an
(actual) rectangle. We define

K := {u⊗ w | (u,w) ∈ f K}

to be the set of (actual) rectangles w.r.t. K and

mf K := max f K

to be the set of maximal rectangles regarding the product order on P1×P2. We
define the set of abstract concepts as

BK := {(u,w) ∈ P1 × P2 | u ⊗→ α = w & α
⊗← w = u}.
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We order the set of maximal rectangles of an abstract context. For b = (ub, wb), c =

(uc, wc) ∈ mf K we set

b ≤K c :⇐⇒ ub ≤P1
uc ⇐⇒ wc ≤P2

wb.

Now we can define an abstract concept order as

BK := (BK,≤K).

In case (P1,P2,P) is a triple of complete lattices, BK forms a complete lattice,
called the abstract concept lattice of K.

As usual in FCA, let us abbreviate u
⊗→ α as u′, the derivation of u w.r.t. K :=

(⊗, α), and similarly, α
⊗← w as w′. We show that even in our rather abstract

setting we can talk about maximal rectangles being the abstract concepts.

Proposition 1. Let K := (⊗, α) be an abstract context w.r.t. (P1,P2,P) and
define γ : P1 → P, x 7→ (x′′, x′) and µ : P2 → P, x 7→ (x′, x′′). Then

1. BK = im(γ) = im(µ)

2. mf
K

= BK

We call (p1, p2) ∈ f K a decomposition of K if p1 ⊗ p2 = α. If additionally

(p1, p2) ∈ mf K we call (p1, p2) a conceptual decomposition of K.

Corollary 1. Let K = (⊗, α) be an abstract context w.r.t. (P1,P2,P). If (p1, p2)
is a decomposition of K there exists a conceptual decomposition (q1, q2) of K with
p1 ≤ q1 and p2 ≤ q2.

Proof. For instance, set (q1, q2) := γ(p1).

4 Biadditivity

We complement the approach sketched above (where ordered sets are used as
basic structures) by using complete monoids [15] as basic structures.

Definition 3 (complete monoid). A quadruple A := (A,+, 0, Σ) is called a
complete monoid if (A,+, 0) is a commutative monoid and Σ assigns to every
α ∈ AI (for an arbitrary index set I) an element Σα =: Σi∈Iαi of A such that

(1) Σα = 0 if αi = 0 for all i ∈ I
(2) Σα = αi if I = {i}
(3) Σα = αi+ αj if I = {i, j} and i 6= j

(4) Σα = Σβ for every partition T of I and β given by T → A, T 7→ Σα|T

Definition 4 (join complete monoid). A join complete monoid is a complete
monoid A := (A,+, 0, Σ) such that for every non-empty set I and every a ∈ A
it follows

∑
i∈I

a = a.
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Remark 3. For every complete lattice L := (L,≤) let A(L) := (L,+, 0, Σ)
be the join complete monoid, where x + y := supL{x, y} for all x, y ∈ L and
0 := supL∅ and Σα := supL{α(i) | i ∈ I} for every index set I and all α ∈ LI .
If on the other hand, A := (A,+, 0,

∑
) is a join complete monoid then L(A) :=

(A,≤) is a complete lattice, provided x ≤ y :⇔ x+ y = y for all x, y ∈ A. This
observation establishes for every set A a bijective correspondence between all
complete lattices on A and all join complete monoids on A.

L := (L1,L2,L) is a triple of complete lattices thenA(L) := (A(L1),A(L2),A(L)).
We define the analogue of biresiduations for complete monoids.

Definition 5 (biadditive map). Let A := (A1,A2,A) be a triple of complete
monoids. Then a biadditive map w.r.t. A is defined as a map ⊗ : A1 × A2 → A
such that

Σβ ⊗Σγ = Σ(i,j)∈I×Jβi⊗ γj
holds for all β ∈ AI1 and γ ∈ AJ2 for arbitrary index sets I, J .

The next definition will also be useful in the section concerning hedges.

Definition 6 (biadditive setup, morphism). Let A := (A1,A2,A) be a triple of
complete monoids and let ⊗ be a biadditive map on A. Then we call the pair
(A,⊗) a biadditive setup. In case A1 = A2 = A, we say that ⊗ is a biadditive
operation on A, and (A,⊗) forms a biadditive setup.

Given two biadditive setups (A,⊗) and (U,⊗) we call Φ := (ϕ1, ϕ2, ϕ) a mor-
phism from (U,⊗) to (A,⊗) if ϕ1, ϕ2, ϕ are morphisms from U1, U2, and U to
A1, A2, and A, respectively, and for all u1 ∈ U1 and u2 ∈ U2 we have

ϕ1(u1)⊗ ϕ2(u2) = ϕ(u1 ⊗ u2).

Biadditive setups and their morphisms obviously form a category. In particular,
(U,⊗) is a substructure of (A,⊗) if U1, U2, and U are complete submonoids of
A1, A2, and A, respectively, and U1⊗U2 ⊆ U . Clearly, The image of a morphism
induces a substructure.

Definition 7 (complete semiring). A tuple R := (R,+,⊗, 0, 1,∑) is a complete
semiring if the following properties are satisfied:

(1) Radd := (R,+, 0,
∑

) is a complete monoid,

(2) Rmult := (R,⊗, 1) is a monoid with 1 6= 0,

(3) the following distributive laws hold for all a ∈ R, α ∈ RI :

a⊗ (
∑

i∈I
αi) =

∑

i∈I
(a⊗ αi)

(
∑

i∈I
αi)⊗ a =

∑

i∈I
(αi⊗ a).
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Remark 4. If R := (R,+,⊗, 0, 1,∑) is a complete semiring then (Radd,⊗)
forms a biadditive setup.

Definition 8. A join complete semiring is a complete semiring R such that
Radd is a join complete monoid.

Remark 5. If R := (R,+,⊗, 0, 1,∑) is a given join complete semiring then
L(R) := (L(Radd),⊗, 1) forms a complete residuated lattice. If on the other
hand L := (L,⊗, ε) with L = (L,≤) is a given residuated complete lattice then
R(L) := (L,+,⊗, 0, ε,∑) with (L,+, 0,

∑
) := A(L) is a join complete semiring.

This establishes a bijection between all join complete semirings on a set R and all
complete residuated lattices on R. In particular for every join complete semiring

R := (R,+,⊗, 0, 1,∑) there exist maps
⊗→ and

⊗← from R × R to R such that
for all r, s, t ∈ R the following holds:

r ≤ (t
⊗← s) ⇐⇒ (r ⊗ s) ≤ t ⇐⇒ s ≤ (r

⊗→ t)

A more extensive discussion of the interplay between biresiduation and biaddi-
tivity will be presented in section 6.

Proposition 2. Let (A,⊗) be a biadditive setup where A := (A1,A2,A). For
sets G and M define � : AG1 ×AM2 → AG×M where

(u� w)(g,m) := u(g)⊗ w(m).

Then � forms a biadditive map w.r.t. (AG1 , A
M
2 , A

G×M ) which is also known as
the dyadic product.

More generally, we have the following construction.

Proposition 3. Let (A,⊗) be a biadditive setup where A := (A1,A2,A). For
sets G, H, and M define

∗ : AG×H1 ×AH×M2 → AG×M

where
(β ∗ η)(g,m) := Σh∈Hβ(g, h)⊗ η(h,m).

Then ∗ forms a biadditive map w.r.t. (AG×H1 , AH×M2 , AG×M ) – which, as a mat-
ter of fact, is the matrix product.

If (A,⊗) is a biadditive setup where A := (A1,A2,A) and α ∈ A then a familiy
(uh, wh)h∈H ∈ (A1 ×A2)H will be called a sum-decomposition of (⊗, α) if

α = Σh∈Huh ⊗ wh.

An important observation is the following

Proposition 4. Let (A,⊗) be a biadditive setup where A := (A1,A2,A). Then
for sets G, H, M and α ∈ AG×M the following holds
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1. If (β, η) is a decomposition of (∗, α), that is, β ∈ AG×H1 and η ∈ AH×M2

such that α = β ∗ η, then (uh, wh)h∈H is a sum-decomposition of (�, α)
where uh := β(·, h) and wh := η(h, ·).

2. Conversely, if (uh, wh)h∈H is a sum-decomposition of (�, α) then (β, η) is
a decomposition of (∗, α) where β : G × H → A1, (g, h) 7→ uhg and η :
H ×M → A2, (h,m) 7→ whm.

Remark 6. An important situation where this proposition can be applied occurs
when R = (R,+,⊗, 0, 1, Σ) is a complete semiring, since then (Radd,⊗) is a
biadditive setup as already mentioned in remark 4.

In mathematical morphology the concept of dilation is fundamental, and cru-
cially involves convolution in a general setting which will be layed out in the
following.

5 Construction of Convolution Algebras

The ingredients of our modelling approach for the construction of convolution
algebras are action networks and complete semirings. For this we still need to
introduce networks and action networks.

Definition 9 (network). A triple G := (V,E, %) will be called a network (directed
multigraph) if V and E are sets and % : E → V × V is a map. In this context
we interpret V as the set of nodes, E as the set of edges, and % as the structure
map of G.

Additional Remark: The structure map % of G induces two maps

σ : E → V, e 7→ σe and

τ : E → V, e 7→ τe

satisfying %e = (σe, τe) for all e ∈ E; here we consider σe as source
node and τe as target node of e.

σe

τe
e

A pair of edges (c, d) will be called sequential if the target node of c is equal to
the source node of d. The set of all sequential pairs of edges will be denoted by
E〈2〉. Similarly E〈3〉 will denote the set of all triples of edges (c, d, e) such that
(c, d) and (d, e) are sequential pairs.
Next we consider networks with additional structure. In this situation, edges
will be interpreted as actions which allow concatenation of sequential pairs of
actions.

Definition 10 (action network). A triple G := (G, ∗, id) will be called an action
network (small covariant category) if G := (V,E, %) is a network and

∗ : E〈2〉 → E, (c, d) 7→ c ∗ d and id : V → E
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are maps satisfying:

%(c ∗ d) = (σc, τd) for all (c, d) ∈ E〈2〉

(c ∗ d) ∗ e = c ∗ (d ∗ e) for all (c, d, e) ∈ E〈3〉
%(idp) = (p, p) for all p ∈ V
id(σc) ∗ c = c = c ∗ id(τc) for all c ∈ E.

We interprete E as set of actions and ∗ as concatenation map, which maps
every sequential pair of actions (c, d) to its concatenation c∗d. Furthermore, idp
denotes the passive action at node p.

Example 3. Any monoid M := (M, ∗, ε) can be interpreted
as action network with {ε} as the singleton node set, M
as the set of edges, and ∗ as concatenation map as well as
id : {ε} →M , ε 7→ ε.

ε

a

b

a+
b

Example 4. Any preordered set P := (P,R) can be interpreted as action net-
work which has (P,R, ρ) as underlying network, where ρ : R → V × V, (p, q) 7→
(p, q), and ∗ : R〈2〉 → R, ((p, t), (t, q)) 7→ (p, q) as concatenation map and fur-
thermore id : P → R, p 7→ (p, p) as passivity map.

Construction 1 (convolution algebra). Let R := (R,+, ·, 0, 1,∑) be a complete
semiring and let G := (G, ∗, id) be an action network with underlying network
G := (V,E, %); then the convolution algebra of G over R is given by

R[G] := (RE ,+, ∗,O, I,
∑

),

where for every index set I for all i ∈ I and ui, u, w ∈ RE as well as e ∈ E the
following hold:

(u+ w)e := ue+ we

(
∑

i∈I
ui)e :=

∑

i∈I
(uie)

(u ∗ w)e :=
∑

(c,d)∈SplitG(e)
uc · wd

with SplitG(e) := {(c, d) ∈ E〈2〉|c ∗ d = e} and

O : E → R, e 7→ 0

I : E → R, e 7→
{

1 for e ∈ idV
0 otherwise
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Remark 7. If u and w are as above then the product u ∗ w will be called the
convolution of u with w.

Remark 8. In case M := (M, ∗, ε) is a monoid then R[M] is defined as R[G]
where G is the action network associated with M and R[M].

6 Combining Biresiduation and Biadditivity

The following fact will help us to combine biresiduation and biadditivity, which
will be relevant for fuzzy FCA and also for mathematical morphology:

Proposition 5. Let L := (L1,L2,L) be a triple of complete lattices and let
⊗ : L1 × L2 → L be a map. Then ⊗ is biresiduated w.r.t. L if and only if ⊗ is
biadditive w.r.t. A(L).

Theorem 1. Let L := (L1,L2,L) be a triple of complete lattices and let ⊗ be
a biresiduation w.r.t. L. Then for sets G, R, and M the following holds:

1. � is a biresiduation w.r.t. (LG1 , L
M
2 , L

G×M ).
Hence, for all u ∈ LG1 and w ∈ LM2 and α ∈ LG×M we have

u ≤ (α
�← w) ⇐⇒ (u� w) ≤ α ⇐⇒ w ≤ (u

�→ α).

Also,

(α
�← w)(g) = infL1

{α(g,m)
⊗← w(m) | m ∈M}

for all g ∈ G and

(u
�→ α)(m) = infL2

{u(g)
⊗→ α(g,m) | g ∈ G}

for all m ∈M .
2. ∗ is a biresiduation w.r.t. (LG×H1 , LH×M2 , LG×M ).

Hence, for all β ∈ LG×H1 and η ∈ LH×M2 and α ∈ LG×M we have

β ≤ α ∗← η ⇐⇒ β ∗ η ≤ α ⇐⇒ η ≤ β ∗→ α.

Also,

(α
∗← η)(g, h) = infL1{α(g,m)

⊗← η(h,m) | m ∈M}
for all (g, h) ∈ G×H and

(β
∗→ α)(h,m) = infL2

{β(g, h)
⊗→ α(g,m) | g ∈ G}

for all (h,m) ∈ H ×M .
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3. Let α ∈ LG×M and let (β0, η0) be a decomposition of K = (∗, α). Then
there exists a conceptual decomposition (β, η) of K with β0 ≤ β and η0 ≤ η.
The corresponding sum-decomposition (β(·, h), η(h, ·))h∈H of K0 := (�, α)
consists of abstract concepts of K0. Such a sum-decomposition is called con-
ceptual sum-decomposition.
Conversely, if (xh, yh)h∈H is a sum-decomposition of K0 then there ex-
ists a conceptual sum-decomposition (uh, wh)h∈H of K0 with xh ≤ uh and
yh ≤ wh. The corresponding decomposition (β, η) of K defined via

β : G×H → L1, (g, h) 7→ uh(g)

and
η : H ×M → L2, (h,m) 7→ wh(m)

is a conceptual decomposition of K. If (β, η) is a conceptual decomposition
of K then, by definition, β = α← η and η = β → α.

Proof. Part 1 follows from Propositions 5 and 2. Part 2 follows from Propositions
5 and 3. Part 3 follows from Proposition 5 and 4 together with Corollary.

The above theorem extends Theorem 6 from [16]. Note that Part 3 of the above
theorem employs a well-known fact from linear algebra: matrix multiplication
can be rewritten as summing over the dyadic products of the respective column
and row vectors.

Remark 9. Referring to remark 6, the last theorem is connected with fuzzy
formal concept analysis in the following way: Let R := (R,+,⊗, 0, 1, Σ) be a
join complete semiring. Then for sets G,M and α ∈ RG×M , the triple (G,M,α)
will be regarded as fuzzy context over R having the same concept lattice as
the abstract context (�, α) w.r.t. (LG,LM ,LG×M ) for L := L(Radd). Also the
decomposition discussed in the third part of the above theorem applies to this
situation.

If we restrict ourselves to the situation of M being a singleton, Theorem 1.1
yields for all r ∈ R and u, v ∈ RG

u⊗ r ≤ v ⇐⇒ r ≤ (u
⊗→ v),

that is, u→ v can be interpreted as the degree of u being a subset of v.

Theorem 2. For every complete semiring R := (R,+,⊗, 0, 1,∑) and every
action network G := (G, ∗, id) with G := (V,E, %) the convolution algebra R[G]
is a complete semiring.
In case R is join complete then so is R[G]; consequently (L(RE ,+,O,

∑
), ∗, I)

forms a residuated complete lattice, and for all u,w ∈ RE and all d ∈ E it
follows

(u
∗→ w)d = inf{uc ⊗→ w(c ∗ d) | c ∈ E : (c, d) ∈ E〈2〉}.
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Proof. Straightforward calculation yields that R[G] is a complete semiring, which
is join complete if R is join complete.
In the latter, it remains to show that for all u, v, w ∈ RE the following holds:

∀d ∈ E : vd ≤ (u
∗→ w)d

⇔v ≤ (u
∗→ w)

⇔(u ∗ v) ≤ w
⇔∀e ∈ E :

∑

(c,d)∈Split(e)
uc⊗ vd ≤ we

⇔∀e ∈ E, ∀(c, d) ∈ Split(e) : uc⊗ vd ≤ we
⇔∀(c, d) ∈ E〈2〉 : uc⊗ vd ≤ w(c ∗ d)

⇔∀(c, d) ∈ E〈2〉 : vd ≤ uc ⊗→ w(c ∗ d)

⇔∀d ∈ E : vd ≤ inf{uc ⊗→ w(c ∗ d) | c ∈ E : (c, d) ∈ E〈2〉}

Indeed, the above equivalences immediately imply

(u
⊗→ w)d = inf{uc ⊗→ w(c ∗ d) | c ∈ E : (c, d) ∈ E〈2〉} for all d ∈ E.

Construction 2 (dilation and erosion). Let R := (R,+,⊗, 0, 1,∑) be a join
complete semiring and G := (G, ∗, id) be an action network with G := (V,E, %).
Then an element ν ∈ RE will be considered as structuring element of G over R,
and the map

δν : RE → RE , µ 7→ (ν ∗ µ)

is called the dilation via the structuring element ν and the map

εν : RE → RE , µ 7→ (ν
∗→ µ)

is the erosion via the structuring element ν. In this setting, µ ∈ RE often plays
the role of an image, the dilation of which via the structuring element ν is given
by

(δν)µ = (ν ∗ µ).

Similarly, the erosion via ν of the image µ is given by

(εν)µ = (ν
∗→ µ).

Remark 10. Here, the pair (δν , εν) is an adjunction on L(RE ,+,O,
∑

).

A significant application of mathematical morphology is photo editing. Here
we visualize dilation and erosion by using convolution algebras induced via the
t-norms introduced previously.
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original Structuring element

dilation erosion

Fig. 1:  Lukasiewicz t-norm

dilation erosion

Fig. 2: Gödel t-norm
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Remark 11 (fuzzy FCA). Referring to construction 2, let R := (R,+,⊗, 0, 1,∑)
be a given join complete semiring and G := (G, ∗, id) be an action network with
G := (V,E, %). In this situation, an element η ∈ RE will be considered as input
image and an element ν ∈ RE will be regarded as structuring element. Then
µ := (ν

∗→ η) is the erosion of η via ν. From the viewpoint of fuzzy FCA, µ is
the derivation of ν in the abstract context K := (∗, η) w.r.t. (LE ,LE ,LE) for
L := L(Radd).

7 Integration of Isabelle Bloch’s Approach

Isabelle Bloch has been one of the key scientists in developing mathematical mor-
phology and its fuzzifications during the past 20 years (for example we mention
[11,17,18,19] and [20,12,13,21]). In her recent papers on the topic, she considered
as underlying structure a so-called space, which is given by a commutative group
S := (S,+, O).

Construction 3 (dilation and erosion after Bloch - cf. [11]).
Let S := (S,+, O) be a commutative group and ⊗ : [0, 1] × [0, 1] → [0, 1] a left
continuous t-norm. Then Isabelle Bloch defines the dilation via a structuring
element ν : S → [0, 1] as

δν : [0, 1]S → [0, 1]S ,

µ 7→ δνµ

where

(δνµ)x := sup{ν(x− y)⊗ µy | y ∈ S} for all x ∈ S.
Similarly, the erosion via ν is defined as the map

εν : [0, 1]S → [0, 1]S ,

µ 7→ ενµ

where

(ενµ)x := inf{ν(y − x)
⊗→ µy | y ∈ S} for all x ∈ S.

Here δνµ is the dilation of the image µ via the structuring element ν, and ενµ is
the erosion of the image µ via the structuring element ν. Indeed, Bloch proves
that the pair (δν , εν) forms an adjunction on ([0, 1],≤).

Remark 12. By theorem 2 it follows immediately that (δν , εν), as introduced
by Bloch, forms an adjunction on ([0, 1],≤): Indeed, theorem 2 implies for the
complete semiring R := ([0, 1],∨,⊗, 0, 1, sup) that the pair (δν , εν) forms an
adjunction on R[S], that is, on L(R[S]).

In our final section we will discuss hedges and their role for information reduction.
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8 Hedges

Hedges were introduced as parameters controlling the size of a fuzzy concept
lattice [7]. In [22], fuzzy concept lattices with hedges are shown to be essentially
generalized concept lattices in Krajci’s sense. Also, in our framework, they have a
natural place. We find that they are intimately connected with the substructures
of join-complete semirings. A hedge ∗ : L → L is defined as a kernel operator
on L (i.e. a∗ ≤ b ⇐⇒ a∗ ≤ b∗) such that it preserves the 1 (1∗ = 1) and

weakly preserves implications ((a
⊗→ b)∗ ≤ a∗

⊗→ b∗). Note that this definition
of a hedge obviously generalizes the notion introduced in [7] (monotonicity for
Belohlavek’s notion is shown in [22], Lemma 1). The next theorem shows that
the theory of hedges can also be formulated in a linear algebraic language within
the framework of join-complete semirings.

Theorem 3. Let L = (L,⊗, ε) be a residuated complete lattice. Then its hedges
are in one-to-one correspondence with the substructures of the join-complete
semiring R(L).

Proof. Since hedges are kernel operators they are in one-to-one correspondence
with their kernel systems (a hedge ∗ is mapped to its image set L∗).
Let ∗ be a hedge on L. We will show that its image set L∗ forms a substructure
(join-complete sub-semiring) of R(L). We know already that L∗ is closed under
joins, that 1∗ = 1 ∈ L∗, and that 0∗ = 0 ∈ L∗. To show that L∗ is closed under
⊗ we will verify that a⊗ b = (a⊗ b)∗ holds for all a, b ∈ L∗; it suffices to prove
a⊗ b ≤ (a⊗ b)∗:

a⊗ b ≤ a⊗ b
⇐⇒ b ≤ (a

⊗→ (a⊗ b))
=⇒ b∗ ≤ (a

⊗→ (a⊗ b))∗
=⇒ b∗ ≤ (a∗

⊗→ (a⊗ b)∗)
⇐⇒ a∗ ⊗ b∗ ≤ (a⊗ b)∗

Since a∗ = a and b∗ = b we conclude the argument.

Let K be a substructure of a given join-complete semiring R(L). Since K is closed
under arbitrary joins it forms a kernel system in L inducing its kernel operator ∗.
Thus, K = L∗ and 1 ∈ L∗. It remains to be shown that implications are weakly
preserved by ∗:

(a
⊗→ b) ≤ (a

⊗→ b)

⇐⇒ a⊗ (a
⊗→ b) ≤ b

=⇒ a∗ ⊗ (a
⊗→ b)∗ ≤ b

Since K is a substructure of R(L) the element a∗ ⊗ (a
⊗→ b)∗ is a kernel and we

get a∗ ⊗ (a
⊗→ b)∗ ≤ b∗, which implies (a

⊗→ b)∗ ≤ (a∗
⊗→ b∗).
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Remark 13 (construction of hedges via substructures). Let G := (G, ∗, id) be
an action network with G := (V,E, %). We say that a subset D of E forms
a substructure of G if idV ⊆ D and c ∗ d ∈ D holds for all (c, d) ∈ D〈2〉. If
R := (R,+,⊗, 0, 1,∑) is a complete semiring and D forms a substructure of G,
then the set

U := {u ∈ SE | ue = 0 for all e ∈ E \D}
forms a substructure of the complete semiring R[G]. In case R is a join complete
semiring, the hedge associated with U is given by

∗ : RE → RE , u 7→ uD

where uDe := ue for all e ∈ D and uDe := 0 for all e ∈ E \D.

One application of the above for mathematical morphology is when the action
network is given by Z2

add and the substructure is D := 2Z2, where the join com-
plete semiring R is induced by a t-norm.

Finally we present a generalization of the concept of hedges.

Proposition 6. Let ⊗ : P1 × P2 → P be a biresiduation and let (∗1,∗2 ,∗ ) be a
triple of kernel operators. The following are equivalent

1. ∀p1 ∈ P1,∀p ∈ P : (p1
⊗→ p)∗2 ≤ p∗11

⊗→ p∗

2. ∀p1 ∈ P1,∀p2 ∈ P2 : p∗11 ⊗ p∗22 ≤ (p1 ⊗ p2)∗

3. P ∗11 ⊗ P ∗22 ⊆ P ∗

A star system is a triple of kernel operators where one of the above conditions
holds.

Proof. “ 1 ⇒ 2”:

p1 ⊗ p2 ≤ p1 ⊗ p2
⇐⇒ p2 ≤ (p1

⊗→ (p1 ⊗ p2))

=⇒ p∗22 ≤ (p1
⊗→ (p1 ⊗ p2))∗2

=⇒ p∗22 ≤ (p∗11
⊗→ (p1 ⊗ p2)∗)

=⇒ p∗11 ⊗ p∗22 ≤ (p1 ⊗ p2)∗

“ 2 ⇒ 1”:
(p1

⊗→ p) ≤ (p1
⊗→ p)

⇐⇒ (p1 ⊗ (p1
⊗→ p)) ≤ p

=⇒ (p1 ⊗ (p1
⊗→ p))∗ ≤ p∗

=⇒ (p∗11 ⊗ (p1
⊗→ p)∗2) ≤ p∗

⇐⇒ (p1
⊗→ p)∗2 ≤ (p∗11

⊗→ p∗)

“ 2⇒ 3”: By 2, p∗11 ⊗p∗22 ≤ (p∗11 ⊗p∗22 )∗ and since ∗ is a kernel operator we have
equality and therefore p∗11 ⊗ p∗22 ∈ P ∗.
“ 3 ⇒ 2”: Since p∗11 ⊗ p∗22 ≤ p1 ⊗ p2 and p∗11 ⊗ p∗22 ∈ P ∗ we have p∗11 ⊗ p∗22 ≤
(p1 ⊗ p2)∗.
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The previous proposition gives rise to the following application.

Proposition 7. Let L := (L1,L2,L), P := (P1,P2,P) be triples of complete
lattices and let ⊗L : L1×L2 → L and ⊗P : P1×P2 → P be biresiduations. Then
for every morphism Φ := (ϕ1, ϕ2, ϕ) from (A(L),⊗L) to (A(P),⊗P) the triple
(ϕ1 ◦ ϕ+

1 , ϕ2 ◦ ϕ+
2 , ϕ ◦ ϕ+) forms a star system w.r.t. (P,⊗P).

Proof. It suffices to verify property 3 from the previous proposition:

(ϕ1 ◦ ϕ+
1 )P1 ⊗P (ϕ2 ◦ ϕ+

2 )P2 = ϕ(ϕ+
1 P1 ⊗L ϕ+

2 P2) ⊆ ϕL = (ϕ ◦ ϕ+)P.

As a consequence of our considerations we receive the following extension of
Theorem 3.

Theorem 4. Let ⊗ be a biresiduation on a triple of complete lattices L :=
(L1,L2,L). Then the star systems w.r.t. (L,⊗) are in one-to-one correspondence
with the substructures of (A(L),⊗).

9 Conclusion

Some background information: Our paper is indeed based on our 2012 paper
”A Macroscopic Approach to FCA and its Various Fuzzifications” but goes far
beyond it. Who carefully reads our present paper will realize that notions have
been refined and adjusted to our situation. Roughly said, biresiduation general-
izes residuated posets while biadditivity generalizes complete semirings. What
we mainly need is a specialization where these two concepts meet, that is, resid-
uated complete lattices (algebraic logic point of view) which correspond to join
complete semirings (linear algebra point of view). The importance of the latter
point is for constructions.

Looking into Isabelle Bloch’s constructions for mathematical morphology, we
found out that there is a general framework in linear algebra over complete
semirings which is outlined in section 5, named ”Construction of Convolution
Algebras”. These turn out to be again complete semirings. So the bijective corre-
spondence between residuated complete lattices and join complete semirings can
be lifted from a ”coordinate level” to a ”space level”. That is what Bloch essen-
tially does in a special situation (without putting this into a general framework)
and we derive from the general construction of convolution algebras over join
complete semirings (and a subsequent paradigm shift into residuated complete
lattices).
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Abstract. Pattern structures are known to provide a tool for predictive
modeling and classification. However, in order to generate classification
rules concept lattice should be built. This procedure may take much time
and resources. In previous work it was shown that it is possible to escape
the problem with so-called lazy associative classification algorithm. It
does not require lattice construction and it is applicable to classification
problems such as credit scoring. In this paper we adjust this method to
the case of continuous target variable, i.e. regression problem, and apply
it to recovery rates forecasting. We perform parameters tuning, assess
the accuracy of the algorithm based on the bank data and compare it to
the models adopted in the bank system and other benchmarks.

1 Introduction

Banks and financial institutions take and mitigate credit risk on daily basis.
Credit risk commonly has the biggest contribution to the bank losses compared
to other types of risks such as market, operational and liquidity risks [10]. The
key to successful risk-management is to adequately assess the possibility of credit
losses and potential amount of the loans that is going to be recovered in case
of default. The problem of accurate risk assessment is not only important for
an individual bank, but it is also crucial for the banking system as a whole.
The problem is so vital that banking industry is strictly regulated by central
banks and Basel supervising committee, which even pose certain requirements
for predictive models that are used by banks [17]. Some predictive models, so-
called ”black-box” models provide good results that are hard to interprete. So,
the major feature of risk management practice is that, regardless of the model
accuracy, it must not be the black box. That is why methods such as neural
networks and SVM classifiers did not earn much trust within the banking com-
munity [4]. At the same time, the more accurate the model is, the less capital
charge the bank is going to have. So, banks prefer accurate models that pro-
vide interpretable decision-making. Therefore, FCA-based algorithms seem to
be helpful since they rely on concepts that have obvious interpretation. The in-
tent of a concept can be interpreted as a set of rules that is supported by the

c© Marianne Huchard, Sergei O. Kuznetsov (Eds.): CLA 2016, pp. 273–284,
ISBN 978-5-600-01454-1, National Research University Higher School of Economics,
2016.



extent of the concept. In previous work it was shown that FCA-based interval
pattern structures methods are applicable to credit scoring which represents the
classification problem with binary target variable [14,16]. Classifying credit ap-
plicants into good and potentially delinquent clients is the first part of credit risk
assessment. The second part is to estimate recovery rate in case of default, i.e.
the proportion of the loan that is going to be collected by the bank [10]. As far
as recovery rates prediction is concerned, it implies continuous target variable.
In this paper, we will adopt the lazy classification algorithm based on interval
pattern structures to the case of continuous target variable, i.e. we will introduce
modified lazy regression algorithm (MLRA). The paper is structured as follows:
Section 2 provides basic formal concept analysis definitions. Section 3 describes
the architecture of MLRA and its parameters. Section 4 describes the data used
for algorithm accuracy evaluation and comparison with benchmarks such as ran-
dom forests. Section 5 concludes the paper. Finally, we attach a pseudo-code for
the algorithm in Appendix.

2 Main Definitions

First, we recall some standard definitions related to FCA, see e.g. [1,2].
Let G be a set (of objects), let (D, u) be a meet-semi-lattice (of all possible

object descriptions) and let δ: G → D be a mapping. Then (G, D ,δ), where
D =(D, u), is called a pattern structure [1], provided that the set
δ(G) := {δ(g)—g ∈ G} generates a complete subsemilattice (Dδ, u) of (D, u),
i.e., every subset X of δ(G) has an infimum uX in (D, u). Elements of D are
called patterns and are naturally ordered by subsumption relation v:
given c, d ∈ D one has c v d↔ c u d = c. Operation u is also called a similarity
operation. A pattern structure (G, D, δ) gives rise to the following derivation
operators (·)�:

A� =
l

g∈A
δ(g) for A ∈ G,

d� = {g ∈ G | d v δ(g)} for d ∈ (D, u).

These operators form a Galois connection between the powerset of G and
(D,u). The pairs (A, d) satisfying A ⊆ G, d ∈ D, A� = d, and A = d� are called
pattern concepts of (G,D, δ), with pattern extent A and pattern intent d. Oper-
ator (·)�� is an algebraical closure operator on patterns, since it is idempotent,
extensive, and monotone [1]. In case of credit scoring we work with pattern struc-
tures on intervals as soon as a typical object-attribute data table is not binary,
but has many-valued attributes. Instead of binarizing (scaling) data, one can di-
rectly work with many-valued attributes by applying interval pattern structure.
For two intervals [a1, b1] and [a2, b2], with a1, b1, a2, b2 ∈ R the meet operation
is defined as [14]:

[a1, b1] u [a2, b2] = [min(a1, a2),max(b1, b2)]
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The concept-based learning model for standard object-attribute representa-
tion (i.e., formal contexts) is naturally extended to pattern structures, when we
have a binary target attribute, i.e. a set of positive examples G+ and a set of
negative examples G− [16].

However, what should we do when the target attribute is not a class label
but a continuous variable? For that case we augment the definition of interval
pattern structure by equipping it with additional feature h.

Augmented interval pattern structures

Let us define an augmented interval pattern structure as a quadruple (G, D
,δ, h), where the description d consists of two elements dx and dy (dy is an in-
terval for target attribute y ∈ R and dx is a vector of intervals for explanatory
attributes x which are supposed to predict the target attribute y), δ : G → D
and h ∈ H, where H is a family of density distribution functions for target at-
tribute y, i.e.

∫ +∞
−∞ h(s)ds = 1. We will also use notation δx and δy to distinguish

between descriptions containing explanatory attributes and target attribute cor-
respondingly. The meet operation definition is left unchanged.

Suppose, we have an arbitrary set of objects A0 ⊆ G, i.e. A0 = {g1, g2, ..., gJ},
δ(gj) = {δx, δy} = {[x1j ;x1j ], ..., [xMj ;xMj ], [yj ; yj ]}, for j = 1, ..., J , where M
is number of explanatory attributes. Then we define the derivation operator in
the following way

A�0 = (d0, h0)

where d0 = {dx0, dy0}, and dx0 = δx(g1) u ... u δx(gJ) and target attribute
description dy0 = δy(g1)u...uδy(gJ) which is in fact a single interval [ymin, ymax]
and h0 : dy0 → [0; 1]. The h0 is in effect a target attribute density distribution
function based on observations of A0, which we describe below. Let τ0, ..., τK be a
partition of dy0 and τ0 = ymin, τK = ymax and ∆τi = ymax−ymin

K = τi− τi−1, i =
1, ...,K. Then:

h([τi−1, τi)) =
|{g ∈ A|[τi−1, τi) v δy(g)}|

|A| ,∀i = 1, ...,K

Thus, h is a density function of target attribute y values of objects in A. The
derivation operator on descriptions returns the set of objects with description
subsuming the description dx0 whatever target description dy0 and density func-
tion h are:

A��0 = (d0, h0)�
def
= d�x0 = A1

where A1 = {g ⊆ G|dx0 v δx(g)}. Finally, A�1 = (d1, h1). Note, that d1 =
{dx0, dy1}, i.e. only target attribute description dy is updated, so does h density
function, while the explanatory variables description dx0 remains the same.

In order to approach target attribute prediction problem it will be useful to
define α-weak premises with allowed dropout. An h-augmented interval pattern
d ∈ D is called an α-weak premise with allowed ω-dropout iff:
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1− |{g ∈ A|d
min
y − ω(m− dminy ) ≤ δy(g) ≤ dmaxy + ω(dmaxy −m)}|

|A| ≤ α

where d = (dx, dy), dy is a single interval [dminy ; dmaxy ] for target attribute y
A = d�x, and m is a median of density function h which reflects the distribution
of target attribute within the interval dy based on objects from A. Parameter α
controls the frequency of hypothesis falsifications and parameter ω controls the
magnitude of falsification, i.e. how dramatically it is falsificated. In our case the
magnitude is evaluated as the times the δy(g)− dmaxy is larger than dmaxy −m if

δy(g) > dmaxy or the times the δy(g)−dminy is larger than m−dminy if δy(g) < dminy

Note, that in case when ω = 0 we apply the strictest criterion to consider a
hypothesis as falsificated:

1− |{g ∈ A|d
min
y ≤ δy(g) ≤ dmaxy }|
|A| ≤ α⇔ 1− |{g ∈ A|dy v δy(g)}|

|A| ≤ α⇔

⇔ |{g ∈ A|dy 6v δy(g)}|
|A| ≤ α

3 Lazy predictive algorithm with continuous target
attribute

Assume we have a set of objects G and numerical context with a set of
explanatory attributes x1, ..., xM and target attribute y. In contrast to classifi-
cation problem the context is not divided into positive and negative examples as
soon as y take numerical values. Now, suppose we receive a test object gt with
observable attributes x, but with unknown value of target attribute y. Is there
a way to predict y using interval pattern structures approach? Indeed, there is,
and we are going to describe it below and compare the accuracy results with
some benchmarks.

The first stage of algorithm is mining α-weak premises with allowed ω-
dropout, the second is to perform prediction for test object gt based on the
mined premises. Let us start by choosing subsample size parameter which is the
number of objects being randomly extracted from G. Then we specify α and
ω parameters that control for ”anti-support” in terms of both frequency and
magnitude. Upon randomly extracting some objects A0 = {g1, ..., gK} we com-
pute following pattern d0 = δ(g1) u ... u δ(gK) u δ(gt) and density distribution
function h0 for target attribute values. If d0 is an α - weak premise with allowed
ω-dropout then it is added to the set of premises that will be used for prediction
later. Together with the pattern it is necessary to store the density function h.
But which of h0, h1 or other we have to use?

Here we introduce another parameter of the algorithm which is called ”capped”.
Capped is a boolean value, and if true then the range for target attribute dy1 in
d��0 is truncated to dy0 and corresponding density function is h1 calculated on
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the truncated set of target values. If capped parameter is false, then we add dy1
and calculate the density function based on all target values that fell into dy1
based on objects from d�0. The whole procedure is repeated many times and the
number of iterations parameter controls for that.

Having finished with premises mining, we move on to the next stage which
is building up a prediction for target attribute based on mined premises. In our
case, the resulting prediction was defined by mixture of distributions from all
premises. In practice all target attribute values stored within premises were put
together to form a final distribution. Finally, we tried both an average and a
median of that distribution as the prediction for target attribute. Such approach
takes into accout different support of the premises as soon as premises with
greater number of objects will contribute more.

However, one can argue that premises are different in sense of anti-support
and deviation in target attribute values. Indeed, we would put more weight to the
prediction based on premises with narrow range of target attribute values and the
ones with less falsifying examples from set G. Therefore, we added target values
to the final distributions with different weights, thus both weighted average and
weighted median were used as forecast.

We introduced two boolean parameters which controlled the weightening
schemes. The first parameter is account for anti-support and the second is penalty
for high deviation. When account for anti-support parameter is true, then the
target values δy(g) of objects g ∈ A with the premise d are given weight according
to the anti-support of that premise:

wa =
|{g ∈ A|dminy − ω(m− dminy ) ≤ δy(g) ≤ dmaxy + ω(dmaxy −m)}|

|A|

When penalty for high deviation is true, then the weight is decreased with the
higher deviation in the target attribute values:

wpen =
1

σ(δy(g))

where σ(δy(g)) is standard deviation of target attribute values. If the parameters
values are false then the weigths are equal to one. The final weight for the
target attribute value of the object g, which will be contributed to aggregate
distribution used for prediction, is defined as product of the two weights:

w(g) = wa · wpen

Finally, suppose that P is a set of mined α-weak premises with allowed ω-
dropout. The prediction for target attribute y of a test object gt can be based
on weighted average:

̂δy(gt) =

∑
p∈P

∑
g∈Ap

δy(g) · w(g)
∑
p∈P

∑
g∈Ap

w(g)
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or on the weighted median:

̂δy(gt) = median
g∈∪pAp

(
⋃

p∈P

⋃

g∈Ap

(δy(g), w(g))

In case where P is an empty set, the prediction is average or median of all target
attribute values in G, i.e. the prediction is based on ”naive” model.

4 Data and experiments

The data we used for the computation represent a pool of delinquent cor-
porate clients loans, which were expected to be restructured. The process of
restructuring is started at the early stage when the client shows the first signs
of insolvency. At that very moment a bank chooses either to execute default
strategy, when the court processes are launched and any disposable collateral is
displayed for sale, or to execute restructuring strategy, when the funding condi-
tions are being revisited usually resulting in a longer credit period. In case of
corporate clients banks usually do not want to go to extremes right from the
start as soon as court launch and collateral sales imply costs and spending time
resources. Also, the bank would prefer to maintain relations with the client if
financial distress is temporary. So, the decision whether to launch default strat-
egy or not is based to the greater extent on the recovery expectations. This
makes the problem of recovery prediction crucial for banking decision making.
Recovery rate is a number between zero and one which reflects the share of the
current exposure which the client is going to payback on some time horizon. If
recovery rate expectation is at high level, the bank would prefer restructuring
and court launch otherwise.

In this paper we use financial data from balance sheets and profit and loss
statements of 612 corporate clients of a top-10 Russian bank. Among others
factors we used assets-to-liabilities ratio, debt-to-equity ratio, earnings before
taxes and interest payments, return on assets etc, resuting. These clients were
assessed at the time of early insolvency signals and the resulting recovery rate
was collected.

The data was randomly divided into two parts with 70% of observations in
one part and 30% in the other. The bigger part was used as a context with
known target attribute for the lazy algorithm and 30% was used as a test set
to evaluate predictions and their accuracy. The same data partition was used
to run random forests with different tunings with 70% part used as a training
set and the other as test set. For random forests there were three parameters
tuned by grid search which are minimum nodesize, number of trees and number
of feasible variables.

The accuracy of predictions were evaluated in terms of mean absolute devi-
ation (MAD):

MAD =

∑N
i=1 |yi − ŷi|

N
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where yi is a target attribute (recovery rate) for i-th client in the test set and ŷi
is prediction.

The random forests were run with following parameters grid: minimum node-
size ranging from 30 to 100 with increment 10, number of trees ranging took
values 10, 30, 50 and 100, and number of feasible variables from ranging from 5
to 45 with increment of 5.

As far as lazy algorithm is concerned, we tuned seven parameters, four of
them were continuous and three were boolean. Subsample size took following
values: 0.01, 0.02, 0.03, 0.04, 0.05, 0.1. Number of iterations: 100, 500, 1000,
2000. Alpha threshold : 0, 0.05, 0.01, 0.015, 0.02. Allowed dropout : 0, 0.1, 0.5, 1,
1.5.

For each combination of parameters we calculated MAD for the test set and
in fact that produced metadata for the analysis. Effectively we obtained MAD
distributions, which at the first step helped us to choose in favour of forecast
based on weighted median forecast rather than weighted average as soon as MAD
distributions for the latter took dramatically higher values which are, of course,
undesirable.

When building new algorithm one has some intuition about it mechanism
and we performed regression analysis of algorithm accuracy versus parameters
values to check that intuition. Also, the analysis was important to determine
better parameters tuning and explain variation in accuracy of the predictions.
The results of regression are presented below:

Table 1. Regression analysis for dependency between MAD and algorithm parameters

Coefficients Estimate Std.Error t p-value
(Intercept) 0,3288 0,0006 519,4 0,0000
Subsample size 0,0155 0,0031 4,940 0,0000
Number of iterations -0,0004 0,0000 -18,05 0,0000
Alpha-threshold -0,0457 0,0270 -1,695 0,0903
Allowed dropout -0,0011 0,0004 -2,975 0,0030
Capped -0,0022 0,0004 -5,401 0,0000
Account for anti-support 0,0002 0,0004 0,624 0,5329
Penalty for high deviation 0,0010 0,0004 2,433 0,0150

We see that increasing number of iterations, allowing dropouts and using
capped improve algorithm performance as soon as the coefficients are negative
and significant: overall error of prediction decreases as those factors increase.
Surprisingly, adjusting account for anti-support and penalty for high deviation
parameters do not show significant improvement in accuracy. Also, we expected
that there are some non-linear dependencies between MAD and parameter values
as soon as, intuitively, there has to be an optimal subsample size of randomly
extracted objects. Therefore, we support the regression output with one-factor
scatter plots with average MAD across all other iterations versus each parameter:
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Fig. 1. Single-factor analysis of average MAD versus parameter value: continuous and
boolean parameters

As expected, there is a local minimum for the subsample size being extracted
from G. It is quite natural because as the subsample size grows, the intersection
of the subsample with a test object results in a generic description, which is very
likely to be falsified by objects with target attribute value out of the premise
description target range.

According to performed grid search the range with the lowest MAD (0.247 -
0.290) on the test sample is achieved in following parameter area: alpha-threshold
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Fig. 2. MAD distribution shows that lazy algorithm allows one to obtain prediction
error relatively lower than the one with random forest tunings

= 1.5%, number of iterations = 10, subsample size = 1%, allowed dropout = 0.1.
The result was compared to benchmarks represented by random forest tunings.

5 Conclusion

Formal concept analysis offers attractive instruments to extract knowledge
from data as soon as intents of concepts can be considered as associative rules.
FCA-based algorithms are suitable for predictive modeling in areas where model
interpretation clarity is of great priority. However, in previous work only classi-
fication problems were considered, while continuous target attribute prediction,
i.e. regression problem, was out of focus. In this paper, we adjusted the lazy
algorithm [3,16], so that it can perform continuous predictions. The adjustment
required a new definition of an augmented interval pattern structure. In effect,
the adjusted algorithm mines the premises (with target attribute expected dis-
tribution) that are relevant to test object and then prediction is performed based
on the target attribute distribution, e.g. based on the median of the distribution.

We applied the algorithm to delinquent corporate clients loans in order to
predict the recovery rate for each loan. The data we used comes from the pilot
project with one of the top-10 banks in Russia. Mean absolute deviation was
chosen as accuracy metric of the algorithm. We performed simple grid search by
running the algorithm with different parameter values and chose the tuning with
the lowest value of the metric. The classification accuracy of the algorithm was
compared to some benchamrks represented by random forests, as soon as their

Continuous Target Variable Prediction with Interval Pattern Structures 281



Fig. 3. MAD distribution of the lazy algorithm versus best tuning for random forest
and naive model MAD

predictions are based on combination of simple rules, too. The proposed modified
lazy regression algorithm showed comparable quality in the greater number of
runs and in certain parameters area it outperformed random forests. However, it
has to be mentioned that the number of parameters is greater in our algorithm
what, in effect, results in greater algorithm complexity and greater degrees of
freedom. As an area for further research, one can consider keeping the density
function h not only for target attribute in premises, but also make use of those
density functions for explanatory attributes as well. It can be expected, that if
the premises are mined not only based on allowed dropout and alpha-threshold
parameters, but also based on some properties of attributes distribution, then
the premises will be more relevant for the test objects and will produce more
accurate predictions for target attribute.
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Appendix

Algorithm 1 Lazy Regression by Sub-Samples with Continuous Target At-
tribute
Input: {G} – numerical context with explanatory variables x and single target at-
tribute y.
M – number of explanatory attributes.
sub.smpl – percentage of the context randomly used for intersection with the test ob-
ject (parameter).
num.iter – number of iterations (resamplings) during the premise mining (parameter).
alpha.threshold is the maximum allowable percentage of the context G which repre-
sents the objects which falsify the premise (parameter).
gt – test object.

Output: ̂δy(gt) – prediction that is produced by the voting rule.
P – a set of premises, i.e. associative rules produced for the test object gt. P can be
empty.

for iter from 1 to num.iter do
A0=random.sample(G,size=sub.smpl · |G|) — mine α - weak premises with ω-
allowed dropout.
d0 = δx(g1) u ... u δx(gs) u δx(gt), gs ∈ A0∀s
Compute empirical density function h0 for d0y.
A1 = d�0
if 1− |{g∈A1|d0ymin−ω(m−d0ymin)≤δy(g)≤d0ymax+ω(d0y

max−m)}|
|A1| ≤ α then

Update empirical density function h0 to h1 based on new values of target at-
tribute in A1.
Add (d0, h1) to the set P of α - weak premises with ω-allowed dropout.

else
Do nothing

end if
end for
Define weighting scheme wa, wpen.
Calculate the median for mixture of distribution functions hp based on dpy, ∀p ∈ P .

̂δy(gt) =

∑
p∈P

∑
g∈Ap

δy(g) · w(g)
∑
p∈P

∑
g∈Ap

w(g)

If P is empty, then calculate the median for target attributes of all g ∈ G (naive
prediction).
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Abstract. Formal Concept Analysis (FCA) provides mathematical models, 
methods and algorithms for data analysis. However, by now there is no easily 
available program system, which would provide data analyst with unified, 
intelligible and transparent access to various external data sources with large 
amount of heterogeneous data for subsequent FCA-based knowledge discovery. 
The lack of such tools complicates spreading FCA methods among big data 
analysts and miners of unstructured data. In this paper, we describe advances 
and new functionality in external data querying and preprocessing subsystems 
of Formal Concept Analysis Research Toolbox (FCART), which helps 
processing data of different types in a unified way. 

Keywords: Formal Concept Analysis, Knowledge Extraction, Data Mining, 
Text Mining, Social Network Mining, Software. 

1 Introduction 

By now, mathematical models of Formal Concept Analysis (FCA) [1] are widely used 
for solving various problems of Knowledge Discovery and Artificial Intelligence 
[2,3]. Some systems use FCA ideas implicitly, by processing closed sets of attributes 
or objects. In this paper we will concentrate on explicit implementation of FCA 
methods as part of analyst’s workflow in a software system. Three main problems 
here can be stated as follows.  

1. How to generate suitable input data for FCA-based methods? 
2. How to keep initial data properties and metadata while analyzing object-attribute 

representation by FCA-based methods? 
3. How to combat high computational complexity of FCA-based methods in the 

context of an integral analyst’s workflow? 

Around the middle of the last decade, there were several successful 
implementations for transforming a relatively small formal context into a line diagram 
and computing implications and association rules. In [4] we have discussed well-
known FCA-based tools, like ConExp [5], Conexp-clj [6], Galicia [7], Tockit [8], 
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ToscanaJ [9], Lattice Miner [10], OpenFCA [11], Coron [12,13], Cubist [14]. Most of 
the reviewed software tools are local applications that require initial data in the form 
of binary or many-valued context in one of the common formats (CSV, CXT or 
other). Thus, such programs can not be used on the stage of data gathering and 
preprocessing, but we should include input formats of those programs in the list of 
supported formats for future integration. 

Formal Concept Analysis Research Toolbox (FCART) [15] supports iterative 
methodology of data mining and knowledge discovery. One of the goals of 
developing FCART is to create a system for handy analysis of heterogeneous data 
gathered from external data sources, e.g. SQL databases, NoSql databases and Social 
Network Services. FCART was successfully applied to analyzing data in medicine, 
criminalistics, sociology, and trend detection [3, 15]. 

In previous papers, we have described the system architecture, main workflow and 
stages of data extraction from various external sources. Here we would like to 
describe recent progress in the distributed version [16] of FCART and its Intermediate 
Data Storage (IDS) subsystem. This progress is mainly related to new functionality in 
data preprocessing. 

2 Problems description 

Data analysis is highly dependent on preprocessing, i.e., transformation from the 
source data format to the target data format, in which data are processed. An 
important functionality of any data analysis system is to support analyst in 
preprocessing transformations, making them transparent and easy. 

2.1 A gap between FCA analytical artifacts and external data 

From an analyst point of view, there is a gap between FCA analytical artifacts 
workflow and data and the legacy data. Fig. 1 illustrates this gap between 
“analyzable” and “external” data. It should be emphasized that it is not a gap between 
concrete data formats or access protocols, it is the gap in ways of thinking and 
knowledge representation. 

The four main questions of object-attribute-value (or object-attribute) 
representation of data are trivial: 1) What are objects? 2) What are attributes? 3) How 
do we gather values of attributes? 4) How do we interpret values of attributes? 

However, such questions bring into being a great many technological questions. 
For now, we can observe specific data preprocessing techniques of concrete data 
analysis projects. Can we propose fully unified approach? In general, the answer is 
no. However, we can try to adapt some common techniques for most popular classes 
of initial data formats and external data sources. On the one hand, we can see 
appearance of such terms as “Data Tidying” [17] for some “human readable” variants 
of ETL (Extract-Transform-Load) processes. On the other hand, there are continuous 
development of such monster software as Oracle Data Integrator Enterprise Edition 
[18] or less monstrous Microsoft PowerBI [19]. 
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Fig. 1. The gap between “analyzable” and “external” data 

FCA-based analytics tools impose additional requirements because of: 

1. Basic FCA algorithms have very high computational complexity. 
2. Big concept lattices are not suitable for interactive processing and visualizing. 

There were many attempts to adapt FCA-based methods for complex tasks. For 
example, building Iceberg Lattices [20, 21, 22], visualizing other fragments of 
lattices, using incremental lattice construction algorithms. 

2.2 A few comments about methodology 

The core of the FCART supports knowledge discovery techniques, based on Formal 
Concept Analysis, clustering, multimodal clustering, pattern structures and others. 
From the analyst point of view, basic FCA workflow in FCART has four stages. On 
each stage, a user has the ability to import/export every artifact or add it to a report. 

1. The filling Intermediate Data Storage (IDS) of FCART from various external SQL, 
XML/JSON and other data sources (querying external source is described by an 
External Data Query Description – EDQD). EDQD can be constructed by some 
visual External Data Browser (see later). 

2. The loading a data snapshot from the IDS into an analytic session (a snapshot is 
described by a Snapshot Profile). A data snapshot is a data table with annotated 
structured and text attributes  (a many-valued context) loaded in the system by 
accessing IDS. 

3. The transforming a snapshot to a binary context (a transformation is described by a 
Scaling Query). 

4. The building and visualizing formal concept lattice and other artifacts based on the 
binary context within an analytic session. 

Data	Snapshot
(Multivalued	Context)

Binary	Context

Concept	Lattice

Integrated	Preprocessed	Data
(Analyst-oriented	representation)

Analyzable	Data

Relational	Data
(accessed	by	SQL	queries)

Raw	Full-text	Data	
(Collections	of	indexed	texts)

Structured	Documents
(XML/JSON/...)

Network	Data	
(Graph	models)

Heterogeneous	Data
with	specific	API

External	Data

Other	Artifacts

Gap!
FCA-oriented	query
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Later in this paper we will discuss mainly the first stage and using EDQDs. Hadley 
Wickham in [17] wrote: “there has been little research on how to make data cleaning 
as easy and effective as possible”. The second and the third stages with example of 
Snapshot Profile construction were initially described in [23]. 

2.3 FCART architecture and the role of the IDS 

The current distributed version of FCART consists of the following four parts: 

1. FCART AuthServer for authentication and authorization, as well as integration of 
algorithmic and storage resources. 

2. FCART Intermediate Data Storage (IDS) for storage and preprocessing (initial 
converting, indexing of text fields, etc.) of big datasets.  

3. FCART Thick Client (Client) for interactive data processing and visualization in 
integrated graphical multi-document user interface. 

4. FCART Web-based solvers (Web-Solvers) for implementing independent resource-
intensive computations. 

IDS plays important role in effectiveness of whole data analysis process because 
all data from external data storages, session data and intermediate analytic artifacts 
saves in IDS. All interaction between user and external data storages goes through the 
IDS. All interactions between Client, Web-Solvers and IDS go through a RESTful 
Web-API. The http-request to the IDS web-service constructed from two parts: prefix 
part and command part. Prefix part contains domain name and local path (e.g. 
http://zeus2.hse.ru:8444/). The command part describes what IDS has to do and 
represents some function of the Web-API. Using web-service commands, FCART 
client can query data from external data storages in uniform and efficient way. 

Early we already have implemented populating IDS from external data sources, but 
now we extend the set of providers and improve data providers’ EDQDs. 

3 Worlds of data and data representation in IDS 

Readers may have noticed that a simplest case of legacy data for object-attribute 
representation is relational data that meet the well-known conditions of E. Codd [24]. 
In this case we have virtually multivalued context. In the current state of Internet 
development we should distinguish  at least the following types of data sources: 

1. Relational data sources (directly queried by SQL). 
2. NoSQL document collections (queried by XQuery or similar query languages). 
3. Text collections with full-text index (queried by special full-text queries). 
4. Social Network Services (with plenty of different access APIs). 
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3.1 Data integration problems and FCART Intermediate Data Storage 

Documents are kept in many data formats (only ISO standards describe more then 400 
formats, for example see [25]). After open data revolution [26] and Web 
infrastructure integration in Internet [27], most popular formats for information 
interchange are Comma Separate Values (CSV) [28], Extensible Markup Language 
(XML) [29] and JavaScript Object Notation (JSON) [30]. Extensible Markup 
Language (XML) is a markup language that defines a set of rules for encoding 
documents in a format that is both human-readable and machine-readable. The main 
goal of XML is to store metainformation with information itself. Hundreds of 
document formats using XML syntax have been developed, including RSS, Atom, 
SOAP, and XHTML. XML-based formats have become the default for many office-
productivity tools, including Microsoft Office (Office Open XML), OpenOffice.org 
and LibreOffice (OpenDocument), and Apple's iWork. XML has also been employed 
as the base language for communication protocols, such as XMPP. 

XML and its extensions have regularly been criticized for verbosity and 
complexity.  JSON is lightweight alternative which focus on representing (serializing) 
programming language level objects with complex data structures rather than 
documents, which may contain both highly structured and relatively unstructured 
content. JSON is an open standard format that uses human-readable text to transmit 
data objects consisting of attribute–value pairs. 

Traditional relational databases are not convenient for fast processing of big 
amounts of unstructured textual datasets with metadata. Document-oriented databases 
operating with documents in XML or JSON format are successfully used for storing, 
retrieving and managing big amounts of textual data in last decade. Both FCART IDS 
and FCART Client can handle XML and JSON documents as input format. XML 
format is complex and relatively hard to process at the same time. JSON format is 
more easy to use and lightweight. FCART uses JSON internally as a main format for 
data serialization and intercomponent communication. 

3.2 Main terms and terminology problems 

Preliminary problem of the discussed concepts is a terminological one. Table 1 
illustrates the difference in approaches to defining terms for basic data-related 
concepts in SQL Servers (as stated in the SQL ISO Standard [31]), full-text indexing 
systems (as stated in the Elasticsearch reference [32]) and document-oriented NoSQL 
storages (as stated in the MongoDB reference [33]). One can look at term “Index” as 
a good example of polysemantic word. Graph-oriented databases use absolutely 
different terms for atomic elements (vertices, nodes, link, edges, arcs) and data 
structures, that reflect incidence, adjacency neighbourhood, etc. 

In IDS we use data representation in form of “Databases” with hierarchical 
structure of “Collections” of JSON “Documents”. Each of the Documents may 
contains heterogeneous “Fields”. Each Collection can possess metadata, which 
describes structure of Documents and data types of Fields using JSON Schema [34]. 
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It is very powerful approach, which gives an ability to validate Documents with 
compound data types. 

Table 1. Real cases of different terms usage in popular data storages 

 SQL Server Elasticsearch Mongo DB 

1 Database (non normative) Index Database 
2 Scheme Mapping -- 
3 Table Type Collection 
4 Index -- Index 
5 Record/Row (Tuple) Document (JSON) Document (BSON) 
6 Field/Column (Attribute) Field Field 
7 Primary key Document Id _id field 
8 Shard Shard Shard 

4 External Data Queries in IDS 

Extracting data is complicated by the fact that any Internet data source may have its 
own API. For example, we consider Social Network Services as a data source. That is 
why one needs mechanism to describe how data should be extracted, preprocessed 
and stored in IDS. For unified data access we developed External Data Query 
Description (EDQD) language. Each EDQD is a JSON formatted document. It aims 
to unify access to different data sources. By using EDQD FCART represents data 
from various data sources as a IDS Collection. There is no way to create a single 
query with fixed fields that would be with various data sources because each data 
source has its own set of functions, its own API. However, we developed the most 
common EDQD types and field set for mentioned above data sources types (Fig. 2). 

 
Fig. 2. The architecture of IDS and EDQDs for different data sources 

Each field is a JSON object. An EDQD query includes next fields: 

JSON	Collection
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─ ID – this field describes a unique identifier GUID. 
─ TYPE – this field describes type of data source. For now, FCART supports next 

types: “FS Folder”, “FS File”, “TSQL”, “REST”, “SOAP”, ”Facebook”, etc. Also 
EDQD with type “IDS” can refer to documents which are already stored in IDS. 

─ URI [27] – this field describes path to the data source. It is optional.  
─ CS – this field describes connection string [35]. It is optional. 
─ QUERY – this field describes query to the data source. 
─ TARGET – this field describes target data storage. For now, it’s can be set to the 

values – URI file path, “IDS”. 
─ TRANSFORMATION – this field describes type of source field, connection 

between source field and fields of target data storage; and all transformation such 
as scaling, indexing, etc. 

This are the common fields for all EDQD queries. Below we have described 
specific for data sources EDQD queries. 

Creating EDQD is a complex task, which needs visual tool for development. For 
now, External Data Browsers have been prepared to help user constructing EDQD for 
local JSON/XML files, unstructured text files and SQL data sources. Other types of 
EDQD can be created via direct JSON editing. 

4.1 Query to a SQL data source 

EDQD for a SQL data source is the most straightforward. For now, IDS supports 
connection to the Microsoft SQL 2014 (and its earlier versions) and Postgres 9.5.2 
(and its earlier versions). EDQD for SQL has the following fields: 

─ “ID” – GUID (Globally Unique Identifier). 
─ “TYPE” – DBMS Type. Can be “TSQL” or “PS”. 
─ “URI” – This field is empty for that EDQD query type. 
─ “CS” – Connection String. 
─ “QUERY” – TSQL or PL-SQL query. 
─ “TRANSFORMATION” – For now it describes mapping a column name to a 

target field path in JSON document. 

Example of EDQD for query to the instance of Microsoft SQL 2014: 
{ “ID”: {6F9619FF-8B86-D011-B42D-00CF4FC964FF}, 
  ”TYPE”:”sql-server-2014”, 
  “URI”:””, 
  “CS”:”DataSource=190.190.200.100,1433; 

Server=myServerName\myInstance; Ininial Catalog=myDataBase; User 
ID=myUsername; Password=myPassword;”, 

  “QUERY”:”SELECT column_name FROM table1 INNER JOIN table2 ON 
table1.column_name=table2.column_name;” 

  “TRANSFORMATION”: { “field”:{ 
    “name”: “name”, 
    “target_field”:”user_name”}  
} 
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4.2 Query to unstructured text files 

EDQD for Text (a collection of files with unstructured text) provides ability to 
extract and transform data from unstructured texts. To analyze data from unstructured 
data file we need to create an inverted index. Using inverted index reduces searching 
time for every text word.  

The inverted index is a central component of indexing search engine. A goal of a 
search engine implementation is to optimize the speed of the query: find the 
documents where word X occurs. Once a forward index is developed, which stores 
lists of words per document, it is next inverted to develop an inverted index. Querying 
the forward index would require sequential iteration through each document and each 
word to verify a matching document. The time, memory, and processing resources to 
perform such a query are not always technically realistic. Instead of listing the words 
per document in the forward index, the inverted index data structure is developed 
which lists the documents per word [36]. 

To create inverted index, we use full-text search engine. For now, there are many 
full-text search engines, which provides rapid search, complicated query language and 
REST interface. Solr [37] and Elasticsearch [32] are the most powerful and popular 
search engines for now. In the previous paper [38] we described detailed comparison 
of Solr and Elasticsearch as basis for implementing full-text manipulating part of IDS. 
In the paper we showed speed advantage of Elasticsearch in situation of indexing and 
inserting data at the same time. It’s important to search text data because unstructured 
text is often a part of other data types, e.g., structured documents (CSV, JSON, 
XML), documents extracted from social network services (user information, posts). 

Initial sets of automatically extracted keywords may be very big. We can have 
additional instruments for such sparse contexts with many uniform attributes like 
sorting and searching attributes (Fig. 3) or analyzing attributes usage statistics. But 
more proper way to generate initial context is using adjustable query. 

Example of EDQD for a query to a folder with text files: 
{ “ID”: {6F9619FF-8B86-D011-B42D-00CF4FC964FF}, 
  “TYPE”:”FS folder” 
  “URI”:”file://localhost/c|/source/” 
  “CS“:”” 
  “QUERY”:”” 
  “TARGET”:” file://localhost/c|/target” 
  “TRANSFORMATION”: { 
    “field”: { 
    “name”: “” 
    “target_field”:”body”, 
    “type”:”text”, 
    “indexing”: True}  
} 

Field “Transformation” is the most interesting part of EDQD for a local text-files 
folder. “Name” refers to a field of result IDS document is affected. “Target_field” 
describes name in IDS document. “Type” describes type of the source field. The value 
of the EDQD field “Type” determines operations and transformations which are 
applicable to a document field. By now, FCART supports an indexing operation on 
the “text” type. By default, the value of “Indexing” field is False. 
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Fig. 3. Example of sparse context for all keywords in 54 documents – 30192 attributes! 

4.3 Query to an XML, JSON or CSV data file 

EDQD for a collection of XML [29], JSON [30] or CSV [28] data files is similar to 
EDQD for the text file. In case of XML one should specify path to the source 
document field in the EDQD field “source_path” according to the XPath standard 
[39]. In case of JSON one should use the JSONPath draft [40]. In the case of CSV one 
should use fragment identifier according RFC-7111 [41].  

Example of EDQD for a query to a folder with collection of JSON data files: 
{ “ID”: 
  “TYPE”: ”JSON Folder” 
  “URI”: ”file://localhost/c|/source/” 
  “CS “: “” 
  “QUERY”: “” 
  “TARGET”: “file://localhost/c|/target” 
  “TRANSFORMATION”: { 
    “field”: { 
    “name”: ”body” 
    “source_path”: “/store/book/title” 
    “target_field”: ”/body” }  
} 
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4.4 EDQD query to a web-service 

EDQD for web-service interface provides ability to extract data from web-service. 
In the current version FCART supports REST and SOAP interfaces. EDQD for web-
service has the following fields: 

─ “ID” – GUID (Globally Unique Identifier). 
─ “TYPE” – Web-service type. Can be “REST” or “SOAP”. 
─ “URI” – URI of web-service.  
─ “CS” - This field is empty. 
─ “QUERY” – JSON document which contains query. 
─  “TRANSFORMATION” – JSON document which describes field mapping. 

Example of EDQD query to an Elasticsearch REST interface: 
{ “ID”: {6F9619FF-8B86-D011-B42D-00CF4FC964FF}, 
  ”TYPE”:”REST”, 
  “URI”:”http://elasticsearch:1234/index_name/mapping_name/”, 
  “CS”: “”, 
  “QUERY”: “{ 
    "query": { 
    "bool": { 
    "must": [ 
      {"match":{"address": "mill" }}, 
      {"match":{"address": "lane" }} 
    ] }}}”, 
  “TRANSFORMATION”: “{ 
    “field”:{ 
    “target_field”: “body”, 
    “indexing”: True}”  
} 

REST interfaces can iterate set of elements, which are returned by query. Query 
field contains JSON document written on Elasticsearch query language 
(https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html). 

Transformation field contains JSON document, which describes target field and 
preprocessing operation. The current version of FCART supports only indexing 
operation. 

4.5 EDQD query to a Social Network Service 

Social networks services have special API types. FCART processes the most 
common part of social networks services analysis. EDQD represents a user profile of 
Social Network Service as a hierarchical JSON document that has next fields: 

{“user”:{ 
“id”:”..” 
“path”: ”..” 
“user_info”: ”..” 
“friend:[…] 
} 

“post”:{ 
 “time”: 
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 “body: ”..” 
 “title” ”..” 
 “tags”:[ ”..”,…, ”..”]} 
}  

Besides full-text queries, analyst can query neighborhood of a person, e.g. friends 
or colleagues. In the current version FCART server supports connection to 
Livejournal, Twitter, and Facebook. Example of extracting posts from third 
neighborhood layer of the person: 

{ “ID”: {6F9619FF-8B86-D011-B42D-00CF4FC964FF}, 
  “TYPE”: “facebook” 
  “URI”: “https://www.facebook.com/someuser/” 
  “CS “: “” 
  “QUERY”: { 
    “path”: “friend/post/body”, 
    “layer”: “3”, 
    ”BEGIN”: “2005-08-09T18:31:42-03”, 
    ”END”:””, 
    ”COUNT”:100 }, 
  “TARGET”:”IDS” 
  “TRANSFORMATION”: { 
    “field”:{ 
    “type”:”post”, 
    “target_field”:”body”, 
    “indexing”: True }  
} 

5 Discussion and future work 

In this paper, main problems of external data access in FCA-based analytics software 
were addressed and some real cases were examined while implementing new 
functionality in the FCART system. The demo version of FCART client is available 
at https://cs.hse.ru/en/ai/issa/proj_fcart and the test version of the IDS Web-service is 
available at http://zeus2.hse.ru:8444. 

For FCA-based data analysis fundamental requirements for software are as 
follows: 

1. The ability to merge heterogeneous data sources in a query to external data.	
2. The ability to cache frequent queries.	
3. The automatic populating of query metadata.	
4. The support of many formats of local data files to communicate with other 

software tools easily.	
5. The support of apriori prescribed constraints on FCA algorithms and 

visualization schemes.	
6. The availability of common and special “quick and dirty” methods of query 

result visualization with low computational complexity.	

When prototyping clinical decision support system components, we have realized 
the importance of having local and web-based versions of the preprocessing tools. So 
unification of external data access tools is the first step in satisfying informal analysts’ 
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wishes. We also understand importance of other subsystems, including efficient data 
transformation algorithms, dashboards, etc. However, without unified and 
reproducible access to initial data no one can build real data analysis workflow. 

Improved mechanisms of query data work faster, more intelligible and provide 
necessary information to data analyst. The next steps in our development process are 
adding new External Data Browsers, increasing efficiency of EDQD processing and 
standardizing new API for running Web-Solvers inside IDS instead of Client. 
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Abstract. This paper presents an approach for mining temporal data,
based on Relational Concept Analysis (RCA), that has been developed
for a real world application. Our data are sequential samples of biologi-
cal and physico-chemical parameters taken from watercourses. Our aim
is to reveal meaningful relations between the two types of parameters.
To this end, we propose a comprehensive temporal data mining process
starting by using RCA on an ad hoc temporal data model. The results
of RCA are converted into closed partially ordered patterns to provide
experts with a synthetic representation of the information contained in
the lattice family. Patterns can also be filtered with various measures, ex-
ploiting the notion of temporal objects. The process is assessed through
some quantitative statistics and qualitative interpretations resulting from
experiments carried out on hydroecological datasets.

1 Introduction

Exploring temporal datasets is a major challenge in current research and various
methods have therefore been proposed since the 90’s [1]. It is worth pointing out
that temporal data are relational, so that relational methods [6] can be useful
to respect their relational structure, e.g. [9]. In particular, Relational Concept
Analysis (RCA, [16]) allows to classify relational data and provides hierarchical
results which facilitates the analysis step.

Based on these properties, we propose to use RCA for exploring sequential
datasets from the hydroecological domain. These datasets were collected during
the Fresqueau project3 that focused on methods for assessing the quality of wa-
tercourses. The collected data represent biological (Bio) and physico-chemical
(PhC) samples taken at fixed points (river sites) and repeated in time. Both
parameters are used by the experts to determine the quality of watercourses.

3 http://engees-fresqueau.unistra.fr/presentation.php?lang=en
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Therefore, a global assessment of the temporal relationship between PhC and
Bio parameters is needed. To this end, preprocessings of the raw sequential data
allow to build a qualitative temporal model that can be used to apply RCA on
these data. The RCA result is a family of lattices that can be navigated by the
users. The users can select relevant navigation paths through the lattices (start-
ing from concepts in a main lattice) by applying measures of interest based on
the concept extents, that can be linked to geographical information in our appli-
cation. Furthermore, in order to help their analysis and to synthetize the results,
we propose to transform those concepts within closed partially ordered patterns
(cpo-patterns, [5]), i.e. directed acyclic graphs where vertices are labelled with
information extracted from the concepts out of the family of lattices. Since con-
cepts can be more or less general or specific, the extracted patterns can be clas-
sified within three types, according to the number of vertices that are labelled
with general information. Then the users can choose to select and to navigate
general or specific paths in the lattices.

The paper is structured as follows. Section 2 presents basic definitions and
related work. Section 3 describes the hydroecological data and their preprocess-
ing while the RCA process is detailed in Section 4. Section 5 introduces some
measures of interest dealing with the temporal dimension of obtained concepts.
Section 6 presents cpo-patterns in order to help the analysis. Section 7 describes
and discusses the experimental results carried out on Fresqueau datasets. Section
8 concludes and gives a few perspectives of this work.

2 Basics and Related Work

Relational Concept Analysis (RCA, [16]) extends Formal Concept Analysis (FCA
[11]) to classify sets of objects described by attributes and relations, thus allowing
to discover knowledge patterns and implication rules in relational datasets. RCA
applies iteratively FCA on a Relational Context Family (RCF) that is consti-
tuted of a setK of object-attribute contexts and a setR of object-object contexts.
K contains n object-attribute formal contexts Ki = (Gi,Mi, Ii) , i ∈ {1, ..., n}.
R contains m object-object relational contexts Rj = (Gk, Gl, rj) , j ∈ {1, ...,m},
where Gk, called the domain of the relation, and Gl, called the range of the re-
lation, are respectively the sets of objects of Kk and Kl, and rj ⊆ Gk×Gl, k, l ∈
{1, ..., n}. At each step, object-attribute contexts are extended with relational
attributes taking the syntactic form qrj (C), where q is a quantifier, rj is a re-
lation and C = (X,Y ) is a concept where X is a subset of objects from the
range of rj . This paper uses the existential quantifier: ∃rj(C) is an attribute of
o ∈ Gk if rj (o) ∩ X 6= ∅. RCA process consists in applying FCA first on each
object-attribute context of an RCF, and then iteratively on each object-attribute
context extended by the relational attributes created using the concepts from
the previous step. The RCA result is obtained when the family of lattices of two
consecutive steps are isomorphic and the contexts are unchanged.

RCA has been applied to various data, e.g. for software model analysis and
re-engineering [2]. To our knowledge, this is the first time that RCA is used to
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explore sequential datasets. There are, however, various related FCA approaches.
[18] introduced Temporal Concept Analysis where objects are characterized with
a date and a state (i.e. a set of attributes). Data are merged into a single context,
and the resulting concept lattice is analysed thanks to the date element in the
concepts, so that temporal relations between concepts are actually revealed by
the analyst. This approach has been used to analyse sequential data about crime
suspects [15]. In our RCA approach, the temporal relation between dates is
considered as an object-object relation and it links concepts from several lattices.
In [8], sequential datasets are processed without involving any partial order. In
[5], closed subsequences are mined and then grouped in a lattice similar to a
concept lattice. In [4], sequential data are mapped onto pattern structures whose
projections are used to build a pattern concept lattice. The authors combine the
stability of concepts and the projections of pattern structures in order to select
relevant patterns.

Besides, there exist various methods to explore qualitative sequential data.
Indeed, sequential pattern mining is an active research area, in relation to the
exponential growth of temporal and spatio-temporal databases. Sequential pat-
terns have been introduced by [1] and used for different purposes. Such an ap-
proach has been developed within the Fresqueau project and focused on closed
po-patterns, which were selected through various measures [7]. Indeed, selecting
relevant results is a main challenge for all approaches dealing with large datasets.
In FCA, the most used measures for selecting relevant concepts are stability [13],
probability and separation [12]. Unfortunately, these measures are not able to
take into account the specific structure of concepts built on temporal objects.
We thus propose to use specific measures, as detailed in Section 5.

3 Context and Data Preprocessing

In the Fresqueau project, the analysed data cover various compartments such as
physico-chemistry, hydrobiology, hydromorphology and land use (as described
in [3]). Here, we try to tackle the following issue by means of RCA: Can experts
explain values of biological parameters from PhC values occuring in past months
and thus improve the global assessment of the quality of watercourse ecosystems?

To answer this question we should mention that the quality of watercourses
is determined by the Bio parameters (e.g. Standardised Global Biological In-
dex (IBGN), Biological Index of Diatoms (IBD) and Fish Biotic Index (IPR)).
Hence, the objects of interest from our work are the Bio samples and we want to
assess, over a period of time, the impact of PhC macro-parameters (e.g. Nitrogen
(AZOT), Phosphor (PHOS) and Particulate Matter (PAES)) on Bio ones.

Table 1(a) illustrates a small raw sequential dataset of Bio and PhC samples
taken from a site (e.g. S1) corresponding to a river segment. A set of sites
constitutes a geographical area. A data sequence is a chronologically ordered set
of PhC samples with a Bio one at the end, all taken from the same site. This
raw sequential dataset shows measurements made only for IBGN Bio parameter
and for four PhC parameters namely Ammonium (NH+

4 ), Kjeldahl Nitrogen
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Table 1: Small example of raw and corresponding preprocessed sequential
dataset.

(a) Raw Sequential Data (b) Preprocessed Sequential Data
Site Date NH+

4 NKJ NO−
2 PO3−

4 IBGN Site Date AZOT PHOS IBGN

S1

08/05 - - - - 10

S1

08/05 - - Yellow
06/05 0.004 - 0.012 0.035 - 06/05 Blue Green -
09/04 - - - - 8 09/04 - - Orange
08/04 - 1.414 - - - 08/04 Green - -
01/04 0.043 0.146 0.421 - -

(NKJ), Nitrite (NO−2 ) and Orthophosphate (PO3−
4 ). For instance, 0.043 mg/l

of NH+
4 is measured on 01/04, i.e. January 2004, for the site S1. An IBGN score

of 8/20 is measured on September 2004 for the same site.

The raw sequential dataset contains only numerical values. For mining such
data, we transform them by applying discretization and selection processes based
on domain knowledge. The discretization aims at converting numerical values
into qualitative ones. To this end, we use qualitative values for Bio and PhC
parameters that are provided by the SEQ-Eau4 standard. Both types of param-
eters have five qualitative values, namely very good, good, medium, bad and very
bad represented respectively by the colors blue, green, yellow, orange and red.
In addition, SEQ-Eau standard groups PhC parameters into macro-parameters.
For example, NH+

4 , NKJ and NO−2 are grouped into AZOT macro-parameter.
The selection process considers only relevant data by defining some constraints
based on expert advice. For instance, the only analysed PhC samples are those
taken within 4 months before a Bio parameter, from the same site.

Table 1(b) shows the preprocessed sequential dataset ready to be mined
using RCA. This sequential dataset is obtained by applying the discretization
and selection processes to the raw sequential dataset illustrated in Tab. 1(a).
It is worth pointing out that the preprocessed sequential dataset is significantly
small compared to the raw one thanks to the macro-parameters and the limited
analysed period of time.

4 Temporal Relational Analysis

The sequential dataset is structured following the schema depicted in Fig. 1. The
four rectangles represent the four sets of objects we manipulate: Bio samples,
PhC samples, Bio parameters and PhC parameters. The links between Bio/PhC
samples and PhC samples are defined by the temporal binary relation is preceded
by (denoted by ipb). This temporal relation associates one sample to another one
if the first sample is preceded in time by the second one, on the same site. There

4 http://rhin-meuse.eaufrance.fr/IMG/pdf/grilles-seq-eau-v2.pdf
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Fig. 1: The modelling of the hydroecological sequential dataset.

is no temporal binary relation between Bio samples since in this work we evaluate
the impact of physico-chemistry on biology. The Bio/PhC samples are described
only by the qualitative relations has parameter blue/green/yellow/orange/red
that link the Bio/PhC samples with the measured Bio/PhC parameters. For
instance, has parameter green links the PhC samples taken from S1 on 08/04
(Tab. 1(b)) with AZOT PhC parameter.

Following the temporal data model illustrated in Fig. 1, we build the RCF de-
picted in Tab. 2 for a small hydroecological sequential dataset. The tables KPHC
(PhC parameters), KBIOS (Bio samples) and KPHCS (PhC samples) represent
object-attribute contexts. There is no object-attribute context for Bio parame-
ters because each dataset is restricted to one value of one parameter (here IBGN
red). KBIOS and KPHCS have no column since the samples are only described using
the qualitative relations. The tables RPHCS-ipb-PHCS, RBIOS-ipb-PHCS , RbPHC
and RgPHC represent object-object contexts. In these object-object contexts, a
row is an object from the domain of the relation, a column is an object from the
range of the relation and a cross indicates a link between two objects. For exam-
ple, RPHCS-ipb-PHCS defines the temporal relations (ipb) between PhC samples
and has KPHCS both as domain and range. RbPHC defines the qualitative relations
between PhC samples and PhC parameters that have the blue (b) qualitative
value.

Figure 2 represents the family of concept lattices obtained by applying RCA
on the RCF illustrated in Tab. 2. There are three lattices, one for each formal
context: LKPHCS (PhC samples, Fig. 2(a)), LKPHC (PhC parameters, Fig. 2(b)) and
LKBIOS (Bio samples, Fig. 2(c)). Each concept is represented by a box structured
from top to bottom as follows: concept name, simplified intent and simplified
extent. As said before, we have used the existential quantifier to build relational
attributes. For instance, the intent of C KPHCS 2 from concept LKPHCS contains the
relational attribute ∃RgPHC(C KPHC 1) inherited from concept C KPHCS 5. This
relational attribute is common to all PhC samples that measure a green PHOS
parameter, which represents the extent of concept C KPHC 1 shown in Fig. 2(b).
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Table 2: RCF composed of object-attribute contexts: KPHC, KBIOS and KPHCS;
temporal object-object contexts: RBIOS-ipb-PHCS and RPHCS-ipb-PHCS; quali-
tative object-object contexts: RbPHC and RgPHC.

object-attribute contexts object-object contexts

KPHC A
Z
O
T

P
H
O
S

AZOT ×
PHOS ×

KBIOS

S1 20/01
S1 28/12
S2 30/02

KPHCS

S1 17/01
S1 10/01
S1 25/12
S2 28/02
S2 20/02

RBIOS-ipb-PHCS S
1
1
7
/
0
1

S
1
1
0
/
0
1

S
1
2
5
/
1
2

S
2
2
8
/
0
2

S
2
2
0
/
0
2

S1 20/01 × ×
S1 28/12 ×
S2 30/02 × ×

RPHCS-ipb-PHCS S
1
1
7
/
0
1

S
1
1
0
/
0
1

S
1
2
5
/
1
2

S
2
2
8
/
0
2

S
2
2
0
/
0
2

S1 17/01 ×
S1 10/01
S1 25/12
S2 28/02 ×
S2 20/02

RbPHC A
Z
O
T

P
H
O
S

S1 17/01
S1 10/01 ×
S1 25/12 ×
S2 28/02
S2 20/02 ×

RgPHC A
Z
O
T

P
H
O
S

S1 17/01 × ×
S1 10/01
S1 25/12 ×
S2 28/02 × ×
S2 20/02 ×

The navigation amongst the lattices shown in Fig. 2 follows the concepts
used to build relational attributes. For example, the aforementioned relational
attribute ∃RgPHC(C KPHC 1) allows us to navigate from concept C KPHCS 2 out
of LKPHCS to concept C KPHC 1 out of LKPHC.

5 Measures of Interest for Temporal Concepts

To analyse the results of the RCA process, experts start from a main lattice, here
the lattice LKBIOS, and navigate through the relational attributes linking concepts
of different lattices. Besides, since RCA process can produce a large number of
interrelated concepts, depending on the dataset volume and characteristics, some
interestingness measures are required to select relevant concepts from where to
start the navigation.

Such measures should take into account the specificity of concepts built on
temporal objects, whereas well-known measures (e.g. concept stability) fit basic
concepts. For example, Fig. 3 depicts two concept extents where the temporal
objects are the Bio samples. Both concepts – that we call temporal concepts
– have the same number of Bio samples and they cover the same geographical
area. If two Bio samples are deleted, following the idea of stability measure, one
of the site S2 and one of S3, then both concepts still have the same number of
Bio samples but they cover different river sites.

To overcome this limitation, we introduce below an approach based on the
distribution of temporal concept extents. The main idea in our method states
that a concept is relevant if it is frequent and related to many sites where Bio
samples are evenly distributed amongst these sites. Accordingly, we try to find
temporal concepts whose intents represent universally available regularities in
the studied geographical area. In our example, both concepts have the same fre-
quency (7 samples), but the distribution is different: Concept 1 is more relevant
than Concept 2.

Let (X,Y ) be a formal concept of the main lattice, then its extent X is a
set of temporal objects – or pairs – (Object,Date). If the value of Object is
not identical for all the pairs, then the pairs can be grouped into categories by
objects. We accordingly define X̄ which represents the set of distinct objects
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C_KPHCS_0
 
 

C_KPHCS_5
∃RgPHC(C_KPHC_3)
∃RgPHC(C_KPHC_1)

 

C_KPHCS_3
∃RgPHC(C_KPHC_2)

∃RPHCS-ipb-PHCS(C_KPHCS_0)
∃RPHCS-ipb-PHCS(C_KPHCS_4)

S1_17/01

C_KPHCS_1
*
 

C_KPHCS_6
∃RPHCS-ipb-PHCS(C_KPHCS_5)
∃RPHCS-ipb-PHCS(C_KPHCS_2)

S2_28/02

C_KPHCS_2
 

S1_25/12
S2_20/02

C_KPHCS_4
∃RbPHC(C_KPHC_3)
∃RbPHC(C_KPHC_2)

S1_10/01

(a) LKPHCS

C_KPHC_3
 
 

C_KPHC_2
AZOT
AZOT

C_KPHC_0
 
 

C_KPHC_1
PHOS
PHOS

(b) LKPHC

C_KBIOS_0
∃RBIOS-ipb-PHCS(C_KPHCS_0)
∃RBIOS-ipb-PHCS(C_KPHCS_5)
∃RBIOS-ipb-PHCS(C_KPHCS_4)

 

C_KBIOS_4
∃RBIOS-ipb-PHCS(C_KPHCS_3)

S1_20/01

C_KBIOS_1
∃RBIOS-ipb-PHCS(C_KPHCS_1)

 

C_KBIOS_2
∃RBIOS-ipb-PHCS(C_KPHCS_6)

S2_30/02

C_KBIOS_3
∃RBIOS-ipb-PHCS(C_KPHCS_2)

S1_28/12

(c) LKBIOS

Fig. 2: The family of concept lattices obtained by applying RCA on the RCF
given in Tab.2. The ∗ symbol represents all the relational attributes of KPHCS.

from X pairs: X̄ = {o ∈ O|∃t ∈ T, (o, t) ∈ X}, where O is the object set and T
the set of dates.

Definition 1 (Absolute Frequency (φo)). Let C = (X,Y ) be a temporal
concept and o an object of X̄. The absolute frequency of o in C, denoted φo, is
equal to the number of distinct pairs of X where o occurs. X̄φ = {(o, φo) |o ∈ X̄}.

In our example (Fig. 3), X̄1 = X̄2 = {S1, S2, S3}. Concept 1 has X̄1φ =
{(S1, 3) , (S2, 3) , (S3, 1)} and Concept 2 has X̄2φ = {(S1, 5) , (S2, 1) , (S3, 1)}.

Fig. 3: Bio samples distribution by sites for two concept extents.
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Definition 2 (Support and Richness (ρ)). The support of a concept (X,Y )
corresponds to the number of pairs (Object,Date) out of X. Its richness, repre-
sented by ρ, is defined as the cardinality of X̄.

Definition 3 (Distribution index (IQV)). The distribution of a concept
(X,Y ) describes the number of times each object out of X̄ occurs in X and it
is measured by the Index of Qualitative Variation (IQV, [10]). IQV is based on
the ratio of observed differences in X̄φ to the total number of possible differences
within X̄φ (ρ > 1).

IQV =

ρ

(
|X|2 −

ρ∑
i=1

φoi
2

)

|X|2 (ρ− 1)
(1)

If ρ = 1, IQV = 0.

Our choice of IQV stems from the observation that the objects of X̄ do not
have an intrinsic ordering. Thus, measuring their distribution using the IQV
[10] seems interesting. The IQV ranges from 0 to 1. When all pairs of X contain
the same object, there is no diversity and the IQV is 0. In contrast, when there
are different objects and all pairs of X̄φ have equal φo, there is even distribution
and the IQV is 1.

Returning to our example (Fig. 3), both concepts have support |X1| =
|X2| = 7 and richness ρ1 = ρ2 = 3. For Concept 1 the distribution is IQV1 =
3[72−(32+32+12)]

72(3−1) = 0.91 and for Concept 2 IQV2 = 0.67. Hence, Concept 1 is

computed as more relevant than Concept 2 since its objects (Bio samples) are
better distributed amongst the sites.

6 CPO-patterns for Helping Expert Analysis

Since our aim is to facilitate the analysis work, we propose, in addition to the
selection of relevant concepts, to convert those concepts into cpo-patterns. In-
deed cpo-patterns are structures with a graphical representation easy to read
and understand (e.g. Fig. 4). The expert can choose a cpo-pattern that high-
lights interesting, surprising knowledge, and deepen the analysis by exploring the
area in the lattice surrounding the corresponding concept. Thus, starting from
the family of lattices built using RCA, we extract cpo-patterns following the
approach proposed in [14]. It is worth pointing out that there is a cpo-pattern
for each concept out of the lattice corresponding to the objects of interest for
the study, i.e. LKBIOS in our work.

Formally, let I = {I1, I2, ..., Im} be a set of items. An itemset IS is a non
empty, unordered, set of items, IS = (Ij1...Ijk) where Iji ∈ I. Let IS be the
set of all itemsets built from I. A sequence S is a non empty ordered list of
itemsets, S = 〈IS1IS2...ISp〉 where ISj ∈ IS. The sequence S is a subsequence
of another sequence S′ = 〈IS′1IS′2...IS′q〉, denoted as S �s S′, if p ≤ q and if
there are integers j1 < j2 < ... < jk < ... < jp such that IS1 ⊆ IS′j1, IS2 ⊆
IS′j2, ..., ISp ⊆ IS′jp. Sequential patterns have been defined by [1] as frequent
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Fig. 4: Hybrid cpo-pattern: each vertex corresponds to a set of parameter values,
edges represent the temporal relation, e.g. IBGNred is preceded by PHOSred that is
preceded by ?red; this notation means that a PhC parameter with a red quality
has been measured.

subsequences found in a sequence database. A po-pattern is a directed acyclic
graph G = (V, E , l). V is the set of vertices, E is a set of directed edges such
that E ⊆ V ×V, and l is a labelling function mapping each vertex to an itemset.
A partial order can be defined on G as follows: for all {u, v} ∈ V2, u < v if
there is a directed path from u to v. However, if there is no directed path from u
to v, these elements are not comparable. Each path of the graph is a sequential
pattern as defined before. The set of paths in G is denoted by PG. A po-pattern is
associated to the set of sequences SG that contains all paths of PG. Furthermore,
let G and G′ be two po-patterns with PG and PG′ their sets of paths. G is a
sub po-pattern of G′, denoted by G �g G′, if ∀M ∈ PG,∃M ′ ∈ P ′G such that
M �s M ′. A po-pattern G is closed, denoted cpo-pattern, if there exists no
po-pattern G′ such that G ≺g G′ with SG = SG′ .

As described in [14], thanks to the hierarchical structure of the RCA results,
more or less accurate cpo-patterns are extracted. Based on their accuracy, three
types of cpo-patterns could be defined: abstract, hybrid and concrete. Firstly,
the abstract cpo-pattern represents an imprecise common trend of the analysed
data. Secondly, the hybrid one, depicted in Fig. 4, corresponds to a more or less
accurate common trend of the analysed data. Finally, the concrete cpo-pattern
designates an accurate common trend of the analysed data.

7 Experiments and Discussion

The experiments are carried out on a MacBook Pro with a 2.9 GHz Intel Core i7,
8GB DDR3 RAM running OS X 10.9.5. RCA is applied using the RCAExplore5

tool. For the extraction and selection of cpo-patterns we have developed an algo-
rithm in Java 8 based on Java Collections Framework and Lambda Expressions.

Three sequential datasets (each dataset concerns only one Bio parameter
having the yellow quality) from the Fresqueau project are analysed: IBDyellow,
IPRyellow and IBGNyellow. These datasets are interesting since the yellow qual-
ity of watercourses represents a median area between good ecological status and
bad ecological status of watercourses. Other quality values have also been anal-
ysed but are not presented here. The objective is to extract more or less accurate

5 http://dolques.free.fr/rcaexplore
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Table 3: The results of mining the Fresqueau datasets. Bio and PhC Samples

are the number of analysed samples; Output is the number of concepts from the
main lattice (LKBIOS) and the lattice of PhC samples (LKPHCS); CPO-patterns is
the number of the extracted cpo-patterns; Execution Time in seconds.

Datasets RCA Extraction Execution Time

Index Quality
Samples Output CPO-patterns

RCA & Extraction
Bio PhC LKBIOS LKPHCS Concrete Abstract Hybrid

IPR
yellow 80 194

35699 39605 433 3388 31877 593
IBD 32146 20947 503 1444 30198 115

IBGN 9414 11580 305 815 8293 32

cpo-patterns representing frequent PhC trends of watercourses common in many
sites. To this end, the datasets are preprocessed and temporally modelled as de-
scribed in Sections 3 and 4. The temporal relational analysis relies on the IceBerg
algorithm [17], which result is a concept lattice of frequent closed itemsets. A
10% threshold is used only for the input of Bio samples (it corresponds to the
lattice of Bio samples that covers the objects of interest from our work). The
choice of this value allows us to focus on the cpo-patterns that describe many
sites.

Table 3 shows some quantitative statistics regarding the temporal relational
analysis and the extraction of cpo-patterns. The results in Output column show
that the number of extracted concepts for the IBGN dataset is about 3 times
smaller than the number of extracted concepts for the IPR and IBD datasets.
This reveals greater heterogeneity in IPR and IBD datasets in contrast with
IBGN. Consequently, cpo-patterns linking PhC and IBGN Bio parameters repre-
sent more examples and will provide more reliable forecasts of the yellow quality
of watercourses.

The CPO-patterns columns represent the different types of extracted cpo-
patterns and illustrate their quite large number that has to be reduced. To this
end, we select relevant cpo-patterns based on the support, richness and distribu-
tion of the associated concepts (see Section 5). Figure 5 shows three scatter-plots
(for the three sets of extracted concrete cpo-patterns in Tab. 3) of the distribution
index (IQV) with respect to the support. The diameter of the circles is propor-
tional to the richness. The user can first explore a few selected cpo-patterns based
on high thresholds for these measures. Then he/she can follow the cpo-pattern
hierarchy to deepen the analysis, as described below, or select more cpo-patterns
based on lower thresholds. For example, by defining two thresholds θIQV = 0.98
and θSupport = 25, the top-6 (IBGN), the top-26 (IBD) and the top-30 (IPR)
best distributed and most frequent cpo-patterns are selected. Focusing on IBD,
if the thresholds are e.g. θIQV = 0.98 and θSupport = 20, 52 cpo-patterns are
selected. These cpo-patterns cover various numbers of sampling sites, and thus
more or less extensive geographical areas. To select greater or smaller areas, the
cpo-patterns are ranked by analysing the diameter of the circles.
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The qualitative interpretation of the extracted cpo-patterns was performed
by an hydroecologist. In Fig. 6 is an interesting excerpt from the main lattice
of IBGNyellow dataset. This group of cpo-patterns is subsumed by the abstract
cpo-pattern of C KBIOS 868 (support = 28) that represents the less accurate
common trend: often before yellow IBGN are sampled simultaneously a green
PhC parameter and another yellow PhC parameter. Figure 6 also emphasizes
the well-known correspondence between MOOX (organic matter pollutions) quality
classes and IBGN ones: a yellow MOOX appears in the yellow IBGN cpo-pattern,
which is associated to C KBIOS 595. The concepts C KBIOS 720, C KBIOS 550

and C KBIOS 400 highlight the impact of phosphorus pollution (PHOS) on macro-
invertebrates (IBGN) that is a lesser-known fact.

Moreover, in Fig. 6 two benefits of exploring sequential data by means of RCA
are observed. The first one is the generalisation order regarding the structure
of the extracted cpo-patterns. For example, the structure of C KBIOS 400 cpo-
pattern is more specific than the structure of its ancestor cpo-patterns, i.e. there
exist a projection from its ancestor cpo-patterns into C KBIOS 400 cpo-pattern.
The second benefit is the generalisation of items. For instance, the C KBIOS 550

cpo-pattern reveals the rule {PAESgreen, PHOSyellow} → {IBGNyellow} that is a
specialisation of the rule revealed by the C KBIOS 720 cpo-pattern, that is {?green,
PHOSyellow} → {IBGNyellow}. These properties are useful for the expert who can
navigate from specific to general patterns or vice versa.

8 Conclusion

We have introduced an original approach for exploring temporal data using
RCA. Given a hydroecological dataset, where data represent Bio or PhC samples
measured at a given time in a certain site, we find hierarchies of more or less
general cpo-patterns that summarize the impact of PhC parameters on Bio ones.
A comprehensive process for mining sequential datasets has been proposed: 1)
preprocessing of the raw data based on domain knowledge, 2) relational analysis
of the preprocessed data based on an original temporal data model, 3) selection of
temporal concepts using the distribution, the richness and the support measures,
and 4) extraction of cpo-patterns by navigating amongst temporal concepts (step
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Fig. 5: Concrete cpo-patterns by distribution index, support and richness of the
associated concepts.
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Fig. 6: Excerpt from a hierarchy of cpo-patterns (IBGN yellow).

detailed in [14]). Our method has been applied to sequential datasets from the
Fresqueau project.

The main benefits of our approach are as follows. Using RCA produces hier-
archical concepts, while cpo-patterns synthetize complex navigation paths, both
facilitating the expert analysis. Furthermore, the proposed measures on temporal
concepts are useful to select relevant information in our application.

In the future, we plan to apply our approach on other relational datasets.
This will require to deeply investigate the behaviour of our measures and maybe
to find other methods for selecting the extracted cpo-patterns.
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décisionnel pour l’analyse de la qualité des eaux de rivières. Ingénierie des Systèmes
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Abstract. A novel theoretical background of fuzzy associative memo-
ries (FAM) is proposed. A framework of formal concept analysis is used
for a new working theory of FAM. Two principal activities of FAM are
formalized : data retrieval and noise reduction. It is shown that the prob-
lem of data retrieval is connected with solvability and eigen sets of a
certain system of fuzzy relation equations. The differentiation of FAM
models according to their ability to reduce noise is defined. It is shown
how the choice of formal context determines a type of noise that can be
reduced by the corresponding retrieval mechanism. Finally, we propose
a fast algorithm of data retrieval.

1 Introduction

One of the first publications devoted to fuzzy associative memories (FAM) has
been made by Kosko - [6]. The FAM has been characterized as a single-layer
feedforward neural net performing a nonlinear matrix-vector multiplication. This
approach was later extended with the purpose to increase the storage capacity
(e.g. [4]). Significant progress was achieved by introduction of learning impli-
cation rules [3, 5], that afterwards led to implicative fuzzy associative memory
(IFAM) with implicative fuzzy learning. A justification of validity of a certain
IFAM model was discussed in [14] where the characterization of one type of
suppressed noise - eroded - was proposed.

In the current contribution, we use the framework of formal concept analysis
[17] and propose a working theory of FAM. Let us remark that the language
and technique of formal concept analysis is used in other theories, e.g., fuzzy
property-oriented concept lattices, as well as in applications such as modeling
and processing of incomplete knowledge in information systems [1, 2].

We formalize two principal activities of FAM: data retrieval and noise re-
duction. We use the proposed formalism and show that the problem of data
retrieval is connected with solvability and eigen sets of a certain system of fuzzy
relation equations. We differentiate FAM models according to their ability to
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reduce noise and show how the choice of formal context determines a type of
noise that can be reduced by the corresponding retrieval mechanism.

From the technical point of view, we extend the theory of FAM by using
a general algebraic structure instead of a specific one ( Lukasiewicz algebra in
[14]) and by enlarging the set of autoregressive fuzzy associative memory models
(AFAM). We propose a formal characterization of AFAM models and show the
way of various modifications. We analyze the retrieval mechanism of AFAM and
its ability to remove noise. We show that the larger is the amount of noise, the
greater should be the fuzzy relation that models retrieval with noise reduction.
Further, we show how the type of removable noise depends on which type of
AFAM models is applied. Finally, we construct a fast algorithm of data retrieval
and give illustration of the noise reduction.

2 Preliminaries

2.1 Implicative fuzzy associative memory

In this Section, we discuss underlying assumptions related to autoregressive fuzzy
associative memories (AFAM) using denotation in [14]. We formalize the retrieval
mechanism and the problem of noise reduction.

Let us propose the following formalization of AFAM. A database

D = {x1, . . . ,xp},

of objects (images, patterns, signals, texts, etc.) is represented by normal fuzzy
sets such that every xk, k = 1, . . . , p, is a map xk : X → [0, 1], where X =
{u1, . . . , un} is a universe. The problem is to find a model of D together with a
retrieval mechanism such that every element xk ∈ D can be successfully retrieved
even from its noisy version.

According to [14], a model of AFAM for database D can be identified with the
3-tuple (W, θ,�), consisting of a fuzzy relation W : X×X → [0, 1], a bias vector
θ ∈ [0, 1]n, and a set-relation composition � : [0, 1]n×n×[0, 1]n×[0, 1]n → [0, 1]n,
such that for all xk ∈ D,

xk = W � xk ∨ θ, k = 1, . . . , p. (1)

We say that (1) represents a retrieval mechanism in AFAM and that this mech-
anism reduces noise, if

xk = W � x̃k ∨ θ, k = 1, . . . , p, (2)

where x̃k is a noisy version of xk.
In [14], an implicative model of AFAM has been proposed. The model uses

 Lukasiewicz algebra of operations on [0, 1], so that fuzzy relation W is expressed
in the implicative form

W (ui, uj) =
p∧

k=1
(xk(ui)→ xk(uj), (3)
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and other constituents are as follows:

θi =
p∧

k=1
xk(ui), i = 1, . . . , n,

� is the sup−⊗-composition.
For a given input x, AFAM returns the output in accordance with (1) and

the assignment given above, so that

W � x ∨ θ =
n∨

i=1
(W (ui, uj)⊗ x(ui)) ∨ θ.

The proposed in [14] AFAM is able to reduce an eroded noise, i.e. if x is less
than some database element, say xk, then the retrieved output is close to xk as
well.

2.2 Algebraic background

In this Section, we step aside from the terminology of associative memories and
introduce the algebraic background of what will be proposed as a new model of
AFAM.

Let L = 〈L,∨,∧, ∗,→, 0, 1〉 be a fixed, complete, integral, residuated, com-
mutative l-monoid (a complete residuated lattice). We remind the main charac-
teristics of this structure: 〈L,∨,∧, 0, 1〉 is a complete bounded lattice, 〈L, ∗,→, 1〉
is a residuated, commutative monoid.

Let X be a non-empty set, LX a class of (L-valued) fuzzy sets on X and
LX×X a class of (L-valued) fuzzy relations on X. Fuzzy sets and fuzzy relations
are identified with their membership functions, i.e. elements from LX and LX×X ,
respectively. A fuzzy set A is normal if there exists xA ∈ X such that A(xA) = 1.
The (ordinary) set Core(A) = {x ∈ X | A(x) = 1} is the core of the normal
fuzzy set A. Fuzzy sets A ∈ LX and B ∈ LX are equal (A = B), if for all x ∈ X,
A(x) = B(x). A fuzzy set A ∈ LX is less than or equal to a fuzzy set B ∈ LX

(A ≤ B), if for all x ∈ X, A(x) ≤ B(x).
The lattice operations ∨ and ∧ induce the union and intersection of fuzzy

sets, respectively. The binary operations ∗ and → of L are used for set-relation
compositions of the types sup−∗ or inf − → that are usually denoted by ◦ and
. where

(R ◦A)(y) =
∨

x∈X

(R(x, y) ∗A(x)),

and
(R . A)(y) =

∧

x∈X

(R(x, y)→ A(x)).

We say that compositions ◦ and . are skew adjoint, which means that for every
A,B ∈ LX , R ∈ LX×X , the following holds:

R ◦A ≤ B ↔ A ≤ Rop . B,
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where Rop(x, y) = R(y, x).
Let us remind that the ◦ composition was introduced by L. Zadeh [18] in the

form max−min.

3 Fuzzy Preorders and Their Eigen Sets

In this Section, we recall basic facts about fuzzy preorder relations. Then we
characterize eigen sets of fuzzy preorder relations.

Our interest to fuzzy preorder relations is connected with the analysis of the
expression in (3) – a representation of the AFAM model. This is the representa-
tion of the so called Valverde (fuzzy) preorder [16].

3.1 Fuzzy preorders

A binary fuzzy relation on X is a ∗-fuzzy preorder of X, if it is reflexive and
∗-transitive. The fuzzy preorder Q∗ ∈ LX×X , where

Q∗(x, y) =
∧

i∈I

(Ai(x)→ Ai(y)), (4)

is generated by an arbitrary family of fuzzy sets (Ai)i∈I of X.

Remark 1. The fuzzy preorder Q∗ is often called Valverde order determined by
the family of fuzzy sets (Ai)i∈I of X (see [16] for details).

If Q is a fuzzy preorder on X, then Qop is a fuzzy preorder on X as well.

3.2 Eigen sets of fuzzy preorders

In this Section, we show that fuzzy preorder Q∗ (given by (4)) generated by
fuzzy sets (Ai)i∈I ⊆ LX , is the greatest solution to the system of fuzzy relation
equations

W ◦Ai = Ai, i ∈ I, (5)

where W denotes an unknown fuzzy relation. At the same time, (Q∗)op is the
greatest solution to the system of fuzzy relation equations

W . Ai = Ai, i ∈ I. (6)

Moreover, we show that there exists a binary preorder that gives a solution to
(5) and (after the “transposition”) to (6).

Proposition 1. Let (Ai)i∈I ⊆ LX , be a family of fuzzy sets of X and a fuzzy
preorder Q∗ be generated by this family in the sense of (4). Then Q∗ is the
greatest solution to the system of fuzzy relation equations (5) and (Q∗)op is the
greatest solution to the system of fuzzy relation equations (6).
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Proof. It is obvious that both systems are solvable - this is because the identity
(fuzzy) relation is a solution to (5) and (6). This fact implies that fuzzy relation
Q∗ is the greatest solution to the system (5). Let us prove the second claim.

The following chain of equivalences can be easily obtained from the first
claim:

(∀y)
( ∨

x∈X

(Q∗(x, y) ∗Ai(x)) ≤ Ai(y)
)
⇔ (∀y)(∀x)(Q∗(x, y)∗Ai(x) ≤ Ai(y))⇔

(∀x)(∀y)(Ai(x) ≤ Q∗(x, y)→ Ai(y))⇔ (∀x)


Ai(x) ≤

∧

y∈X

(Q∗(x, y)→ Ai(y))


 .

By reflexivity of Q∗,
∧

y∈X

(Q∗(x, y)→ Ai(y)) ≤ Ai(x).

Therefore,
(Q∗)op . Ai = Ai.

Corollary 1. Let the assumptions of Proposition 1 be fulfilled. Then fuzzy sets
Ai, i ∈ I, are eigen fuzzy sets of the relation Q∗ ((Q∗)op) with respect to com-
position ◦ (.).

By Proposition 1, fuzzy relation Q∗ ((Q∗)op) is the greatest solution of the
system (5) (similarly, fuzzy relation (Q∗)op is the greatest solution of the system
(6)). Let us show that there are smaller fuzzy relations that solve the system (5)
(resp. the system (6)). Moreover, these smaller relations are ordinary (binary)
preorders on X.

Proposition 2. Let (Ai)i∈I ⊆ LX be a family of fuzzy sets of X and fuzzy
preorder Q∗ be generated by this family in the sense of (4). Let ∆ : L → L be
the following unary operation on L:

∆(a) =
{

1, if a = 1,
0, otherwise.

Then ∆(Q∗) is a solution to the system (5) and (∆(Q∗))op is a solution to the
system (6). Moreover, ∆(Q∗) is an ordinary (binary) preorder on X.

Proof. At first, we prove that ∆(Q∗) is a solution to (5). This fact easily follows
from the following two inequalities:

∆(Q∗) ◦Ai ≤ Q∗ ◦Ai = Ai, i ∈ I,
∆(Q∗) ◦Ai ≥ Ai.

The first inequality is due to ∆(Q∗) ≤ Q∗. The second inequality follows from
reflexivity of ∆(Q∗).
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At second, we show that ∆(Q∗) is a preorder relation on X. The property of
reflexivity is inherited from Q∗.To prove transitivity we choose t, u, v ∈ X and
consider the case ∆(Q∗)(t, u) = 1 and ∆(Q∗)(u, v) = 1. It is easy to see that

∆(Q∗)(t, u) ∗∆(Q∗)(u, v) = Q∗(t, u) ∗Q∗(u, v) ≤ Q∗(t, v).

We refer to ∆(Q∗) as to a binary “skeleton” of Q∗.

4 New AFAM Models

In this Section, we put a bridge between the theory, presented in Section 3,
and the theory of autoregressive fuzzy associative memories (AFAM), presented
in Section 2. We propose a new concept of adjoint AFAM models that share
a common fuzzy preorder relation. We characterize types of noise that can be
reduced by retrieval in corresponding AFAM models.

4.1 Adjoined AFAM Models

Let us choose and fix complete residuated lattice with the support L = [0, 1] and
database D = {x1, . . . ,xp} of 2D [0, 1]-valued (gray scaled) images. We assume
that the images in D are represented by n-dimensional vectors, so that each
vector is a sequence of image rows. We identify every image with a fuzzy set on
n̄ = {1, 2, . . . , n}, so that xk ∈ [0, 1]n, k = 1, . . . , p. We additionally assume that
all fuzzy sets in D are normal.

Definition 1. We say that a pair (W,�), where W ∈ [0, 1]n×n is a fuzzy relation
and � : [0, 1]n×n × [0, 1]n → [0, 1]n is a set-relation composition, is an AFAM
model of database D, if for all xk ∈ D,

xk = W � xk, k = 1, . . . , p. (7)

We say that two AFAM models (W,�) and (W, �̃) of D are adjoint, if there
exists a complete residuated lattice L such that � is of the sup−∗ type, �̃ is of
the inf − → type and � and �̃ are skew-adjoint.

By (7) and the terminology of AFAM, any element from D is successfully
retrieved from its sample in a corresponding AFAM model. On the other hand,
according to the terminology of set-relation compositions, the same equation
(7) characterizes any element from D as an eigen set of the fuzzy relation with
respect to a certain composition - both are constituents of the corresponding
AFAM model.

Example 1. Let us choose a complete residuated lattice L on [0, 1] and give
two examples of adjoint AFAM models. Following (4), we construct the fuzzy
preorder relation Q∗, such that

Q∗(i, j) =
p∧

k=1
(xk(i)→ xk(j)), (8)
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and take its binary skeleton ∆(Q∗). By Proposition 1, the two pairs (Q∗, ◦) and
((Q∗)op, .) are examples of adjoint AFAM models. By Proposition 2, the two
pairs (∆(Q∗), ◦) and (∆(Q∗)op, .) are examples of adjoint AFAM models too.

4.2 AFAM and Noise Reduction

Let us characterize types of noise that can be removed/reduced by the retrieval
mechanisms of adjoint AFAM models.

Definition 2. Let (W,�) be a model of AFAM with respect to database D, x̃ ∈
[0, 1]n, and x̃ 6∈ D. We say that x̃ is a noisy version of some element x ∈ D,
that can be removed by the retrieval in (W,�), if

x = W � x̃. (9)

Proposition 3. Let D be a database, L a complete residuated lattice on [0, 1],
and (W, ◦), (W, .) adjoint AFAM models. Let moreover, fuzzy relation W be
reflexive. Then

(i) if (W, ◦) removes a noisy version x̃ of the element x ∈ D, then x̃ is an
eroded version of x, i.e. x̃ ≤ x;

(ii) if (W, .) removes a noisy version x̃ of the element x ∈ D, then x̃ is a
dilated version of x, i.e. x̃ ≥ x.

Proof. We give the proof of the case (i). Assume that x = (x1, . . . xn), x̃ =
(x̃1, . . . x̃n) and W ◦ x̃ = x. Then for any j = 1, . . . , n,

xj =
n∨

i=1
(W (i, j) ∗ x̃i) ≥W (j, j) ∗ x̃j) = x̃j .

Therefore, x̃ ≤ x.

5 AFAM and Formal Concept Analysis

In this section, we explain the relationship between the proposed theory of AFAM
and the theory of formal concept analysis (FCA) [17]. For this purpose, we adapt
the terminology of FCA to the proposed above analysis of fuzzy associative
memories.

We choose and fix a finite set X and a complete residuated lattice L. The
following formal context K = (A,R, I�) where A ⊆ LX is a set of objects,
R ⊆ LX×X is a set of attributes, and I� is an incidence relation on A × R,
is proposed. We say that an object (dataset) A possesses an attribute R, if
the latter is an AFAM model of A via the composition �. Equivalently and in
accordance with Definition 1, I�(A,R) = 1 if and only if A ∈ A is an eigen
fuzzy set of R ∈ R with respect to the composition �.

Let us choose and fix a formal context K with the given above specification.
A couple (A,W) is a formal concept of K, if A ⊆ A is a dataset, W ⊆ R is a
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set of fuzzy relations such that A ∈ A if and only if A is an eigen fuzzy set of
any W ∈W with respect to the composition �, and vise versa, W ∈W if and
only if (W,�) is an AFAM model of A.

Using both languages, we say that every element in dataset A has every
attribute in W, i.e. can be successfully retrieved from its sample using any AFAM
model (W,�) where W ∈W and composition � is clear from the context K.

Below, we analyze, how the problems of data retrieval and noise reduction
can be formalized in terms of context analysis. We formulate two assertions
and characterize formal concepts where datasets as formal concept objects are
connected with retrieval models as formal concept attributes. The proofs of both
below given statements can be obtained from Propositions 1,2.

Proposition 4. Let X be a set, L a complete residuated lattice, K = (LX , LX×X ,
I◦) a formal context and A ⊆ LX a dataset of objects. Then the smallest concept
with objects from A includes as attributes all fuzzy relations R ∈ LX×X such
that ∆(Q∗) ≤ R ≤ Q∗ where Q∗ and ∆(Q∗) are specified in Propositions 1,2.

Proposition 5. Let X be a set, L a complete residuated lattice, K = (LX , LX×X ,
I.) be a formal context and A ⊆ LX a dataset of elements. Then the smallest
concept with elements from A includes as attributes all fuzzy relations R ∈ LX×X

such that ∆(Q∗)op ≤ R ≤ (Q∗)op where (Q∗)op and ∆(Q∗)op are specified in
Propositions 1,2.

The difference between Propositions 4 and 5 is in the choice of formal context.
The latter determines a type of composition that connects an element from a
dataset with the corresponding model.

By Definition 2, a noisy and ideal elements from A are connected by equation
(9). The following relationship is an easy consequence of (9): the larger is an
amount of noise, the greater should be a fuzzy relation that models retrieval
with noise reduction and vise versa. This fact is illustrated in Fig. 2 where
we demonstrate two results of noise reduction: the one is based on the model
(Q∗, ◦) and the other one - on the model (∆(Q∗), ◦). It easily observed that
model (Q∗, ◦) reduces a larger amount of noise than the other model (∆(Q∗), ◦).
This is because fuzzy relation Q∗ is greater than fuzzy relation ∆(Q∗).

Let us construct a formal concept of K, suitable for characterization of an
AFAM model with the ability of noise reduction. For this purpose we differentiate
AFAM models according to “degrees of fuzziness” of their fuzzy relations. The
latter will be defined as

δ(W ) =
∑

x,y∈X

W (x, y),

where W ∈ LX×X . It is easy to see that for two fuzzy relations Q∗ (given by (4))
and its binary skeleton ∆(Q∗), the following inequality holds: δ(∆(Q∗)) ≤ δ(Q∗).
A formal concept (A,WD) of K with the ability of noise reduction is a couple
(A,WD), where A ∈ A, if and only if A is an eigen fuzzy set of any W ∈WD

such that δ(W ) ≥ D, and vise versa, W ∈ WD, if and only if δ(W ) ≥ D and
(W,�) is an AFAM model of A. The value of D regulates the amount of noise
and should be less or equal than δ(Q∗).
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6 Illustration

The aim of this Section is to give illustrations to the theoretical results of this
paper. We use gray scaled images with the range [0, 1], where 0 (1) represents
the black (white) color. We choose two different datasets of images, both were
artificially created from open access databases. These sets contain 2D images of
40 × 30 and 120 × 90 pixels, respectively. All images are represented by corre-
sponding fuzzy sets with values in [0, 1].

6.1 Algorithms of data retrieval

We tested the two AFAM models (Q∗, ◦) and (∆(Q∗), ◦), given in Example 1. The
first experiment is to verify data retrieval. Both models successfully passed the
verification. For the model that is based on the relation ∆(Q∗), we elaborated a
fast algorithm of data retrieval that uses the fact that ∆(Q∗) is actually a binary
relation.

We compare average execution time of the two corresponding algorithms and
conclude that the algorithm based on ∆(Q∗) is up to thirty time faster than that
based on Q∗, see Table 1.

Image size Run-time 1 Run-time 2
40 x 30 5.40 0.195
120 x 90 435.80 13.79

Table 1. Run-time (in seconds) of the two algorithms of data retrieval that are based
on models (Q∗, ◦) (left column) and (∆(Q∗), ◦) (right column).

6.2 Reduction of Noise

The second experiment is to analyze the influence of different retrieval AFAM
models (Q∗, ◦) and (∆(Q∗), ◦) on eroded noise. For this purpose, we added 70%
pepper noise to the original image in Fig. 1. The algorithm of data retrieval,
based on the model (Q∗, ◦), was more efficient than that, based on the model
(∆(Q∗), ◦), see Fig. 2.

7 Conclusion

A new theory of autoregressive fuzzy associative memories (AFAM) has been
proposed. It extends [14] by using general algebraic structures and new types of
autoregressive fuzzy associative memory models. We showed how the proposed
theory is connected with systems of fuzzy relation equations and eigen sets of
their solutions. We proposed a new concept of adjoint AFAM models that share
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Fig. 1. Original image without noise (left) and with 70 % pepper noise (right).

Fig. 2. Noise reduction based on the model (Q∗, ◦) (left) and on the model (∆(Q∗), ◦)
(right).
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a common fuzzy preorder relation. We characterized two types of noise that
can be reduced by retrieval in corresponding AFAM models. Two problems have
been discussed: data retrieval and noise reduction.

The relationship between the AFAM data retrieval and the formal concept
analysis has been analyzed. We proposed a new working theory of FAM and
formalized it in the language of formal concept analysis. We characterized two
principal activities of FAM: data retrieval and noise reduction. We used the
proposed formalism and showed that the problem of data retrieval is connected
with solvability and eigen sets of a certain system of fuzzy relation equations.
We differentiated FAM models according to their ability to reduce noise and
showed how the choice of formal context determines a type of noise that can be
reduced by the corresponding retrieval mechanism.

Finally, we proposed a fast algorithm of data retrieval that is based on an
AFAM model with a binary fuzzy preorder.
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Abstract. Text Information Extraction in images is concerned with ex-
tracting the relevant text data from a collection of document images. It
consists in localizing (determining the location) and recognizing (trans-
forming into plain text) text contained in document images. In this work
we present a textual information extraction model consisting in a set
of prototype regions along with pathways for browsing through these
prototype regions. The proposed model is constructed in four steps: (1)
produce synthetic invoice data containing the textual information of in-
terest, along with their spatial positions; (2) partition the produced data;
(3) derive the prototype regions from the obtained partition clusters; (4)
build the concept lattice of a formal context derived from the prototype
regions. Experimental results, on a corpus of 1000 real-world scanned
invoices show that the proposed model improves significantly the extrac-
tion rate of an Optical Character Recognition (OCR) engine.

Keywords: textual information extraction, concept lattice, clustering

1 Introduction

Document processing is the transformation of a human understandable data in a
computer system understandable format. Document analysis and understanding
are the two phases of document processing. Considering a document containing
lines, words and graphical objects such as logos, the analysis of such a docu-
ment consists in extracting and isolating the words, lines and objects and then
grouping them into blocks. The subsystem of document understanding builds
relationships (to the right, left, above, below) between the blocks. A document
processing system must be able to: locate textual information, identify if that
information is relevant comparatively to other information contained in the doc-
ument, extract that information in a computer system understandable format.
For the realization of such a system, major difficulties arise from the variability
of the documents characteristics, such as: the type (invoice, form, quotation, re-
port, etc.), the layout (font, style, disposition), the language, the typography and
the quality of scanning. In the literature, works in pattern recognition [16] and
character recognition [28] provide solutions for textual information extraction in
a computer system understandable format. Works in automatic natural language

c© Marianne Huchard, Sergei O. Kuznetsov (Eds.): CLA 2016, pp. 325–336,
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processing [6] contribute to solving the problem about the detection of relevant
information. This paper is concerned with scanned documents, also known as
document images. We are particularly interested in locating textual information
in invoice images. Invoices are largely used and well regulated documents, but
not unified. They contain mandatory information (invoice number, unique iden-
tifier of the issuing company, VAT amount, net amount, etc.) which, depending
on the issuer, can take various locations in the document. For instance, it seems
difficult to identify a trend as to the position of the date and invoice number.
However, similarities may occur locally for one or many information. To take
an example, the amount is usually positioned at bottom-right in the French and
English systems. Recent approaches such as those presented in [3, 4, 9] are specif-
ically concerned with the extraction of information in administrative documents
such as invoices. These works have in common the search, within a base, for a
document similar to an input document. Each document of this base is assigned
a template that lists some attributes (position, type, keywords) to be used in or-
der to locate information contained in similar input documents. Bartoli et al. [3]
propose a system of selecting, for an input document, the nearest wrapper based
on a distance measure. A wrapper is an object containing information about
geometric properties and textual content of elements to extract. Belaid et al. [4]
propose a case-based-reasoning approach for invoice processing. Cesarini et al.
[9] propose a system to process documents that can be grouped into classes. The
system comprises three phases: (1) document analysis, (2) document classifica-
tion, (3) document understanding.
The present paper is in the framework of region-based textual information lo-
calization and extraction [29, 30]. We present a textual information extraction
model consisting in a set of prototype regions along with pathways for brows-
ing through these prototype regions. The proposed model is constructed in four
steps:

1. produce synthetic invoice data from real-world invoice images containing the
textual information of interest, along with their spatial positions;

2. partition the produced data;

3. derive the prototype regions from the obtained partition clusters;

4. derive pathways for browsing through the prototype regions, from the con-
cept lattice of a suitably defined formal context;

The paper is organized as follows. Section 2 is devoted to the construction of
prototype regions. The formal context defined using the obtained prototype re-
gions, and the determination of paths from the concept lattice of that formal
context are described in Section 3. Section 4 presents our approach for textual
information extraction, using the defined paths. Finally, some experimental re-
sults are presented in Section 5 and the paper is closed with a conclusion and
perspectives.
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2 Construction of prototype regions

2.1 Construction of a synthetic data set

The present work is motivated by the request of a company interested in develop-
ing its own system enabling to automatically extract some textual information
from scanned invoices. The company has provided us with a corpus of 1000
real-world scanned invoices, emitted by 18 service providers whose business is
around car towing and auto repair. All the images are one page A4 documents.
The whole set of information the company is interested in, comprises: invoice
number, invoice date, net amount, VAT amount, customer reference, the type of
service provided, the issuer identity. In our study, we consider only the following
five information:

– I1: the key word of the service provided: towing or auto repair,
– I2: customer reference: a string of 9-13 characters,
– I3: the plate number of the assisted vehicle,
– I4: the invoice issuer unique identifier: a string of 14 digits,
– I5: the net amount of money requested for the provided service.

Each of the textual information is located in a region delimited by a rectangle
defined by the coordinates (x, y) (in pixels) of its top left corner and the coor-
dinates (z, q) of its bottom right corner. In the sequel, by the term region will
be meant a rectangular area in an invoice image. Hence, a region may be repre-
sented by the four coordinates (x, y, z, q) of its top left and bottom right corners.
As the information to be extracted are located in (rectangular) regions we adopt
a region-based extraction approach. The regions which the proposed approach
is based on are prototypes obtained from the more specific regions containing,
each, a single information. Now, the coordinates of the regions containing the
needed information are not available for the real-world scanned invoices at hand.
To cope with this, we develop a JAVA program, with a graphical interface, en-
abling to create synthetic invoice data simulating the real-world scanned invoices
along with the approximate coordinates of the specific rectangles containing the
needed information. For instance, from a real-world scanned invoice an initial
synthetic invoice is manually created. This synthetic invoice is a single black
and white A4 page. This page will contain a string corresponding to a plate
number approximately at the same location as the plate number information
appears in the real-world invoice. Additionally, the string will be inserted ap-
proximately with the same size and the same font as in the real-world invoice
in order to look like it. The string is inserted manually in the initial synthetic
invoice as one can do with a text editor. However, many strings contained in
the real-world invoice are not reproduced in the synthetic invoice. For instance,
the information about the emitter and the receiver (address, phone number,
...) are not reproduced because they are not relevant for the study. Thus, the
set of textual information I1 to I5 is placed manually on the synthetic invoice.
Then, from the obtained initial synthetic invoice a fixed number of synthetic
invoice images may be created automatically. In such synthetic invoice images,
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the information locations are maintained identically to the initial synthetic in-
voice but the contained string may vary. Finally, for each distinct emitter of the
real-world invoice images corpus, one initial synthetic invoice image is created
manually and a fixed number of synthetic invoice images is created automati-
cally from the initial synthetic invoice. A corpus of 1000 synthetic invoice images
is thus produced and, for each synthetic invoice, both the textual information
and the coordinates of the respective rectangles containing them, are stored in
a database. The original distribution per emitter of the real-world invoices is
preserved in the synthetic corpus of images. Synthetic data sets can then be
generated from this database for closer insight. An example of such data sets
is a set of (synthetic invoice) records described by 20 variables representing 5
blocks of 4 coordinates (x, y, z, q), each block being associated with one of the 5
considered information I1 to I5. It should be noted that this possibility to pro-
duce a synthetic representation of a real-world scanned invoice is an important
step for updating the proposed model, namely when one has to extract informa-
tion from previously unseen scanned invoice. This point will be discussed later
in Section 6.

2.2 Clustering of the synthetic data

As we mentioned in Section 2.1, the regions which our proposed approach is
based on are the so-called prototype regions, obtained from the specific regions
that contain, each, a single information. More precisely, a prototype region as-
sociated with a given information should be a region containing a homogeneous
set of specific regions related to various positions of this information in different
invoice images. This makes cluster analysis methods, (such as the partitioning
ones) good candidates for capturing such homogeneous sets of specific regions.
Then, in the next section, the construction of prototype regions from such ho-
mogeneous sets of specific regions is explained.
The synthetic data obtained from the previous phase can be partitioned either:
(a) in an overall view taking into account all of the 20 variables, or (b) in 5
independent views, each corresponding to one of the 5 information I1 to I5 and
taking into account, for each view, the 4 associated variables. The approach in
five independent views consists in creating five data sets: D1, D2, D3, D4 and
D5. A record in Di is described by the four coordinates of regions containing
information Ii. For both approaches we adopted the K-means [23] clustering
with Euclidean distance. K-means is a popular, simple and efficient algorithm
for cluster analysis. To determine the number of clusters, we conducted, on the
one hand, an (agglomerative) ascending hierarchical clustering with Ward crite-
rion (clustering method based on a classical sum-of-squares criterion, producing
groups that minimize within-group dispersion) [24] and, on the other hand, ex-
ecutions of K-means for values of k between 2 and 18. Several validity criteria,
such as within cluster sum of squares, silhouette and Calinkski-Harabasz [33],
provided by the package clusterCrit of R software, were used to determine the
optimal number of clusters for each data set. It turns out that considering five
independent views leads to better clusters w.r.t. each of the considered validity
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criteria. Therefore, we adopt the option consisting in partitioning each of the 5
views. The best values of k obtained for the respective five views are shown in
Table 1.

Table 1. Number of clusters for data sets D1, D2, D3, D4 and D5.

D1: Info I1 D2: Info I2 D3: Info I3 D4: Info I4 D5: Info I5

k 10 10 10 3 10

2.3 Determination of the prototype regions

As we mentioned in the previous section, a prototype region associated with
an information should contain a homogeneous set of specific regions related to
various positions of this information in different invoice images.
Recall that for each information Ii, the associated data set Di is partitioned into
some number of clusters (see Table 1). Then, we associate to each of these clus-
ters, say C, a prototype region defined as the smallest rectangle R containing each
of the specific rectangles in C. Thus, we obtain 43 prototype regions R1,...,R43,
with the first 10 related to information I1, the next 10 to I2, the next 10 to I3,
the next 3 to I4 and the last 10 to I5. Figure 1 shows the prototype regions
related to information I4. The next step of the construction of our proposed
model is to set up pathways for efficiently browsing through the set of defined
prototype regions. Such pathways will be obtained from the concept lattice of a
suitably defined formal context.

3 Determination of pathways for browsing through the
prototype regions

So far, we indicated how we determine prototype regions containing the textual
information to be extracted. So we come to the fourth step in our approach,
namely, define pathways for efficiently browsing through the set of these proto-
type regions. For this, Formal Concept Analysis (FCA) appears very appropriate.
Indeed, the pathways we seek to determine may be obtained from the concept
lattice of a suitably defined formal context.

3.1 Construction of the concept lattice

Recall that a formal context is a triple K = (O,A,R), where O is a set of objects,
A a set of attributes and R ⊆ O × A a binary relation from O to A. A formal
concept of K is a pair (X,Y ) such that Y = X ′ = {a ∈ A : xRa for all x ∈ X}
and X = Y ′ = {x ∈ O : xRa for all a ∈ Y }. Note that the double application of
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Fig. 1. Prototype regions related to information I4.

the derivation operator (.)′ is a closure operator, i.e. (.)′′ is extensive, idempotent
and monotone. Sets X ⊆ O, Y ⊆ A, such that X = X ′′ and Y = Y ′′ are said to
be closed. The subset X ⊆ O is called the extent of the concept (X,Y ) and Y its
intent. The concept lattice of the formal context K [35], also known as the Galois
lattice of the binary relation R [2], is the (complete) lattice (L(K),≤), where
L(K) is the set of formal concepts of K and ≤ the subconcept/superconcept
partial order. Thus, a concept lattice contains a minimum (resp. a maximum)
element according to the relation ≤, called the bottom (resp. the top). In this
work, we consider the formal context where the objects are the invoice images
and the attributes the predicates Ii = j, where Ii, i = 1, . . . , 5 denotes the five
textual information mentioned in Section 2.1, and j = 1, . . . , 43 denotes the
ID of the 43 prototype regions R1,...,R43. An invoice on is in relation with a
predicate Ii = j if the textual information Ii is located at prototype region Rj
in the invoice on. A summary of this formal context is shown in Table 2.

3.2 Determination of paths from the concept lattice

Recall that, given a formal context K = (O,A,R), an association rule is a pair
(X,Y ), denoted as X → Y , where X and Y are disjoint subsets of A [1]. The set
X is called the antecedent of the rule X → Y and Y its consequent. The support
of an association rule X → Y is the proportion of objects that contain all the

attributes in X ∪ Y , i.e. |(X∪Y )′|
|O| . The confidence of X → Y is the proportion of

objects that contain Y , among those containing X. A (support,confidence)-valid
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Table 2. Part of the Formal context of invoices data sets.

I1
=

1
I1

=
2

I1
=

3
I1

=
4

I1
=

5
I1

=
6

I1
=

7
I1

=
8

I1
=

9
I1

=
1
0

... I4
=

3
1

I4
=

3
2

I4
=

3
3

I5
=

3
4

I5
=

3
5

I5
=

3
6

I5
=

3
7

I5
=

3
8

I5
=

3
9

I5
=

4
0

I5
=

4
1

I5
=

4
2

I5
=

4
3

o1 X ... X X

... ...

o895 X ... X X

... ...

o1000 X ... X X

association rule is an association rule whose support and confidence are at least
equal to a fixed minimum support threshold and a fixed minimum confidence
threshold, respectively. An approximate association rule is an association rule
whose confidence is less than 1. When the minimum support threshold is set to
0, the Luxenburger basis of approximate association rules is the set of rules of
the form X → Y \X where X = X ′′, Y = Y ′′, X ⊂ Y and there is no Z such
that Z ′′ = Z and X ⊂ Z ⊂ Y [21].
The Luxenburger basis can be visualized directly in the line diagram of a concept
lattice. Each approximate rule in the Luxenburger basis corresponds exactly to
one edge in the line diagram. The line diagram of a lattice contains paths by
which one can move from the top concept to the bottom one. The pathways
we adopt for browsing through the set of prototype regions are exactly those
corresponding to sequences of association rules of the Luxenburger basis, i.e.
top-down consecutive edges in the concept lattice. In other words, a pathway
is a sequence Y0 → Y1 → ... → Yn, where Y0 is the intent of the top formal
concept and for all 0 ≤ i < n, Yi → Yi+1 is an association association rule
of the Luxenburger basis. Given a node of the concept lattice, there are as
many approximate association rules of the Luxenburger basis whose antecedent
is the intent of this node, as are the children nodes of this node in the concept
lattice. Between two approximate association rules having the same antecedent,
the one with highest support is considered first. For instance, let a pathway
p1: I5=42 → {I1=9, I3=25} holds with a support of 4% and a pathway p2:
I5=42 → {I2=19, I3=28} holds with a support of 6%. In the aim to extract
information I1 to I5 from a candidate invoice image, and supposing that I5=42
is the lattice top node’s direct child node which holds the highest support value,
prototype region R42 is visited first in order to find information I5. Then, using
pathway p2, prototype regions R19 and R28 are visited for finding information
I2 and I3 respectively. When, an information Ii is not found in a prototype
region given by pathway p2, so p1 may be used to find it. Thus, all approximate
association rules given by the Luxenburger basis are used for information I1 to
I5 localization and extraction. In systems, such as, CREDO [8] and SearchSleuth
[12] the browsing strategy consists in focusing on a concept and its neighbors.
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The effectiveness and performance for using this type of strategy in Web search
have been demonstrated in [8, 12].

4 Textual information extraction

To extract the textual information of interest, we perform an optical character
recognition (OCR) engine on prototype regions, using the pathways determined
in the previous step. Recall that a pathway is a sequence Y0 → Y1 → ... → Yn,
where Y0 is the intent of the top formal concept and for all 0 ≤ i < n, Yi → Yi+1

is an approximate association rule of the Luxenburger basis. It should be noted
that each node Yα in such a sequence represents a set of predicates “Ii=j” in-
dicating that information Ii belongs to prototype region Rj . First, the set of
pathways is ordered by descending support value of the intents. Then, in each
node given by a pathway, an OCR engine is performed on each prototype region
in order to extract the corresponding information Ii. In formal language theory,
a regular expression is a sequence of characters that defines a search pattern,
mainly for use in pattern matching with strings. For each sought information Ii,
a regular expression is built and then used to check whether the extracted string
(by the OCR engine) matches with the given information.
In the literature, approaches such as in [34, 18, 19] are based on concept lattice
classifier and use a concept lattice for a classification task. Such approaches aim
to improve the task of character or symbol recognition in images. In [34], the
authors developed a recognition system named Navigala and fitted to recognize
noisy graphical objects and especially symbols images in technical documents
such as architectural plans or electrical diagrams. The authors noted that Navi-
gala is somewhat generic and can be successfully applied to other types of data.
In [18], the authors proposed modifications of some classifiers (naive Bayes, near-
est neighbor and random forest classifiers) in order to use the modified classifiers
as a part of the ABBYY OCR Technologies recognition schema for its perfor-
mance improving. The authors note that their approach based on random forest
can be applied to combine results of concept lattice classifiers.
In this paper, the task of text extraction is done with a free OCR engine named
Tesseract OCR (https://github.com/tesseract-ocr). Tesseract OCR was chosen
because it is a free software providing a JAVA API. In this paper, we focus
on the textual information localization task in administrative document images.
Indeed, OCR engine such as ABBYY OCR has a better recognition rate than
free OCR such as Tesseract OCR, but both are not able to localize or pick out a
given information such as the net amount in invoice images. Their task is just to
transform, as efficiently as possible, the text contained in images into plain text.
In this work, we propose to combine the proposed localization approach (based
on clustering analysis and navigation in a concept lattice) with any OCR engine
in order to extract a given information in document images without browsing
and recognizing the entire images.
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5 Experimental results

We achieved an experiment in order to test the proposed model for textual
information extraction in real-world invoice images. The experiment consists
in extracting information I1 to I5, in the set of 1000 real-word invoice images
(Section2.1). Despite the fact that the approach was trained and tested with
good results on the synthetic data, in this section we present test results of the
approach on real-world invoice images. Indeed, the corpus of real-world invoice
images contains some noise which is not present in the synthetic invoice images.
The real-world invoice images may contain colored images such as a logo, shadow
areas and handwritten text. Additionally, they may be scanned with poor qual-
ity and may present distortion. Thus, the corpus of real-world invoice images
seems to us to be quite interesting for testing the proposed textual information
localization and extraction model. We performed two types of extraction:

1. from full images: OCR is performed on the entire page images regardless to
specific regions;

2. from prototype regions, using the pathways presented in Section 3: OCR is
performed only on image sub-regions, using the pathways.

To perform OCR on images, the JAVA library of the free OCR engine named
Tesseract in its 3.02 version is used. We considered two measures:

1. the rate of correct information among the total number of sought information
(recall),

2. the rate of correct information among the total number of detected informa-
tion (precision).

On the one hand, a sought information is considered detected, if a string which
matches the corresponding regular expression is found. On the other hand, a
sought information is considered correctly extracted, if the extracted textual
information corresponds exactly to the visual information that should be read
in the image. For instance, let ’net amount’ be a sought information and assume
that the net amount is 107e in the invoice image. During the process, if the
retrieved information is “101e”, the net amount will not be considered correctly
extracted because the real net amount mentioned in the original invoice image is
“107e”. The results are presented in Table 3. On the one hand, despite the fact
that according to [25], the Tesseract OCR engine has accuracy of 70% for text
extraction in gray scale number plate images, we observe that the accuracy of the
OCR engine is weak for text extraction in real-world invoice images. On the other
hand, these results show that our proposed model improves significantly the
performance of the OCR engine. Note that a p-value of 8.799e-05 was obtained
for this experiment, which means that the results are significant.

6 Conclusion and perspectives

We presented a (prototype) region-based model for localizing and extracting
textual information in document images. Experimental results show that the
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Table 3. Results of experiments.

recall precision

OCR 29,84 % 37,36 %

OCR + pathways 35,88 % 50,46 %

proposed model improves significantly the correctness of a textual information
extraction process based on an OCR engine. This model is constructed in four
steps:

1. produce synthetic invoice data from real-world invoice images containing the
textual information of interest, along with their spatial positions;

2. partition the produced data;
3. derive the prototype regions from the obtained partition clusters;
4. derive pathways for browsing through the prototype regions, from the con-

cept lattice of a suitably defined formal context;

The Step 1 is important when one has to extract information from a previously
unseen invoice image. Indeed, if some information of such an invoice image are
not retrieved, then a synthetic representation of the considered invoice can be
produced, and this triggers incremental updates of the synthetic data sets, the
prototype regions, and the concept lattice. Our future work will focus on these
update processes, and compare them with those proposed in [3, 4, 9]. We also
plan to develop a classification model, as in [9], that will enable to predict the
invoice emitter based on the five textual information I1 to I5 considered in the
present paper. This will allow to easier retrieve the other textual information
the company is interested in: invoice number, invoice date, tax rate, tax due.
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Abstract. In this work, we present a sound and complete axiomatic
system for conditional attribute implications (CAI s) in Triadic Concept
Analysis (TCA). Our approach is strongly based on the Simplification
paradigm which offers a more suitable way for automated reasoning than
the one based on Armstrong’s Axioms. We also present an automated
method to prove the derivability of a CAI from a set of CAI s.

1 Introduction

Implications in FCA represent associations between two attribute sets, denoted
by X → Y , and capture an important knowledge hidden in the input data. They
also allow an alternate representation of the concept lattice and open the door
to their automated management through logic. Such a management is used, for
instance, to characterize representations of the whole knowledge by means of the
notion of implicational systems. There exist different axiomatic systems in FCA,
the first one is called Armstrong’s Axioms [1], but later, other equivalent logics
emerged [4, 5, 9].

The first study on triadic implications has been investigated by Biedermann [2]
and then an extended work has been poposed by Ganter and Obiedkov [6]. In
addition to a formal definition of implications and their language, we believe that
the introduction of a sound and complete inference system is needed to reason
about such implications and determine whether a given implication can be derived
from an implication basis. Soundness ensures that implications derived by using
the axiomatic system are valid in the formal context and completeness guarantees
that all valid implications can be derived from the implicational system.

As far as we know, there does not exist an axiomatic system in Triadic Concept
Analysis. The main goal of this paper is then to define a new axiomatic system
based on Simplification Logic [4] as an alternate view of the inference system
recently developed by the authors [12]. This new way also allows an efficient
automated reasoning, commonly called the implication problem, to determine if
a conditional attribute implication (CAI ) can be derived from a set of CAI s.

Given a set of dependencies Σ and a further dependency σ, the implication
problem means that one would like to check whether σ holds in all datasets
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satisfying Σ. This problem occurs in research areas such as database theory and
knowledge reasoning, and its solution allows the search for associations in an inte-
ractive and exploratory way rather than an exhaustive manner. Using Armstrong’s
axioms, many polynomial time algorithms for implication problem decision have
been defined and the closure of an attribute set has been exploited to solve it.

The remainder of this paper is organized as follows. In Section 2 we provide
a background on TCA. Section 3 briefly presents a logic for conditional attribute
implications called CAIL [12] while Section 4 describes a new axiomatic system
called CAISL that is more suitable for solving the implication problem in the
triadic framework. In Section 5 we establish equivalences derived from CAISL
between sets of CAI sand show how we can syntactically transform and simplify
a set of CAI s while preserving their semantics in the CAISL context. To check
whether a CAI holds for a given set of CAI s, we propose and illustrate a new pro-
cedure in Section 6. Finally, Section 7 summarizes our contribution and presents
further work.

2 Triadic Concept Analysis

As a natural extension to Formal Concept Analysis (FCA), theoretical foundations
of Triadic Concept Analysis have been investigated by Lehmann and Wille [8] who
were inspired by the philosophical framework of Charles S. Peirce [11] of three
universal categories. The input is a formal triadic context describing objects in
terms of attributes that hold under given conditions and the output is a con-
cept trilattice that allows the generation of triadic association rules, including
implications [2, 6, 7, 10].

Definition 1. A triadic context K = 〈G,M,B, I〉 consists of three sets: a set of
objects (G), a set of attributes (M) and a set of conditions (B) together with a
ternary relation I ⊆ G×M×B. A triple (g,m, b) in I means that object g possesses
attribute m under condition b.

Figure 1 shows a triadic context K := 〈G,M,B, I〉, where G = {1, 2, 3, 4, 5}
is a set of customers, M = {P,N,R,K,S} a set of suppliers and B = {a,b,d, e}
represents a set of products. The ternary relation gives information about the cus-
tomers and the suppliers from whom they buy products. For instance, Customer
1 buys from Supplier P products a,b and e.

K P N R K S

1 abe abe ad ab a
2 ae bde abe ae e
3 abe e ab ab a
4 abe be ab ab e
5 ae ae abe abd a

Fig. 1. A triadic context
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The derivation operators in Triadic Concept Analysis were introduced in [8].
If X1, X2 and X3 are subsets of G, M and B respectively, then one can get:

X ′
1 = {(aj , ak) ∈M×B | (ai, aj , ak) ∈ I for all ai ∈ X1}.

(X2, X3)′ = {ai ∈ G | (ai, aj , ak) ∈ I for all (aj , ak) ∈ X2×X3}.
In a similar way, X ′

2, (X1, X3)′, X ′
3 and (X1, X2)′ can be defined. As shown

in [13], the above family of operators, by setting a subset of objects, attributes
or conditions (respectively) yields Galois connections. In this paper, we use the
family of Galois connections associated with condition subsets. That is, given
C ⊆ B we consider the Galois connection between the lattices (2M ,⊆) and (2G,⊆)
as the pair of mappings:

(−, C)′ : 2G −→ 2M (−, C)′ : 2M −→ 2G

X1 7−→ (X1, C)′ X2 7−→ (X2, C)′

Thus, for each X1 ⊆ G and X2 ⊆ M , one has X2 ⊆ (X1, C)′ if and only if
X1 ⊆ (X2, C)′.

In a similar way as in dyadic FCA, the composition of both derivation opera-
tors leads to the notion of triadic concept.

Definition 2. A triadic concept of a triadic context is a triple (A1, A2, A3) with
A1 ⊆ G, A2 ⊆ M , A3 ⊆ B and A1×A2×A3 ⊆ I such that for X1 ⊆ G,X2 ⊆ M,
and X3 ⊆ B with X1×X2×X3 ⊆ I, the containments A1 ⊆ X1, A2 ⊆ X2, and
A3 ⊆ X3 always lead to (A1, A2, A3) = (X1, X2, X3). The subsets A1, A2 and A3

are called the extent, the intent and the modus of the triadic concept (A1, A2, A3)
respectively.

There are a few kinds of triadic implications with different semantics. Bieder-
mann [3] defines a triadic implication to be an expression of the form: (A→ B)C
where A and B are attribute sets and C is a set of conditions. This implication
is interpreted as: If an object has all attributes from A under all conditions from
C, then it also has all attributes from B under all conditions from C. Its formal
definition is the following:

Definition 3. Let K = 〈G,M,B, I〉 be a triadic context, X,Y ⊆ M and C ⊆ B.
The implication (X → Y )C holds in the context K iff (X, C)′ ⊆ (Y, C)′.

Ganter and Obiedkov [6] consider three kinds of triadic implications. We will
describe and make use of the following one which is stronger than Biedermann’s

expression and has another notation: X
C−→ Y,where X,Y ⊆M and C ⊆ B. Such

implication is called conditional attribute implication (CAI ) and is read as “X
implies Y under all conditions in C or any subset of it”.

Definition 4 (Conditional attribute implication). Let K = 〈G,M,B, I〉 be

a triadic context, X,Y ⊆ M and C ⊆ B. The implication X
C−→ Y holds in the

context K when (X, {c})′ ⊆ (Y, {c})′ for all c ∈ C.
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Notice that CAI s preserve the dyadic implications that hold for each elemen-
tary condition in C. The following proposition relates both notions of implications
and also shows that Biedermann’s definition is weaker than the CAI definition.

Proposition 1 ([6]). Let K = 〈G,M,B, I〉 be a triadic context, X,Y ⊆ M and

C ⊆ B. Then X
C−→ Y holds in K iff (X → Y )N also holds in K for all N ⊆ C.

The following example illustrates the above proposition.

Example 1. Let K be the triadic formal context given in Figure 1.

i) The CAI N
ae−→ P holds in K since the following implications are satisfied:

(N → P )a, (N → P )e, (N → P )ae.

ii) The Biedermann’s implication (N → P )abe is satisfied but the CAI N
abe−−→ P

does not hold because, for instance, (N → P )b is not satisfied.

Our objective in this paper is to provide inference mechanisms for a set of
CAI s.

To that end, a sound and complete axiomatic system is needed. As mentioned
earlier, we have introduced in [12] a novel logic for computing CAI s and reasoning
about them. This logic is briefly presented in the following section.

3 CAIL: Conditional Attribute Implication Logic

In this section, we describe CAIL, a logic for reasoning about CAI s in the frame-
work of TCA [12]. This logic is presented in a classical style by considering three
pillars: the language, the semantics and the inference system.

Language: As it has been outlined, we use the following language: given an at-
tribute set Ω and a set of conditions Γ , the set of well-formed formulas (here-

inafter, formulas or implications) is LΩ,Γ = {A C−→ B | A,B ⊆ Ω, C ⊆ Γ}.
In the sequel we use X,Y, Z,W to mean subsets of attributes (X,Y, Z,W ⊆ Ω)

and C, C1, C2 for subsets of conditions (C, C1, C2 ⊆ Γ ). For the sake of readability
of formulas, we omit the brackets and commas (e.g. abc denotes the set {a, b, c})
and, as usual, the union is denoted by set juxtaposition (e.g. XY denotes X ∪Y ).

Semantics: Based on Definition 4, the semantics is introduced by means of the
notions of interpretation and model. From a language LΩ,Γ , an interpretation is
a triadic context K = 〈G,M,B, I〉 such that M = Ω and B = Γ . A model for a

formula X
C−→ Y ∈ LΩ,Γ is an interpretation that satisfies X

C−→ Y in K. In this

case, we write K |= X
C−→ Y .

As usual, for Σ ⊆ LΩ,Γ , an interpretation K is a model for Σ (briefly, K |= Σ)

if K |= X
C−→ Y for each X

C−→ Y ∈ Σ. Similarly, Σ |= X
C−→ Y states that X

C−→ Y

is a semantic consequence of Σ, i.e. every model for Σ is also a model for X
C−→ Y .
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Syntactic inference: The syntactic derivation in CAIL is denoted by the symbol
`C and covers two axiom schemes and four inference rules.

Definition 5. The CAIL axiomatic system consists of the following rules:

[Non-constraint] `C ∅ ∅−→ Ω.

[Inclusion] `C XY
Γ−→ X.

[Augmentation] X
C−→ Y `C XZ

C−→ Y Z.

[Transitivity] {X C1−→ Y, Y
C2−→ Z} `C X

C1∩C2−−−−→ Z.

[Conditional Decomposition] X
C1C2−−−→ Y `C X

C1−→ Y .

[Conditional Composition] {X C1−→ Y,Z
C2−→W} `C XZ

C1C2−−−→ Y ∩W .

The derivation notion is introduced as usual: For a given setΣ ⊆ LΩ,Γ and ϕ ∈
LΩ,Γ , we state that ϕ is derived (or inferred) from Σ by using the CAIL axiomatic
system, denoted by Σ `C ϕ, if there exists a chain of formulas ϕ1, . . . , ϕn ∈ LΩ,Γ
such that ϕn = ϕ and, for all 1 ≤ i ≤ n, ϕi is either an axiom, an implication in Σ
or is obtained by applying the CAIL inference rules to formulas in {ϕj | 1 ≤ j < i}.

Soundness and completeness: In [12], we prove that every model of Σ is a model

of X
C−→ Y iff such implication can be derived syntactically from Σ using the

CAIL axiomatic system, i.e.

Σ |= X
C−→ Y if and only if Σ `C X

C−→ Y

4 CAISL: Simplification Logic for CAI s

Once the preliminary results have been introduced, we now present a new ax-
iomatic system which is more suitable for automated reasoning. We will use the
same language and semantics provided in the previous section but give a novel
equivalent axiomatic system based on simplification paradigm [4]. For this ax-
iomatic system, the symbol `S denotes the syntactic derivation.

Definition 6. The CAISL axiomatic system has two axiom schemes:

[Non-constraint] `S ∅ ∅−→ Ω.

[Reflexivity] `S X
Γ−→ X.

and four inference rules:

[Decomposition] {X C1C2−−−→ Y Z} `S X
C1−→ Y .

[Composition] {X C1−→ Y,Z
C2−→W} `S XZ

C1∩C2−−−−→ YW .

[Conditional Composition] {X C1−→ Y,Z
C2−→W} `S XZ

C1C2−−−→ Y ∩W .

[Simplification] If X ∩ Y = ∅,
{X C1−→ Y,XZ

C2−→W} `S XZrY C1∩C2−−−−→WrY.
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The two axiom schemes in CAISL have the following interpretations respec-
tively: (1) all attributes hold for all objects under a void condition, and (2) X
always implies itself under all conditions.

The key statement is that both axiomatic systems are equivalent as the follow-
ing theorem proves. However, as we will show below, CAISL is more appropriate
for developing automated methods to reason about implications.

Theorem 1 (Equivalence between CAIL and CAISL). For any Σ ⊆ LΩ,Γ
and X

C−→ Y ∈ LΩ,Γ , one has

Σ `S X
C−→ Y if and only if Σ `C X

C−→ Y

Proof. To prove the equivalence between both logics, we will show that the infer-
ence rules of CAISL can be derived from those in CAIL and vice versa.

i) Inference rules derived from CAIL

[Reflexivity]:

1. X
Γ−→ X . . . . . . . . . . . . . Inclusion.

[Decomposition]:

1. X
C1C2−−−→ Y Z . . . . . . .Hypothesis.

2. Y Z
Γ−→ Y . . . . . . . . . . . Inclusion.

3. X
C1C2−−−→ Y . . . . . . . . . .1, 2 Trans.

4. X
C1−→ Y . . . . .3 Cond. Decomp.

[Composition]:

1. X
C1−→ Y . . . . . . . . . . Hypothesis.

2. Z
C2−→W . . . . . . . . . . Hypothesis.

3. XZ
C1−→ Y Z . . . . . . . . . . .1 Augm.

4. Y Z
C2−→ YW . . . . . . . . . . 2 Augm.

5. XZ
C1∩C2−−−−→ YW . . . . . 3, 4 Trans.

[Simplification]:

1. X
C1−→ Y . . . . . . . . . . Hypothesis.

2. XZ
C2−→W . . . . . . . . Hypothesis.

3. XZrY Γ−→ X . . . . . . . Inclusion.
4. W

Γ−→WrY . . . . . . . . Inclusion.

5. XZ
C2−→WrY . . . . . 2, 4 Trans.

6. XZrY C1−→ Y . . . . . . 3, 1 Trans.

7. XZrY C1−→ XY Z . . . . 6 Augm.

8. XY Z
C2−→WY . . . . . . . 5 Augm.

9. XZrY C1∩C2−−−−→WY 7, 8 Trans.

10. XZrY C1∩C2−−−−→ W rY . 9 De-
comp.

ii) Inference rules derived from CAISL

[Inclusion]:

1. XY
Γ−→ XY . . . . . . . Reflexivity.

2. XY
Γ−→ Y . . . . . . . . . . 1 Decomp.

[Augmentation]:

1. X
C−→ Y . . . . . . . . . . . Hypothesis.

2. Z
Γ−→ Z . . . . . . . . . . . . .Reflexivity.

3. XZ
C−→ Y Z . . . . . . . . . 1, 2 Comp.

[Transitivity]:

1. X
C1−→ Y . . . . . . . . . . . Hypothesis.

2. Y
C2−→ Z . . . . . . . . . . . Hypothesis.

3. X
C1−→ Y rX . . . . . . . 1 Decomp.

4. Y
C2−→ ZrY . . . . . . . . .2 Decomp.

5. X
Γ−→ X . . . . . . . . . . . . Reflexivity.

6. X
Γ−→ ∅ . . . . . . . . . . . . . 5 Decomp.

7. XY
C2−→ ZrY . . . . . . 4, 6 Comp.

8. Y rX Γ−→ Y rX . . . .Reflexivity.

9. X
C1∩C2−−−−→ ZrY . . . . . 3, 7 Simp.

10. X
C1∩C2−−−−→ Y Z . . . . . . 1, 9 Comp.

11. X
C1∩C2−−−−→ Z . . . . . . . 10 Decomp.

[Conditional Decomposition]:

1. X
C1C2−−−→ Y . . . . . . . . . Hypothesis.

2. X
C1−→ Y . . . . . . . . . . . . 1 Decomp.

ut
Since the two axiomatic systems are equivalent, in the sequel we will omit the

subscript in the syntactic derivation symbol using simply `.
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5 CAISL Equivalences

In this section, we introduce several results which constitute the basis of the
automated reasoning method that will be introduced in the next section. These
results illustrate how we can use CAISL as a framework to syntactically transform
and simplify a set of CAI s while entirely preserving their semantics. This is the
common feature of the family of Simplification Logics.

The notion of equivalence is introduced as usual: two sets of CAI s, Σ1 and
Σ2, are equivalent, denoted by Σ1 ≡ Σ2, when their models are the same. Equiv-
alently, Σ1 ≡ Σ2 iff Σ1 ` ϕ for all ϕ ∈ Σ2, and Σ2 ` ϕ for all ϕ ∈ Σ1.

Lemma 1. The following equivalences hold:

{X C1−→ Y,X
C2−→W}≡{X C1∩C2−−−−→ YW,X

C1rC2−−−→ Y,X
C2rC1−−−→W} (1)

{X C1−→ Y,XV
C2−→W}≡{X C1−→ Y,XV

C2rC1−−−→W,X(V rY )
C1∩C2−−−−→WrY } (2)

Proof. For Equivalence (1), first, we prove that X
C1∩C2−−−−→ YW , X

C1rC2−−−→ Y , and

X
C2rC1−−−→W can be inferred from {X C1−→ Y,X

C2−→W}:
– By applying Composition to X

C1−→ Y and X
C2−→W , we get X

C1∩C2−−−−→ YW .

– X
C1rC2−−−→ Y and X

C2rC1−−−→W are obtained by Decomposition.

On the other hand, we prove that X
C1−→ Y and X

C2−→ W can be inferred from

{X C1∩C2−−−−→ YW,X
C1rC2−−−→ Y,X

C2rC1−−−→W} by applying Conditional Composition.

For Equivalence (2), from {X C1−→ Y,XV
C2−→ W}, we infer XV

C2rC1−−−→ W by

applying Decomposition to XV
C2−→W . In addition, we infer XVrY C1∩C2−−−−→WrY

by applying Simplification to X
C1−→ Y and XV

C2−→W .

Finally, {X C1−→ Y,XV
C2rC1−−−→ W,XV rY C1∩C2−−−−→ W rY } ` XV

C2−→ W is

proved. By applying Reflexivity and Decomposition, we get XV
C1∩C2−−−−→ XV rY

and, by Transitivity with XVrY C1∩C2−−−−→WrY , one has XV
C1∩C2−−−−→WrY . Now,

by applying Composition to X
C1−→ Y and XV

C1∩C2−−−−→WrY , we infer XV
C1∩C2−−−−→

WY and, by Decomposition, XV
C1∩C2−−−−→ W . At last, by applying Conditional

Composition to XV
C1∩C2−−−−→W and XV

C2rC1−−−→W , we obtain XV
C2−→W . ut

The following theorem highlights a common characteristic of Simplification
Logics, which shows that inference rules can be read as equivalences that allow
redundancy removal.

Theorem 2. The following equivalences hold:

Axiom Eq.: {X ∅−→ Y } ≡ {X C−→ ∅} ≡ ∅
Decomposition Eq.: {X C−→ Y } ≡ {X C−→ Y rX}
Composition Eq.: {X C−→ Y,X

C−→W} ≡ {X C−→ YW}
Conditional Composition Eq.: {X C1−→ Y,X

C2−→ Y } ≡ {X C1C2−−−→ Y }
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Simplification Eq.: If X ∩ Y = ∅, then

{X C1C2−−−→ Y,XV
C2−→W} ≡ {X C1C2−−−→ Y,XV rY C2−→WrY }

Proof. The first equivalence is straightforward because both implications are ax-
ioms. For the rest of equivalences, the left to right inference is directly obtained
by applying the homonymous inference rule. Thus, we prove the right to left
inference:

i) X
C−→ XY is inferred by Composition of X

C−→ Y rX and X
C−→ X obtained

by reflexivity. Then, by applying Decomposition, one has X
C−→ Y .

ii) X
C−→ Y and X

C−→W are inferred by applying Decomposition to X
C−→ YW .

iii) X
C1−→ Y and X

C2−→ Y are inferred from X
C1C2−−−→ Y by applying Decomposi-

tion.
iv) It is a consequence of Axiom Equivalence and Equivalence (2) in Lemma 1.

ut
This section has been devoted to equivalences in CAISL of a CAI s set in order

to remove redundancy or, dually, to extend the set. The effect depends on the
direction we apply the equivalence. In next section, we are going to use other
equivalences where the empty set plays a main role. The Deduction Theorem
presented below gives to the empty set such a role. This theorem establishes the
necessary and sufficient condition to ensure the derivability of a CAI from a set
of CAI s.

6 Automated reasoning

This section shows the merits of CAISL for the development of automated meth-
ods. Specifically, we present a method that checks whether a CAI is derived from
a set of CAI s. The next theorem is the core of our approach in the design of the
automated prover.

Theorem 3 (Deduction). For any Σ ⊆ LΩ,Γ and X
C−→ Y ∈ LΩ,Γ , one has

Σ ` X C−→ Y if and only if Σ ∪ {∅ C−→ X} ` ∅ C−→ Y

Proof. Straightforwardly, we have Σ ` X C−→ Y implies Σ ∪ {∅ C−→ X} ` ∅ C−→ Y .

Conversely, assuming Σ ∪ {∅ C−→ X} ` ∅ C−→ Y , we have to prove that K |= Σ

implies K |= X
C−→ Y for each model K.

Consider K = 〈G,M,B, I〉 as a model of Σ. In order to prove (X, {c})′ ⊆
(Y, {c})′ for all c ∈ C in K, we build the context K1 = 〈G1,M,B, I1〉 where
G1 = (X, {c})′ and I1 = I ∩ (G1 ×M ×B).

Since K |= Σ, we have K1 |= Σ ∪ {∅ {c}−−→ X} and therefore, by hypothesis,

K1 |= {∅
{c}−−→ Y }. That is, (Y, {c})′ ⊇ (∅, {c})′ = G1 = (X, {c})′.

If we go back to the original triadic context K, (X, {c})′ remains unchanged
whereas (Y, {c})′ could grow up. Therefore, in K, one has (X, {c})′ ⊆ (Y, {c})′ for
all c ∈ C. ut

344 Estrella Rodŕıguez Lorenzo et al.



Function CAISL-Prover(Σ,X
C−→ Y )

input : A set of implications Σ, and a CAI X
C−→ Y

output: A boolean answer

begin
∆X := X × C
∆Y := (Y × C)r(X × C)
repeat

flag:=false

foreach U
C1−→ V ∈ Σ with C1 ∩ C 6= ∅ do

∆C := {c ∈ C1 ∩ C | U × {c} ⊆ ∆X}
if ∆C 6= ∅ then . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Equivalence (4)

∆X :=∆X ∪ (V ×∆C)

∆Y :=∆Y r(V ×∆C)

Σ :=Σr{U C1−→ V }
C1 := C1r∆C

if C1 6= ∅ then Σ :=Σ ∪ {U C1−→ V }
flag:=true

∆C := {c ∈ C1 ∩ C | V × {c} ⊆ ∆X}
if ∆C 6= ∅ then . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Equivalence (5)

if ∆C = C1 then Σ :=Σr{U C1−→ V }
else Σ :=(Σr{U C1−→ V }) ∪ {U C1r∆C−−−−→ V }

until (∆Y = ∅) or (flag=false)

return the boolean value (∆Y = ∅)

Theorem 3 guides the design of the automated prover. To check that the

formula X
C−→ Y is inferred from the set Σ we apply the family of simplification

equivalences iteratively - while it is possible - to the set Σ ∪{∅ C−→ X} looking for

∅ C−→ Y .
The following proposition revisits Theorem 2 by instantiating the particular

case of having the empty premise.

Proposition 2. The following equivalences hold:

{∅ C1−→ X,U
C2−→ V }≡{∅ C1−→ X,UrX C1∩C2−−−−→ V rX,U C2rC1−−−→ V } (3)

{∅ C1−→ X,U
C2−→ V }≡{∅ C1∩C2−−−−→ XV, ∅ C1rC2−−−→ X,U

C2rC1−−−→ V }, when U ⊆ X (4)

{∅ C1−→ X,U
C2−→ V }≡{∅ C1−→ X,U

C2rC1−−−→ V }, when V ⊆ X (5)

Proof. Equivalence (3) is a particular case of Equivalence (2). In particular, when
U ⊆ X, Equivalence (4) is obtained from (3) by applying Conditional Composition
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and Composition equivalences:

{∅ C1−→ X,U
C2−→ V } ≡ {∅ C1−→ X, ∅ C1∩C2−−−−→ V rX,U C2rC1−−−→ V }

≡ {∅ C1rC2−−−→ X, ∅ C1∩C2−−−−→ X, ∅ C1∩C2−−−−→ V rX,U C2rC1−−−→ V }
≡ {∅ C1rC2−−−→ X, ∅ C1∩C2−−−−→ XV,U

C2rC1−−−→ V }
Analogously, when V ⊆ X, by applying Equivalence (3) and Axiom equivalence,
one has Equivalence (5):

{∅ C1−→ X,U
C2−→ V } ≡ {∅ C1−→ X,UrX C1∩C2−−−−→ ∅, U C2rC1−−−→ V }

≡ {∅ C1−→ X,U
C2rC1−−−→ V }

ut

The equivalences introduced in Proposition 2 constitute the core of the func-
tion called CAISL-Prover, which acts as an automated prover for CAISL. The
prover works by splitting the original formula into its left and right hand sides
(see Theorem 2) and, by applying the equivalences, we check whether its right
side can be reduced to the empty set. The derivability is proved if and only if
such reduction is fulfilled.

Finally, we conclude this section with an illustrative example.

Steep State

∆X = {(M,a), (M, b), (M, d), (L, a), (L, b), (L, d)}
0 ∆Y = {(Q, a), (Q, b), (Q, d)}

Σ = {Q de−−→ M, M
a−→ T,Q

bd−−→ L,ML
bde−−−→ Q,T

ab−−→ RL,R
ae−−→ Q}

∆X = {(M,a), (M, b), (M, d), (L, a), (L, b), (L, d)}
1 ∆Y = {(Q, a), (Q, b), (Q, d)}

Σ = {Q 6de−−→M,M
a−→ T,Q

bd−−→ L,ML
bde−−−→ Q,T

ab−−→ RL,R
ae−−→ Q}

∆X = {(M,a), (M, b), (M, d), (L, a), (L, b), (L, d), (T, a)}
2 ∆Y = {(Q, a), (Q, b), (Q, d)}

Σ = {Q e−→ M,���
M

a−→ T,Q
bd−−→ L,ML

bde−−−→ Q,T
ab−−→ RL,R

ae−−→ Q}
∆X = {(M,a), (M, b), (M, d), (L, a), (L, b), (L, d), (T, a)}

3 ∆Y = {(Q, a), (Q, b), (Q, d)}
Σ = {Q e−→ M,����

Q
bd−−−→ L,ML

bde−−−→ Q,T
ab−−→ RL,R

ae−−→ Q}

∆X = {(M,a), (M, b), (M, d), (L, a), (L, b), (L, d), (T, a), (Q, b), (Q, d)}
4 ∆Y = {(Q, a)}

Σ = {Q e−→ M,ML
6b 6de−−−→ Q,T

ab−−→ RL,R
ae−−→ Q}

∆X = {(M,a), (M, b), (M, d), (L, a), (L, b), (L, d), (T, a), (Q, b), (Q, d), (R, a)}
5 ∆Y = {(Q, a)}

Σ = {Q e−→ M,ML
e−→ Q,T

6ab−−→ RL,R
ae−−→ Q}

∆X = {(M,a), (M, b), (M, d), (L, a), (L, b), (L, d), (T, a), (Q, b), (Q, d), (R, a), (Q, a)}
6 ∆Y = ∅

Σ = {Q e−→ M,ML
e−→ Q,T

b−→ R,R
6ae−−→ Q}

Output Return TRUE

Table 1. Illustration of the derivability of ML
abd−−→ Q
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Example 2. Let Σ = {Q de−→ M,M
a−→ T,Q

bd−→ L,ML
bde−−→ Q,T

ab−→ RL,R
ae−→ Q}

be a set of CAI s. The CAISL-Prover function proves that ML
abd−−→ Q is inferred

from Σ (see Table 1) and T
ab−→ Q is not inferred from Σ (see Table 2).

Step State

∆X = {(T, a), (T, b)}
0 ∆Y = {(Q, a), (Q, b)}

Σ = {Q de−−→ M, M
a−→ T,Q

bd−−→ L,ML
bde−−−→ Q,T

ab−−→ RL,R
ae−−→ Q}

∆X = {(T, a), (T, b)}
1 ∆Y = {(Q, a), (Q, b)}

Σ = {Q de−−→M,M
a−→ T,Q

bd−−→ L,ML
bde−−−→ Q,T

ab−−→ RL,R
ae−−→ Q}

∆X = {(T, a), (T, b)}
2 ∆Y = {(Q, a), (Q, b)}

Σ = {Q de−−→ M,���
M

a−→ T,Q
bd−−→ L,ML

bde−−−→ Q,T
ab−−→ RL,R

ae−−→ Q}

∆X = {(T, a), (T, b)}
3 ∆Y = {(Q, a), (Q, b)}

Σ = {Q de−−→ M,Q
bd−−−→ L,ML

bde−−−→ Q,T
ab−−→ RL,R

ae−−→ Q}

∆X = {(T, a), (T, b)}
4 ∆Y = {(Q, a), (Q, b)}

Σ = {Q de−−→ M,Q
bd−−→ L,ML

bde−−−→ Q,T
ab−−→ RL,R

ae−−→ Q}

∆X = {(T, a), (T, b), (R, a), (R, b), (L, a), (L, b)}
5 ∆Y = {(Q, a), (Q, b)}

Σ = {Q de−−→ M,Q
bd−−→ L,ML

bde−−−→ Q,����
T

ab−−→ RL,R
ae−−→ Q}

∆X = {(T, a), (T, b), (R, a), (R, b), (L, a), (L, b), (Q, a)}
6 ∆Y = {(Q, b))}

Σ = {Q de−−→ M,Q
bd−−→ L,ML

bde−−−→ Q,R
6ae−−→ Q}

Loop 2

∆X = {(T, a), (T, b), (R, a), (R, b), (L, a), (L, b), (Q, a)}
7 ∆Y = {(Q, b))}

Σ = {Q de−−→M,Q
bd−−→ L,ML

bde−−−→ Q,R
e−→ Q}

∆X = {(T, a), (T, b), (R, a), (R, b), (L, a), (L, b), (Q, a)}
8 ∆Y = {(Q, b))}

Σ = {Q de−−→ M,Q
6bd−−−→ L,ML

bde−−−→ Q,R
e−→ Q}

∆X = {(T, a), (T, b), (R, a), (R, b), (L, a), (L, b), (Q, a)}
9 ∆Y = {(Q, b))}

Σ = {Q de−−→ M,Q
d−→ L,ML

bde−−−→ Q,R
e−→ Q}

∆X = {(T, a), (T, b), (R, a), (R, b), (L, a), (L, b), (Q, a)}
10 ∆Y = {(Q, b))}

Σ = {Q de−−→ M,Q
d−→ L,ML

bde−−−→ Q,R
e−→ Q}

Output Return FALSE

Table 2. Illustration of the non derivability of T
ab−→ Q

7 Conclusion and Future Work

We have proposed a logic named CAISL to deal with conditional attribute impli-
cations in Triadic Concept Analysis. Its soundness and completeness have been
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proved by establishing the equivalence between the axioms and rules of CAISL
and those of CAIL - a recently developed solution [12]. This novel approach is
strongly based on the Simplification paradigm which is a useful formalism to de-
velop automated methods. In this direction, CAISL has been used to build an
automated prover to check the derivability of a CAI from a set of CAI s, which
is an important issue in data and knowledge management.

The use of a logic-based approach is a challenging but very interesting issue
that has not been explored in the TCA framework yet. Our short-term research
activity is to adapt our proposal to other kinds of triadic implications and analyze
the interplay between them.
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Abstract. Traditionally, FCA can be used as a tool for eliciting from
data a class schema in the form of either a set of attribute implications
or a concept lattice. However, such a schema does not necessarily fit the
point of view of a domain expert for different reasons, e.g. noise, errors or
exceptions in the data. For example, in the domain of animals, an expert
may expect that the rule “mammal implies do not lay eggs” holds, while
this may not be the case if the platypus is among the objects in the formal
context. In this paper, we propose to bridge the possible gap between the
representation model based on a concept lattice and the representation
model of a domain expert. The knowledge of the expert is encoded as a set
of attribute dependencies or constraints which is “aligned” with the set of
implications provided by the concept lattice, leading to modifications in
the original concept lattice. The method can be generalized for generating
lattices satisfying constraints based on attribute dependencies and using
extensional projections. This method also allows the experts to keep a
trace of the changes occurring in the original lattice and the revised
version, and to assess how concepts in practice are related to concepts
automatically issued from data.

Keywords: Formal Concept Analysis, projection, attribute implication,
attribute dependency

1 Introduction

Formal Concept Analysis (FCA) [1] is a classification method which is helpful
for the conceptualisation step in building ontologies [2]. FCA elicits from data a
class schema in the form of either a set of attributes implications or a concept
lattice. The concept lattice can be interpreted as a knowledge model in the form
of a concept hierarchy and the logical structures of formal concepts and con-
cept lattices are effective in supporting human reasoning [3]. However, building
knowledge bases is a cognitive process and does not obey to strict and formal
rules as domain experts may understand the domain in a different way than what
is represented in data. Thus, often there exists a gap between the representation

c© Marianne Huchard, Sergei O. Kuznetsov (Eds.): CLA 2016, pp. 349–360,
ISBN 978-5-600-01454-1, National Research University Higher School of Economics,
2016.



model based on a concept lattice and the representation model as imagined by
a domain expert. In order to bridge this gap, researchers [4–6] have tried to
integrate into lattices experts’ knowledge in the form of dependencies between
attributes. In these approaches, attribute dependencies serve as constraints that
lead to more comprehensible structures of formal concepts for domain experts:
formal concepts which satisfy the constraints are then provided to experts, and
formal concepts which do not satisfy the constraints are disregarded.

Accordingly, in this paper, we introduce a formal method for integrating
expert constraints into concept lattices in such a way that we can maintain the
lattice structure as this structure is effective in supporting human reasoning [3].
Moreover, instead of providing only concepts that satisfy experts’ knowledge,
the method allows experts to keep a trace of changes occurring in the original
lattice and the final constrained version, and to assess how concepts in practice
are related to concepts automatically issued from data.

In this work, we “align” a set of given attribute dependencies with the set of
implications provided by the concept lattice, leading to modifications in the orig-
inal lattice. The method extends the definition of dependencies between single
attributes introduced in [5] to the case of dependencies between attribute sets,
and allows domain experts to have more possibilities for expressing constraints.
We are able to build the constrained lattices without changing data and provide
the trace of changes by using extensional projections [7, 8] over lattices. From
an original lattice, two different projections produce two different constrained
lattices, and thus, the disagreement between the representation model based on
a concept lattice and the representation model as imagined by a domain expert
is filled with projections.

The paper is organized as follows. Firstly, we introduce some basic notions
that provide the foundations of our work. Next, we detail the method for gener-
ating constrained lattices, providing the trace of changes by using projections.
Finally, we conclude our work and draw some perspectives over the approach.

2 Preliminaries

In the following, we introduce some important definitions that support our work.
Firstly, we introduce attribute implications and dependencies and secondly, we
describe projections in a concept lattice. For the following definitions, we use
the notation of FCA in [1], where the formal context (G,M, I) is composed of a
set of objects G, a set of attributes M and an incidence relation set I ⊆ G×M .
An example of such formal context is presented in Table 1.

2.1 Attribute Implication and Dependencies

Implications in a formal context represent dependency relations between at-
tributes existing in data. In a nutshell, given an implication x → y we can
understand that “all objects having x also have y”. Attribute implications can
be read off directly from a formal context as stated in Definition 1.
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Definition 1 (Attribute Implication [1]) An implication between sets of at-
tributes X,Y ⊆ M in a formal context (G,M, I) is denoted by X → Y , where
every object having all the attributes from X has also all the attributes from Y ,
i.e. X ′ ⊆ Y ′.

Following Definition 1, attribute implications can be verified in the formal
context and in the concept lattice thanks to Propositions 1 and 2.

Proposition 1 ( [1]). An implication X → Y between sets of attributes X,Y ⊆
M holds in (G,M, I) iff Y ⊆ X ′′. It then automatically holds in the set of all
concept intents in the concept lattice as well.

Proposition 2 ( [1]). An implication X → Y between sets of attributes X,Y ⊆
M holds in a concept lattice iff X → m, ∀m ∈ Y , where X → m ⇐⇒
(X ′, X ′′) ≤ (m′,m′′). (m′,m′′) is the attribute concept of m.

Animal h
a
s
t
w
o
l
e
g
s

(
m
1
)

l
a
y
s
e
g
g
s

(
m
2
)

c
a
n
f
l
y

(
m
3
)

h
a
s
w
i
n
g
s

(
m
4
)

h
a
s
f
i
n
s

(
m
5
)

h
a
s
f
e
a
t
h
e
r
s

(
m
6
)

h
a
s
m
i
l
k

(
m
7
)

h
a
s
b
a
c
k
b
o
n
e

(
m
8
)

l
i
v
e
s
i
n

w
a
t
e
r

(
m
9
)

bear (g1) x x x

carp (g2) x x x x

chicken (g3) x x x x x x

crab (g4) x x

dolphin (g5) x x x x x

honeybee (g6) x x x

penguin (g7) x x x x x x

wallaby (g8) x x x

Table 1: Formal context of animals

For example, the implication m7:has milk → m8:has backbone holds in the
formal context of Table 1. Different from implications, attribute dependencies do
not arise from data. They are dependency relations that experts expect to exist
as attribute implications. In the following, we provide the definition of attribute
dependencies based on [5] and [6].

Definition 2 (Attribute Dependency [6]) An attribute dependency is in the
form x ≺ y, where attribute x is less important than attribute y and the presence
of x is not meaningful without the presence of y.
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Definition 3 (Formal Concept Satisfaction & Constrained Posets [5])
A formal concept (A,B) satisfies an attribute dependency x ≺ y between at-
tributes x and y iff whenever x ∈ B then y ∈ B.

(1) A concept lattice L constrained by an attribute dependency x ≺ y, is the
collection of all formal concepts from lattice L which satisfy x ≺ y.

(2) A concept lattice L constrained by a set of attribute dependencies D, is the
collection of all formal concepts from lattice L which satisfy all attribute
dependencies in D.

Notice that both collections are partially ordered subsets of the original lat-
tice L [5]. We will refer to them as constrained posets of lattice L w.r.t. depen-
dency x ≺ y (or w.r.t. the set of dependencies D). To illustrate Definitions 2
and 3 above, consider the formal context of animals in Table 1. The correspond-
ing concept lattice is shown in Fig. 1. The constrained poset w.r.t. attribute
dependency can fly ≺ has wings is the collection of formal concepts from the
lattice circled in blue in Fig. 1.

                                m3      m4

(m3’,m3’’)

(m4’,m4’’)

Fig. 1: The lattice constrained by m3 ≺ m4 and the trace of changes.
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2.2 Projections

Projections are mathematical functions that allow mapping extents or intents in
a concept lattice into “simpler” extents or intents, called extensional or inten-
sional projections respectively [8, 9]. Initially, projections are used for simplifying
descriptions of concepts in pattern structures [7, 10]. For our purpose, we use ex-
tensional projections.

Definition 4 (Extensional Projection [7]) An extensional projection ψ is
defined as a mapping verifying the following properties for each pair (A1, A2)
of extents of a lattice L: (1) if A1 ⊆ A2, then ψ(A1) ⊆ ψ(A2) (monotone), (2)
ψ(A1) ⊆ A1 (contractive), and (3) ψ(ψ(A1)) = ψ(A1) (idempotent).

Let L be a lattice, and ψ be an extensional projection of L, then the set
of extents E in L can be divided into two sets: E = {e ∈ E|ψ(e) = e} ∪ {e ∈
E|ψ(e) ⊂ e}. The set {e ∈ E|ψ(e) = e} is called the fixed point of ψ.

The mapping of a concept in a lattice onto the corresponding concept in the
projected lattice can be computed thanks to Proposition 3.

Proposition 3 ([9]). Let L be a lattice, and ψ be an extensional projection of
L, then a concept (A,B) in L is projected in the corresponding lattice ψ(L) onto
the concept (A1, B1) such that A1 = ψ(A) and B1 = A′

1.

It is worth noticing that the “projected lattice” which is the set of all pro-
jected concepts (or extents) is actually a concept lattice. For our purposes, this
adds the benefit that the result of constraining a lattice through a projection pre-
serves the lattice structure. Hereafter, we will refer to the result of constraining
the lattice through a projection as a constrained lattice.

3 Projections for Generating Constrained Lattices

As previously discussed, in a given formal context, there exists some implications
that represent attribute dependencies among attributes. However, implications
which can be checked within the concept lattice are usually not in the data.
For example, some objects may have missing attribute associations or may have
wrongly assigned attributes. In a different scenario, an expert may simply want
to observe formal concepts aligned through her particular point-of-view of the do-
main. Thus, often there exists a disagreement between the relations of attributes
in the data and the relations of attributes as a domain expert understands them.

3.1 Discussion about Constrained Lattices

In order to bridge the disagreement between the representation model based on a
concept lattice and the representation model as imagined by a domain expert, we
“align” a set of given attribute dependencies with the set of implications provided
by the concept lattice. According to Definitions 1 and 2, if an implication x→ y

Building a Domain Knowledge Model Based on a Concept Lattice 353



holds in a lattice, then that lattice satisfies the attribute dependency x ≺ y. To
build a lattice satisfying a set of attribute dependencies, we look for a lattice
that satisfies the corresponding set of attribute implications. In our setting, we
want to use a well-founded process based on projections. Thus, we provide a
method for projecting the lattice in such a way that the lattice structure is
preserved. Moreover, we provide experts with a mapping of concepts in the
original lattice onto the corresponding concepts in the revised version to make
visible the changes in the lattice. We refer to these mappings as the trace of
changes occurring in the original lattice and the revised version. We achieve this
by using extensional projections over lattices.

We illustrate this scenario where a lattice L is mapped onto a lattice L1

which is a revised version w.r.t. the attribute dependency x ≺ y. Let us call this
mapping ς.

We observe the following characteristics of ς: (i) ς reduces the size of the
lattice L because the constrained lattice L1 do not contain formal concepts in
L which do not satisfy the constraints; (ii) In order to get formal concepts in
L satisfying the constraints, ς replaces the concept extents in that lattice with
smaller sets of objects which are still extents. This replacement may result in
a loss of information. Hence, the trace of changes should be kept as it may be
useful for domain experts to be aware that some concepts in the lattice will be
lost some important objects. Indeed, (i) and (ii) are consequences of the fact
that ς is an extensional projection. ς is a special case of projections from [7, 8].
This extensional projection does not create new extents, it replaces the concept
extents in the lattice with smaller extents.

In the following, we describe how extensional projection is defined in two
different cases, namely for a single attribute dependency and for a set of attribute
dependencies.

3.2 Projections for Constrained Lattices w.r.t. Dependencies
between Attribute Sets

Let us consider the problem of finding an extensional projection ψ : L → L1,
where L is a concept lattice which does not satisfy the implication x → y be-
tween attributes x, y ∈ M , L1 is the projected lattice of L which satisfies the
implication x→ y.

The following propositions state the main properties of ψ.

Proposition 4. Let L be a concept lattice which does not satisfy the implication
x→ y, then x′ 6⊆ y′ =⇒ x′ ∩ y′ ⊂ x′.

Proposition 5. Let L be a concept lattice which does not satisfy the implication
x → y, and ψ be an extensional projection of L such that the projected lattice
satisfies x→ y, then ψ(x′) = x′ ∩ y′.

Proof. see Appendix
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Proposition 5 gives us an important property of ψ to observe changes in
lattice L: From lattice L which does not satisfy the implication x → y, we
are going to project x′ in lattice L to x′ ∩ y′ to get the projected lattice that
satisfies the implication x→ y. And this follows the properties of projections as
ψ(x′) = x′ ∩ y′ ⊂ x′.

Given an extensional projection ψ of L such that ψ(x′) = x′ ∩ y′, extents A
in L can be divided into three categories as shown in Fig. 2.

– Category I contains all extents A that are subsumed by x′ ∩ y′, i.e. A ⊆
(x′ ∩ y′) ⊂ x′ (x′ ∩ y′ ⊂ x′ by Proposition 4).

– Category II contains all extents A that are subsumed by x′ but not subsumed
by x′ ∩ y′, i.e. A ⊆ x′, A 6⊆ (x′ ∩ y′).

– Category III contains extents A that are not in categories I, II, i.e. A 6⊆ x′.

'' yx

I
II

III
'x



┬ 



Fig. 2: Three possible categories of extents in lattice L when ψ(x′) = x′ ∩ y′.

Consider an elementA in Category I. As the objects in the set x′∩y′ have both
attributes x and y, the concept with extent x′ ∩ y′ in L satisfies the implication
x→ y. Because A is subsumed by x′∩y′, the concept with extent A in L satisfies
x→ y and remains the same in the projected lattice, i.e. ψ(A) = A. Category I
is a component of the fixed point of the projection ψ.

Consider an element A in Category III. Because the objects in A do not have
attribute x, the concept with extent A in L satisfies the implication x→ y and
remains the same in the projected lattice, i.e. ψ(A) = A. Category III is also a
component of the fixed point of the projection ψ.

Consider an element A in Category II. We have: 1) ψ(A) ⊆ A by the con-
tractive property of projections; 2) As A ⊆ x′, ψ(A) ⊆ ψ(x′) by the mono-
tonic property of projections. Moreover, ψ(x′) = x′ ∩ y′ by Proposition 5. So,
ψ(A) ⊆ x′ ∩ y′. As a result of 1) and 2), ψ(A) ⊆ A ∩ (x′ ∩ y′).
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In order to have the largest fixed point, we set ψ(A) = A∩ (x′ ∩ y′). ψ(A) =
A ∩ (x′ ∩ y′) complies with the properties of projections and the concept with
extent ψ(A) satisfies x → y because objects in ψ(A) = A ∩ (x′ ∩ y′) have both
attributes x and y. This introduces the fact that Category II constrains concepts
which are projected in such a way that ψ(A) = A ∩ (x′ ∩ y′).

Thus, the projection with the largest fixed point given by ψ(x′) = x′ ∩ y′ is:

ψ(A) =

{
A ∩ (x′ ∩ y′) if A ⊆ x′, A 6⊆ (x′ ∩ y′),
A otherwise.

(1)

This projection gives the projected lattice satisfying the implication x→ y.
This projection can be extended to support dependencies between attribute

sets of the form X ≺ Y , where X,Y ⊆ M . In such a case, the projection is
defined as:

ψ(A) =

{
A ∩ (X ′ ∩ Y ′) if A ⊆ X ′, A 6⊆ (X ′ ∩ Y ′),

A otherwise.
(2)

The trace of changes occurring in the original lattice L and the constrained
lattice L1 can be obtained thanks to Proposition 3.

Example 1. Consider the running example where the expert provides her knowl-
edge in the form of an attribute dependency m3:can fly ≺ m4:has wings. Ac-
cording to the data in Table 1: m3′={g3, g5, g6}, m4′={g3, g6, g7}, m3′ ∩
m4′={g3, g6}.

Applying Equation 2, the extensional projection ψ for generating the con-
strained lattice L1 from the original lattice L is:

ψ(A) =

{
A ∩ {g3, g6} if A ⊆ {g3, g5, g6}, A 6⊆ {g3, g6},
A otherwise.

(3)

Fig. 1 depicts the constrained lattice and the trace of changes provided by
the projection ψ. In Fig. 1, the formal concepts of the constrained lattice are
circled blue. The transformations correspond to: C4 → C12 ({g3, g5, g6} →
{g3, g6}), C9 → C18 ({g3, g5} → g3), and C15 → C19 (g5 → ∅). The other
transformation {g5, g6} → g6 does not apply as neither {g5, g6} or g6 are
extents in lattice L.

An interpretation of the change C4 in L to C12 in L1 according to the se-
mantics of the extensional projection is as follows. According to the data, ob-
jects g3:chicken, g6:honeybee are grouped together with object g5:dolphin to
form concept C4 whose intent is {m3:can fly}. According to the expert, animals
that can fly should also have wings (can fly ≺ has wings), g5:dolphin should
not be grouped together with g3:chicken and g6:honeybee to form a con-
cept. This is better represented by concept C12 whose extent is {g3:chicken,
g6:honeybee} and intent is {m2:lays eggs, m3:can fly, m4:has wings}. By
checking this change, we found that the data contain a noisy element: dolphins
can fly.
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3.3 Projections for Constrained Lattices w.r.t. Sets of Dependencies

A “naive” way to generate a constrained lattice satisfying a set of dependencies
consists in generating first a constrained lattice for each dependency, and then
getting the final constrained lattice by the intersection of these constrained lat-
tices. A question raised here: is there a “good” way to generate the constrained
lattice? In the following, we will show that dependencies should be treated fol-
lowing an order of projections.

Definition 5 ([9, 10]) Let L be a concept lattice, and ψ1, ψ2 be two extensional
projections of L, we say that ψ1 ≤ ψ2, iff there is some projection ψ defined on
ψ2(L) such that for all extent A in L, ψ1(A) = ψ ◦ ψ2(A). If ψ1(L) ⊆ ψ2(L),
then ψ1 ≤ ψ2.

Definition 5 states that actually projections can be ordered from “general”
to “specific”. If ψ1 is a projection over the projected lattice of ψ2, then we say
ψ1 is more specific than ψ2 or ψ2 is more general than ψ1.

There is a partial order on projections of a lattice given by Proposition 6.
This proposition has been proven in [10].

Proposition 6 ([10]). Extensional projections of a lattice L ordered by Def-
inition 5 form a semi-lattice (F ,∧), where the semi-lattice operation between
ψ1, ψ2 ∈ F is given by ψ1 ∧ ψ2 = ψ3 iff ψ3(L) = ψ1(L) ∩ ψ2(L).

The order on projections for generating constrained lattices can be charac-
terized by Proposition 7.

Proposition 7. Let L be a concept lattice, ψ1 be an extensional projection of L
such that the projected lattice satisfies the implication X1 → Y1, and ψ2 be an
extensional projection of L such that the projected lattice satisfies the implication
X2 → Y2, where X1, Y1, X2, Y2 ⊆M , we have:

1) If X1 ⊆ X2 and Y1 ⊆ Y2, then ψ1 ≤ ψ2.
2) If ψ1 ≤ ψ2, then the projected lattice given by ψ1 satisfies X1 → Y1 and

X2 → Y2.
3) There exists an extensional projection ψ3 of L such that ψ3(L) = ψ1(L) ∩

ψ2(L). ψ3 gives the constrained lattice that satisfies X1 → Y1 and X2 → Y2.

As a result of Proposition 7, given two dependencies between attribute sets,
we can order the projections corresponding to these dependencies as follows.
First, if one dependency depends on attribute sets that are included in the
attribute sets of the other dependency, then the projection of that dependency
is more specific than the projection of the other. Second, if one projection is
more specific than the other, then we can use the more specific projection for
generating the final constrained lattice . Third, we can use the projection that
is the meet of the two projections for generating the final constrained lattice.

Let us now go back to our scenario of generating a constrained lattice that
satisfies a set of dependencies. Let L be a concept lattice, and ψi be an ex-
tensional projection of L such that the projected lattice satisfies an implication
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Xi → Yi, where Xi, Yi ⊆M . The set of projections ψi can be ordered according
to the order of projections given by Proposition 7. This order forms a semi-
lattice given by Proposition 6. By Proposition 7, the projection that is the meet
of the most specific projections in this order gives the final constrained lattice
satisfying the set of implications.

According to the order of projections, we have two possible ways of generating
constrained lattices. The first way uses the meet of the most specific projections
in the order of the set of projections to generate the final constrained lattice.
The second way uses all the projections to generate a set of constrained lattices.
Applying the first or the second way to generate constrained lattices depends on
what experts need. The first way using the meet of the most specific projections
to generate the final constrained lattice is more efficient in computation than the
second way using all the projections to generate the corresponding constrained
lattices. However, by using the meet of the most specific projections to generate
the final constrained lattice, the first way only provides the trace of changes
between the original lattice and the final constrained lattice. In the case experts
need all the traces of changes, we need the second way using all the projections
to generate the corresponding constrained lattices.

Example 2. Consider the running example where the expert provides her knowl-
edge in the form of a set of dependencies di:

d1) {m3, m8} ≺ {m4},
d2) m3 ≺ m4,
d3) {m1, m2} ≺ {m3},
d4) m4 ≺ m3.

Let ψi be the extensional projection for generating the constrained lattice
satisfying dependency di, applying Equation 2, we have:

For d1 : ψ1(A) =

{
A ∩ {g3} if A ⊆ {g3, g5}, A 6⊆ {g3},
A otherwise.

(4)

For d2 : ψ2(A) =

{
A ∩ {g3, g6} if A ⊆ {g3, g5, g6}, A 6⊆ {g3, g6},
A otherwise.

(5)

For d3 : ψ3(A) =

{
A ∩ {g3} if A ⊆ {g3, g7}, A 6⊆ {g3},
A otherwise.

(6)

For d4 : ψ4(A) =

{
A ∩ {g3, g6} if A ⊆ {g3, g6, g7}, A 6⊆ {g3, g6},
A otherwise.

(7)

Lattices in Figs. 3, 4, 5 and 6 depict the constrained lattices and the traces
of changes provided by the projections ψ1, ψ2, ψ3, ψ4 respectively. In this set
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of projections, ψ2 ≤ ψ1 and ψ4 ≤ ψ3. We can see that the constrained lattice
ψ2(L) is included in ψ1(L) and ψ4(L) is included in ψ3(L).
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Fig. 3: The constrained lattice for d1.

0 

1 2 3 
4 

5 6 7 8 9 
10 

13 14 16 
17 12 

11 

18 20 15 21 

19 

43)
2

mmd 

Fig. 4: The constrained lattice for d2.
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Fig. 5: The constrained lattice for d3.
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Fig. 6: The constrained lattice for d4.

Let ψ5 be an extensional projection that is the meet of the most specific
projections: ψ5 = ψ2 ∧ ψ4. ψ5 can be defined such that:

ψ5(A) =





A ∩ {g3, g6} if A ⊆ {g3, g6, g7}, A 6⊆ {g3, g6},
A ∩ {g3, g6} if A ⊆ {g3, g5, g6}, A 6⊆ {g3, g6},
A otherwise.

(8)

1

2
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4

5

Fig. 7: The semi-lattice of projections.
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The set of projections ψi forms a semi-lattice as shown in Fig. 7. We have two
ways of generating the final constrained lattice. The first way uses the meet ψ5 of
the most specific projections. Lattice in Fig. 8 depicts the final constrained lattice
and the trace of changes between the original lattice and the final constrained
lattice provided by the projection ψ5. The second way uses all the projections to
have all the traces of changes. According to the semi-lattice of the projections,
because ψ2 ≤ ψ1 and ψ4 ≤ ψ3, in order to get all the traces of changes, ψ1 is
applied before ψ2 and ψ3 is applied before ψ4. By contrast, as ψ2 and ψ4 are
incompatible, it does not matter if ψ1 and ψ2 or ψ3 and ψ4 are applied first.
Thus, the projections can be applied according to either the order ψ1,ψ2,ψ3,ψ4,ψ5

or ψ3,ψ4.ψ1,ψ2,ψ5. The trace of changes can be either the chain of lattices in
Figs. 3, 4, 5, 6, 8 or lattices in Figs. 5, 6, 3, 4, 8. In both cases, experts still can
access the changes corresponding to each dependency.
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Fig. 8: The final constrained lattice and the trace of changes.

4 Related Work, Discussion and Conclusion

Taking into account expert knowledge in the form of dependencies between at-
tributes in concept lattices has been proposed by several researchers [11, 12, 4, 5].
[11, 12] extended attribute exploration to include background implications, i.e.
the implications that experts already know to be valid. In these approaches, they
trust the original data and experts have to provide new objects as counterexam-
ples. To deal with a situation such that experts know dependencies between at-
tributes, but they do not know any new objects to provide, the other approaches
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[4, 5] were proposed to build a concept hierarchy from a formal context extracted
from data and from a hierarchy of attributes provided by domain experts. Two
possible ways of adding knowledge to object descriptions were discussed in [4].
One way is to expand the formal context by adding to the description of each
object all attributes that are implied by the original attributes. Expanding the
context can lead to lose the original data and the formal context may become very
large. The other way is to work with an unexpanded formal context by adapting
the construction algorithms of lattices to extract formal concepts satisfying de-
pendencies. A similar idea was proposed by [5], in which the authors adapted an
incremental algorithm for computing constrained posets. By contrast, we do not
expand the formal context nor adapt the construction algorithms of lattices. Our
method uses projections to generate constrained lattices instead of constrained
posets and to provide the trace of changes.

To conclude, in this paper, we have presented a formal method based on
extensional projections for integrating expert knowledge into concept lattices in
such a way that the lattice structure and the trace of changes are preserved.
The expert knowledge is encoded as a set of attribute dependencies which is
aligned with the set of implications provided by the concept lattice. According
to the order of projections, the method offers two ways of generating constrained
lattices. The first way uses the meet of the most specific projections to generate
the final constrained lattice. The second way uses all the projections to generate
a set of constrained lattices. The first way is more efficient in computation, but
provides only the trace of changes between the original lattice and the final
constrained lattice while the second way provides all the traces of changes, but
less efficient in computation.

Currently, we are implementing the method for experiments with large datasets.
Future work includes defining intensional projections to integrate dependencies
between object sets. This is useful for many applications, e.g. when classifying
documents, this can be applied to integrate a partial order of documents from
experts into concept lattices. Another interesting application could be to com-
plete definitions in data, e.g. the method presented in this paper can be applied
to add implications that experts expect to exist.

Appendix

Proof (Proposition 5).

1) As the projected lattice satisfies the implication x → y, (ψ(y′), ψ(y′)′) ≥
(ψ(x′), ψ(x′)′) (by Proposition 2). So, ψ(x′) ⊆ ψ(y′).

2) ψ(y′) ⊆ y′ (by the contractive property of projections).
3) As a result of 1) and 2), we have ψ(x′) ⊆ ψ(y′) ⊆ y′.
4) ψ(x′) ⊆ x′ (by the contractive property of projections).
5) As a result of 3) and 4), we have ψ(x′) ⊆ x′ ∩ y′.
6) For any m ∈ M , m′ is the maximal set of objects having m in L. Since ψ

is contractive, this is also true in the projected lattice. Thus, ψ(x′) is the
maximal set of objects having attribute x in the projected lattice L1.
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7) Because the objects in the set x′ ∩ y′ have both attributes x and y, the
concept with extent x′ ∩ y′ in L satisfies x→ y and remains the same in L1.
So, x′ ∩ y′ exists in L1 and the objects in this set have attribute x.

8) As a result of 6) and 7), we have x′ ∩ y′ ⊆ ψ(x′).

As a result of 5) and 8), ψ(x′) = x′ ∩ y′.
Proof (Proposition 7).

1) Let ψ1(L), ψ2(L) be the projected lattices given by ψ1, ψ2 respectively. As
ψ1 ≤ ψ2, according to Definition 5, ∃ψ: ψ1(L) = ψ ◦ ψ2(L). Hence, ψ1(L) ⊆
ψ2(L). So, the projected lattice given by ψ1 satisfies X1 → Y1 and X2 → Y2.

2) In order to give proof that ψ1 ≤ ψ2, we will show that a projection ψ can
be defined on ψ2(L) such that ψ1(L) = ψ ◦ ψ2(L):

ψ1(A) =

{
ψ2(A) ∩ (X ′

1 ∩X ′
2) if A 6⊆ X ′

2, A 6⊆ X ′
1 ∩ Y ′

1 , A ⊆ X ′
1,

ψ2(A) otherwise.
(9)

3) This follows from Proposition 6 that the set of projections F over L is a
semi-lattice, then the meet ψ3 = ψ1 ∧ ψ2 must exist.
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Scalable Performance of FCbO Update
Algorithm on Museum Data
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Abstract. Formal Concept Analysis – known as a technique for data
analysis and visualisation – can also be applied as a means of creating
interaction approaches that allow for knowledge discovery within collec-
tions of content. These interaction approaches rely on performant algo-
rithms that can generate conceptual neighbourhoods based on a single
formal concept, or incrementally compute and update a set of formal
concepts given changes to a formal context. Using case studies based
on content from museum collections, this paper describes the scalabil-
ity limitations of existing interaction approaches and presents an imple-
mentation and evaluation of the FCbO update algorithm as a means of
updating formal concepts from large and dynamically changing museum
datasets.

1 Introduction

Formal Concept Analysis is best known as a technique for data analysis, knowl-
edge representation and visualisation. A number of case studies have been devel-
oped that also use FCA as a means of creating and visualising the semantic spaces
within museum collections – allowing users to visualise, explore and discover new
objects within these collections based on their associations and commonalities
with other objects. Some of these applications include Virtual Museum of the
Pacific [1], the Brooklyn Museum Canvas [2] and the A Place for Art [3] iPad
app. These case studies led to the development of a set of web services called
the CollectionWeb framework [4, 5]. Their analysis gave rise to new inter-
actions approaches based on FCA that required the use of fast algorithms for
computing the upper and lower neighbours of a formal concept, and for comput-
ing and updating a set of formal concepts based on incremental changes to their
formal contexts. These approaches are described as the conceptual neighbour-
hood approach and concept layer approach, respectively. This paper focuses on
the implementation and scalability limitations of the conceptual neighbourhood
approach, along with the FCbO update algorithm, its implementation within the
concept layer approach and its performance evaluation.
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The case studies are motivated by emerging museological movements that
have occurred since the 1970s that recognise the museum’s role in collecting,
creating and shaping knowledge in which the context of an object has become
an increasingly important part of its analysis, interpretation and communica-
tion. [6–9]. Context can refer to an object’s materials, construction, design, or-
namentation, provenance, history, environment, connection to people and human
society [9, 10]. This focus towards context reflects a shift from a classical world-
view, where objects were classed in terms of order, hierarchy and taxonomy, to
a modern perspective where objects are analysed in terms of links to other ob-
jects, people, social and cultural histories [9]. The natural association between
these modern perspectives of information and knowledge sharing within muse-
ums are in accord with the foundations of Formal Concept Analysis in its ability
to augment human thought, communication and interpretation. [11, 12]. This as-
sociation motivates the research into new design and interaction approaches that
emphasise concept generation and discovery within museum collections that rely
on fast and efficient algorithms for computing formal concepts and their concep-
tual neighbours.

2 FCA algorithms: scalability and performance evaluation

2.1 The conceptual neighbourhood approach

In the museum-based case studies reported, FCA is used to provide conceptual
structures that can be navigated by a user. The conceptual neighbourhood ap-
proach, as reported in [13], offers the ability to view individual concepts and move
between neighbouring concepts within a concept lattice. One implementation of
this approach is to compute and store a complete concept lattice that can then
be traversed by the user. However as is well known, complete concept lattices –
while adequate for visualising small datasets – are computationally prohibitive
and visually complex on medium to larger datasets typically associated with
museum collections that typically contain tens of thousands of objects [14].

The time and space complexities of pre-computing and storing a complete
concept lattice can be understood by a discussion of how the approach scales
with respect to the size of a formal context. Following an analysis of algorithms
that build complete concept lattices, Carpineto and Romano [14] identify their
time complexities: the best result being the ConceptsCover algorithm which
has a worst-case time complexity of O(|C||M |(|G| + |M |)) which is dependent,
in part, on the number of formal concepts generated from a formal context. The
number of formal concepts |C| generated from a formal context K := 〈G,M, I〉,
can be linear (in the best case) or quadratic (in the worst case) with respect
to |G| (the number of objects) or |M | (the number of attributes) within the
formal context depending on the number of attributes per object. However, even
withstanding the time and space complexities for initially computing and storing
concept lattices from a large formal context (which, if the system employed up-
date algorithms to update the concept lattice, would only need to be run once),
the worst-case time complexity for updating a pre-computed concept lattice –
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i.e., only computing a portion of a concept lattice given changes to a formal
context – is quadratic with respect to the number of formal concepts |C|; al-
though experimental results [15, 16] (cited in [14]) suggest that in practice, the
growth may be linear, rather than quadratic. Despite this, updating and storing
a complete concept lattice for conceptual navigation poses major scalability and
space concerns for large formal contexts.

CollectionWeb implements an alternate approach that does not require
computation of the complete concept lattice and therefore negates the above
scalability issues, but still allows the user to navigate between neighbouring for-
mal concepts – via the reduction and inclusion of query attributes. This method,
called the conceptual neighbourhood approach, was used in ImageSleuth [13, 12]
and again in the Virtual Museum of the Pacific [1]. In both cases interaction fol-
lows a partial view of the concept lattices in the form of a single formal concept
and its immediate neighbours.

The algorithm used by CollectionWeb for generating conceptual neigh-
bourhoods is the NearestNeighbours algorithm [14], presented in Algorithm 1.
The conceptual neighbourhood of a formal concept can be formed by finding
both the upper and lower neighbours of a formal concept which can be com-
puted separately. In the description of the algorithm that follows, a formal con-
text is denoted by the triplet 〈G,M, I〉 with the finite non-empty sets of objects
G = {0, 1, . . . , g} and attributes M = {0, 1, . . . ,m} and I ⊆ G ×M being an
incidence relation with 〈g,m〉 ∈ I, meaning that object g ∈ G has attribute
m ∈ M . Concept-forming operators defined on I are denoted by ′ : 2G 7→ 2M

and ′ : 2M 7→ 2G [17].

The worst-case time complexity of Algorithm 1 is O(|G||M |(|G|+ |M |)), the
sum of the time to find its lower neighbours, O(|G||M |2), and the time to find
its upper neighbours, O(|G|2|M |). Hence, the maximum running time of the
algorithm is quadratic with respect to the number of objects or the number
of attributes within the formal context – whichever is larger. As implemented
in CollectionWeb, the NearestNeighbours algorithm runs dynamically at
query time – i.e., everytime a user views a formal concept or moves to an upper or
lower neighbour, the new concept and its neighbouring concepts are computed.
For ImageSleuth [13, 12] and Virtual Museum of the Pacific case studies [1] this
means that any changes to the underlying formal context – new attributes or
objects added or removed from the collection – are immediately reflected in its
underlying concept lattice, allowing the collection and the relationships among
the objects to dynamically respond to user tagging and curatorial management.

However, the advantage offered by dynamically computing the conceptual
neighbourhood – namely in that it negates the need to compute or store a po-
tentially large concept lattice while still offering the ability to dynamically expose
sections of it for user interaction – also presents another scalability limitation
as the size of the collection grows. Given the dynamic nature of the query and
the quadratic time complexity with respect to the number of objects in a col-
lection, the conceptual neighbourhood approach becomes less suited for use in
larger collections, as the response time for user interaction (in the worst case
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Algorithm 1: The NearestNeighbours algorithm used for generating
a conceptual neighbourhood for formal concept 〈X,Y 〉 in formal context
〈G,M, I〉, cf. [14]

Input: Formal concept 〈X,Y 〉 of formal context 〈G,M, I〉
Output: The set of lower and upper neighbours of 〈X,Y 〉 in the concept

lattice of 〈G,M, I〉

// Returns the lower neighbours of 〈X,Y 〉
lowerNeighbours := ∅;
lNCandidates := ∅;
foreach m ∈M \ Y do

X1 := X ∩ {m}′;
Y1 := X ′

1;
if 〈X1, Y1〉 /∈ lNCandidates then

Add 〈X1, Y1〉 to lNCandidates;
count(〈X1, Y1〉) := 1;

else
count(〈X1, Y1〉) := count(〈X1, Y1〉) + 1;

if (|Y1| − |Y |) = count(〈X1, Y1〉) then
Add 〈X1, Y1〉 to lowerNeighbours;

// Returns the upper neighbours of 〈X,Y 〉
upperNeighbours := ∅;
uNCandidates := ∅;
foreach g ∈ G \X do

Y2 := Y ∩ {g}′;
X2 := Y ′

2 ;
if 〈X2, Y2〉 /∈ uNCandidates then

Add 〈X2, Y2〉 to uNCandidates;
count(〈X2, Y2〉) := 1;

else
count(〈X2, Y2〉) := count(〈X2, Y2〉) + 1;

if (|X2| − |X|) = count(〈X2, Y2〉) then
Add 〈X2, Y2〉 to upperNeighbours;
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scenario) grows quadratically with respect to the number of objects in the col-
lection. While the approach is well suited for dynamically presenting relatively
smaller-sized collections at a specialist or ‘exhibition’ sized scale, such as the 427
objects present in the Virtual Museum of the Pacific or the 80 objects present
in A Place for Art, the approach remains unsuited for larger collections, such as
the the Brooklyn Museum Canvas case study with many thousands of objects.

2.2 The concept layer approach

For all other case studies, CollectionWeb constructs and maintains a set of
formal concepts from a formal context of collection objects. The set of all for-
mal concepts for the formal context in CollectionWeb is called the concept
layer. The framework relies on a concept layer in order to efficiently create the
required data visualisations and semantic structures so that users can associa-
tively browse, visualise and navigate the the collection.

To create and maintain the concept layer, CollectionWeb relies on an
algorithm with a low running time for computing formal concepts from a formal
context, and for recomputing formal concepts if any objects or attributes in the
formal context changes. Specifically, the algorithm should accommodate changes
to a formal context in large museum datasets if a single object (or a relatively
small batch of objects) changes, ensuring that it can dynamically update the
concept layer for a large museum dataset in real time.

There are many high performance algorithms that compute formal concepts
from formal contexts [18–22], along with a recent evaluation study of those al-
gorithms applied to data from the Web [23]. As these algorithms offer high
performance batch computation of an entire set of formal concepts from a for-
mal context, they work well for large museum collections that do not change
over time. However, this is not a common use case: as part of their curatorial
practices, museums continually add or modify objects in their online collections,
and some require the data to be kept up-to-date as it changes. For instance, the
Brooklyn Museum dataset used for the Brooklyn Museum Canvas case study [2],
along with other large public facing datasets such as the one provided by the
Rijksmuseum 3 – also used in this evaluation – require as part of their terms
of use, that all front-facing applications or representation of content must be
up-to-date. 4 In these cases, such changes from these data sources should be
propogated to these front-facing applications as quickly as possible. In addition,
large-scale collaborative tagging efforts such as the steve.museum project [24]
and the Flickr Commons recognise museum collections as dynamic, rather than
static datasets. As discussed further in Section 2.3, the ability to quickly recom-
pute a set of formal concepts given incremental updates to its formal context
can lead to real-time interaction and visualisation of museum data-sets. Such
scenarios call for an efficient FCA algorithm that can accommodate incremental

3 https://www.rijksmuseum.nl/
4 http://www.brooklynmuseum.org/opencollection/api/docs/terms
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changes to a formal context, rather than require the recomputation of the entire
set of formal concepts when one or a few of its objects changes.

CollectionWeb employs the FCbO algorithm to initially compute all con-
cepts of a formal context [22] (the algorithm is an improved version of Kuznetsov’s
Close-by-One algorithm [25, 26]) and, more importantly, a modification of that
algorithm called FCbO update [27] (earlier version also in [28]) to update for-
mal concepts as objects in the formal context are added, modified or deleted.
We briefly present FCbO update here for the purposes of self-containment. The
presentation uses a scenario where new objects are added to the formal context
which results in the algorithm producing new and updated formal concepts.

In the description of the algorithm that follows we use the same notation for
formal context and concept-forming operators that were used in Algorithm 1. In
addition, new objects to be added to 〈G,M, I〉 and not present in G are denoted
by GN = {g + 1, . . . , gU} (i.e. GN ∩ G = ∅), MN = {i, . . . , k} is the set of
attributes shared by at least one of the objects GN and either present or not
present in M (but usually MN ⊆M) and N ⊆ GN×MN is an incidence relation
between GN and MN . By the triplet 〈GU ,MU , IU 〉 we denote the formal context
which results as a union of 〈G,M, I〉 and 〈GN ,MN , N〉, both extended to GU and
MU , i.e. GU = G∪GN = {0, . . . , gU}, MU = M ∪MN = {0, . . . ,mU}, mU = k if
k > m and mU = m otherwise, and IU ⊆ GU ×MU such that IU ∩ (G×M) = I,
IU ∩ (GN ×MN ) = N and IU ∩ (G× (MN \M)) = IU ∩ (GN × (M \MN )) = ∅.

The algorithm is represented by the recursive procedure UpdateFastGen-
erateFrom, presented in Algorithm 2. The procedure is a modified form of the
recursive procedure FastGenerateFrom – the core of the FCbO algorithm
as described in [22] (Algorithm 2). The procedure accepts as its arguments a
formal concept 〈X,Y 〉 of 〈GU ,MU , IU 〉 (an initial formal concept), an attribute
m ∈ MN (first attribute to be processed) and a set {Nm ⊆ MU |m ∈ MU} of
subsets of attributes MU , and uses a local variable queue as a temporary storage
for computed formal concepts and Mm (m ∈MU ) as sets of attributes which are
used in place of Nm for further invocations of the procedure. When the procedure
is invoked, it recursively descends, in a combined depth-first and breadth-first
search, the space of new and updated formal concepts of 〈GU ,MU , IU 〉 resulted
by adding new objects GN described by attributes MN to 〈G,M, I〉, beginning
with 〈X,Y 〉. For a full description of the procedure, see [27] or [28], recalling that
the set MU,j ⊆MU in Algorithm 2 is defined by: MU,j = {m ∈MU |m < j}. In
order to compute all new and updated formal concepts of 〈GU ,MU , IU 〉 which
are not formal concepts of 〈G,M, I〉, each of them exactly once, UpdateFast-
GenerateFrom shall be invoked with 〈∅′, ∅′′〉, m being the first attribute in
MN and {Nm = ∅ |m ∈M} as its initial arguments.

The worst-case time complexity of Algorithm 2 remains the same as of the
original FCbO (and CbO) algorithm, O(|C||M |2|G|), because when adding all
objects to the empty formal context it actually performs FCbO.

For updating a set of formal concepts given by incremental object-by-object
updates of a formal context, there are a number of other incremental algorithms
that can be used for determine a set of formal concepts and, subsequently, for
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Algorithm 2: The UpdateFastGenerateFrom(〈X,Y 〉,m, {Nm |m ∈
MU}) algorithm used for computing all new and updated formal concepts
of formal context 〈GU ,MU , IU 〉, cf. [27]

Input: Formal concept 〈X,Y 〉 of formal context 〈GU ,MU , IU 〉, attribute
m ∈MN (or a number > mU ) and set {Nm ⊆MU |m ∈MU} of
subsets of attributes MU

Output: The set of all new and updated formal concepts of 〈GU ,MU , IU 〉

// output 〈X,Y 〉, e.g., print it on screen or store it

if (X ∩G)′ 6= Y then
output 〈X,Y 〉 as new;

else
if (X ∩G) ⊂ X then

output 〈X,Y 〉 as updated;
else

return

if Y = MU or m > mU then
return

for j from m upto mU do
set Mj to Nj ;
// go through attributes from MN only

if j 6∈ Y and j ∈MN and Nj ∩MU,j ⊆ Y ∩MU,j then
set X1 to X ∩ {j}′;
set Y1 to X ′

1;
if Y ∩MU,j = Y1 ∩MU,j then

put 〈〈X1, Y1〉, j + 1〉 to queue;
else

set Mj to Y1;

while get 〈〈X1, Y1〉, j〉 from queue do
UpdateFastGenerateFrom(〈X1, Y1〉, j, {Mm |m ∈MU});

return

Scalable Performance of FCbO Algorithm on Museum Data 369



computing the concept lattice, such as [16, 29, 30] along with the algorithms
in [14]. AddIntent [30] is considered to be one of the most efficient of these
algorithms, however, along with the other algorithms, it requires the complete
concept lattice prior to computation. The FCbO update algorithm [27] described
above, differentiates itself from other incremental algorithms in that it does not
require the concept lattice (nor the set of all formal concepts) as its input.
However, the number of concepts computed from datasets we use – even without
the complexities of storing a complete concept lattice – is of the order hundreds
of thousands (see Figures 1 and 2). In light of this, the FCbO update algorithm
not only computes changes based only on a set of objects marked for update,
but it also outputs only the new and updated formal concepts, rather than the
entire set of formal concepts. This allows for quick execution of the algorithm
and ingestion of its results where changes to formal context are relatively minor:
strengthening the algorithm’s utility in applications where datasets are large but
updated frequently and in small increments.

2.3 Performance Evaluation

The algorithm was evaluated on two museum datasets: the first being the Brook-
lyn Museum collection consisting of 10,000 objects and 8,952 attributes and the
second being the Rijksmuseum collection consisting of 100,000 objects and 1,716
attributes. The purpose of the performance evaluation was to determine the total
running time and performance benefit of using the FCbO update algorithm to
incrementally update a set of formal concepts given changes to a formal context,
rather than recomputing its entire set of formal concepts.

Table 1. Running time of computing all formal concepts from a formal context using
the FCbO update algorithm, average of 10 iterations

Dataset No. of at-
tributes

No. of ob-
jects

No. of con-
cepts

Avg. running
time (ms)

Brooklyn Museum 8,952 10,000 98,547 36,218

Rijksmuseum 1,716 100,000 994,967 68,792

Table 1 shows the running time to compute the entire set of formal concepts
from the formal contexts generated from the Brooklyn Museum and Rijksmu-
seum datasets. For the sake of clarity, a batch or non-update computation –
such as the one demonstrated in the table above – is defined as a computation
that computes the entire set of formal concepts from formal context, whereas
an update formal concept computation is defined as a computation that uses a
set of objects to add, remove or update within the formal context as its input
and outputs a set of changed concepts. The above figures in Table 1 are used as
a benchmark in the evaluation of the performance benefit of the update, rather
than the batch computations of the FCbO algorithm.
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An update computation can be triggered by three different events: adding
new objects to the formal context, removing existing objects from the formal
context, or updating the attribute sets of existing objects within the formal
context. Given that objects can be added, removed or updated within a museum
dataset, these three operations are defined and evaluated separately with respect
to the running time of the algorithm. Assuming a full set of formal concepts have
already been computed, each operation produces a number of modified concepts
that refer to the set of formal concepts added, removed or updated as a result of
each operation. In addition to the time it takes to perform each operation, the
number of modified concepts serves as an important indicator of complexity.

The results of a performance evaluation demonstrating add, remove and up-
date operations for the FCbO update algorithm are shown in Fig. 1 for the
Brooklyn Museum dataset, and Fig. 2 for the Rijksmuseum dataset. The figures
demonstrate how the algorithm scales with each operation for adding, removing
or updating 1, 5, 50 or 500 objects to their respective datasets. In each figure,
the horizontal axis first groups the number of objects N , which is then further
sub-divided into its three operations with respect to the formal context: incre-
mentally compute the set of formal concepts when N objects are added, removed
and updated from the formal context. As a way of comparing the running time of
the FCbO update algorithm to its batch counterpart, the performance metrics
of the update algorithm – its running time and number of modified concepts
– are shown along with the total running time and number of formal concepts
produced by the non-update algorithm, the dashed line in Figures 1 and 2.

For the smaller Brooklyn Museum collection, the number of modified concepts
and time taken to compute them is reasonable when adding 5 or 50 objects, with
running times far less than the time it takes for the algorithm to recompute the
entire set of formal concepts. However, in the larger Rijksmuseum collection –
due to the smaller number of attributes and higher context density – removing
and updating a larger batch of objects requires the re-computation of a large
number of formal concepts where in some cases, Figures 1 and 2, the time taken
to update the set of formal concepts is greater than the time to recompute the
entire set as a batch operation.

The benefits of an incremental FCbO update algorithm with a low running
time with respect to museum curation practices and visitor experiences can be
realised with respect to user interactions that lead to dynamically changing con-
texts. For example, in many online collections such as the Powerhouse Museum
Online Collection 5 and the Brooklyn Museum Online Collection 6, visitors can
add their own interpretations to the objects by adding their own keywords or
‘tags’. These interactions can introduce new perspectives on the works [24] that
can potentially reframe the way objects are related to one another [31] in that
audiences are invited to shape the context, and subsequently, the knowledge
that surrounds the objects. Given that formal concepts can be used to represent
contextual knowledge of a domain where museum objects are treated as formal

5 http://www.powerhousemuseum.com/collection/database/menu.php
6 https://www.brooklynmuseum.org/opencollection/collections/
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Fig. 1. Average running time and number of modified concepts for adding, removing
or updating objects to a formal context and incrementally recomputing the set of
formal concepts using the FCbO update algorithm on the Brooklyn Museum dataset.
The top graph shows the total running time for each operation for 1, 5, 50 and 500
objects, whereas the bottom graph shows the total number of modified concepts for
each operation for 1, 5, 50 and 500 objects.
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Fig. 2. Average running time and number of modified concepts for adding, removing or
updating objects to a formal context and incrementally recomputing the set of formal
concepts using the FCbO update algorithm on the Rijksmuseum dataset. The top graph
shows the total running time for each operation for 1, 5, 50 and 500 objects, whereas
the bottom graph shows the total number of modified concepts for each operation for
1, 5, 50 and 500 objects.
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objects and tags as formal attributes, user tagging can provide the ability to up-
date representations of knowledge in real-time. Due to the low running time of
the FCbO update algorithm on small sets of objects as their input, a user could
potentially tag an object and then, through the use of incremental concept com-
putation coupled with data visualisation, immediately realise not only how their
tagging enhances the content of the objects, but also shapes the knowledge that
surrounds it in relation to other objects.

In many other cases, updates to museum collection data are provided as a
batch – i.e., whole groups of objects added or modified as a result of changes
to objects within a museum dataset. For example, the Smithsonian Cooper-
Hewitt National Design Museum uses GitHub 7 to host their collection data 8 –
allowing anyone to access, update and provide updates to the collection. Many
other museums provide a timestamp in their object records to indicate when it
was last updated, so that data harvesters can collect changes. In other situations
it may be more feasible to implement updates to the dataset as a batch rather
than as a set of small frequently occurring object updates.

3 Conclusion

Overall, the FCbO update algorithm – as implemented by CollectionWeb to
construct and maintain its concept layer – provides a fast way to update formal
concepts from large and dynamically changing museum datasets, given that the
changes within those datasets are relatively small relative to the size of the
formal context. The algorithm provides a scalable way to construct and maintain
a concept layer once the initial and potentially time costly computation of the
entire set of formal concepts from a formal context is complete. The algorithm
is less efficient at adding, removing or updating large changes to the collection
where, in such cases, it may be preferential to recompute the entire set of formal
concepts.
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